Effects of Daily Peat Smoke Exposure on Present and Next Generations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Exposure Study
2.3. Open Field Test
2.4. EEG Measurements
2.5. Methods of Histological Research
2.6. Statistical Analysis
3. Results
3.1. Exposure Characteristics
3.2. Result of Behavioral Test
3.3. EEG Analysis
3.4. Histopathological Examination
3.5. Results of Examination of F1 Offspring from Peat-Smoke-Exposed Rats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoscilo, A.; Page, S.E.; Tansey, K.J.; Rieley, J.O. Effect of repeated fires on land cover change on peatland in southern Central Kalimantan, Indonesia, 1973 to 2005. Int. J. Wildland Fire 2011, 20, 578–588. [Google Scholar] [CrossRef]
- Flores, B.M.; Piedade, M.-T.F.; Nelson, B.W. Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecol. Div. 2014, 7, 319–327. [Google Scholar] [CrossRef]
- Davies, G.M.; Kettridge, N.; Stoof, C.R.; Gray, A.; Ascoli, D.; Fernandes, P.M.; Marrs, R.; Allen, K.A.; Doerr, S.H.; Clay, G.D.; et al. The role of fire in UK peatland and moorland management: The need for informed, unbiased debate. Philos. Trans. R SocLond. B Biol. Sci. 2016, 371, 20150342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.H.; Tong, H.; Daniels, M.; Boykin, E.; Krantz, Q.T.; McGee, J.; Hays, M.; Kovalcik, K.; Dye, J.A.; Gilmour, M.I. Cardiopulmonary toxicity of peat wildfire particulate matter and the predictive utility of precision cut lung slices. Part. Fibre Toxicol. 2014, 11, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adetona, O.; Reinhardt, T.E.; Domitrovich, J.; Broyles, G.; Adetona, A.M.; Kleinman, M.T.; Ottmar, R.D.; Naeher, L.P. Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal. Toxicol. 2016, 28, 95–139. [Google Scholar] [CrossRef]
- Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef] [Green Version]
- Oudin, A.; Segersson, D.; Adolfsson, R.; Forsberg, B. Association between air pollution from residential wood burning and dementia incidence in a longitudinal study in Northern Sweden. PLoS ONE. 2018, 13, e0198283. [Google Scholar] [CrossRef] [Green Version]
- Schuller, A.; Bellini, C.; Jenkins, T.G.; Eden, M.; Matz, J.; Oakes, J.; Montrose, L. Simulated Wildfire Smoke Significantly Alters Sperm DNA Methylation Patterns in a Murine Model. Toxics 2021, 9, 199. [Google Scholar] [CrossRef]
- Schuller, A.; Montrose, L. Influence of Woodsmoke Exposure on Molecular Mechanisms Underlying Alzheimer’s Disease: Existing Literature and Gaps in Our Understanding. Genet. Epigenet. 2020, 13, 2516865720954873. [Google Scholar] [CrossRef]
- Willson, B.E.; Pinkerton, K.E.; Lasley, B.; Gee, N. Effect of wildfire smoke on pregnancy outcomes in the non-human primate. Fertil. Steril. 2019, 112, e13. [Google Scholar] [CrossRef]
- Sosedova, L.M.; Vokina, V.A.; Novikov, M.A.; Rukavishnikov, V.S.; Andreeva, E.S.; Zhurba, O.M.; Alekseenko, A.N. Paternal Biomass Smoke Exposure in Rats Produces Behavioral and Cognitive Alterations in the Offspring. Toxics 2021, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Swiston, J.R.; Davidson, W.; Attridge, S.; Li, G.T.; Brauer, M.; van Eeden, S.F. Wood smoke exposure induces a pulmonary and systemic inflammatory response in firefighters. Eur. Respir. J. 2008, 32, 129–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adetona, O.; Dunn, K.; Hall, D.B.; Achtemeier, G.; Stock, A.; Naeher, L.P. Personal PM2.5 Exposure Among Wildland Firefighters Working at Prescribed Forest Burns in Southeastern United States. J. Occup. Environ. Hyg. 2011, 8, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Kulikov, A.V.; Tikhonova, M.A.; Kulikov, V.A. Automated measurement of special preference in the open field test with transmitted lighting. J. Neurosci. Meth. 2008, 170, 345–351. [Google Scholar] [CrossRef]
- Korzhevsky, D.E. Brief Summary of the Basics of Histological Technique for Physicians and Histologists; Krof: St. Petersburg, Russia, 2005; pp. 1–48. [Google Scholar]
- Delfino, R.J.; Brummel, S.; Wu, J.; Stern, H.; Ostro, B.; Lipsett, M.; Winer, A.; Street, D.H.; Zhang, L.; Tjoa, T.; et al. The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup. Environ. Med. 2009, 66, 189–197. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, J.A.; Vargo, J.; Milet, M.; French, N.; Billmire, M.; Johnson, J.; Hoshiko, S. The San Diego 2007 wildfires and MediCal emergency department presentations, inpatient hospitalizations, and outpatient visits: An observational study of smoke exposure periods and a bidirectional case-crossover analysis. PLoS Med. 2018, 15, e1002601. [Google Scholar] [CrossRef] [Green Version]
- Rein, G. Smouldering fires and natural fuels. In Fire Phenomena in the Earth System-An Interdisciplinary Approach to Fire Science; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 15–34. [Google Scholar]
- Lin, C.; Ceburnis, D.; Hellebust, S.; Buckley, P.; Wenger, J.; Canonaco, F.; Prévôt, A.; Huang, R.J.; O’Dowd, C.; Ovadnevaite, J. Characterization of Primary Organic Aerosol from Domestic Wood, Peat, and Coal Burning in Ireland. Environ. Sci. Technol. 2017, 51, 10624–10632. [Google Scholar] [CrossRef]
- Wang, L.; Xiang, Z.; Stevanovic, S.; Ristovski, Z.; Salimi, F.; Gao, J.; Wang, H.; Li, L. Role of Chinese cooking emissions on ambient air quality and human health. Sci. Total Environ. 2017, 589, 173–181. [Google Scholar] [CrossRef]
- Pope, D.; Bruce, N.; Dherani, M.; Jagoe, K.; Rehfuess, E. Real-life effectiveness of ‘improved’ stoves and clean fuels in reducing PM2.5 and CO: Systematic review and meta-analysis. Environ. Int. 2017, 101, 7–18. [Google Scholar] [CrossRef]
- Shupler, M.; Godwin, W.; Frostad, J.; Gustafson, P.; Arku, R.E.; Brauer, M. Global estimation of exposure to fine particulate matter (PM2.5) from household air pollution. Environ. Int. 2018, 120, 354–363. [Google Scholar] [CrossRef]
- Akdemir, E.A.; Battye, W.H.; Myers, C.B.; Aneja, V. Estimating NH3 and PM2.5 emissions from the Australia mega wildfires and the impact of plume transport on air quality in Australia and New Zealand. Environ. Sci. Atmos. 2022, 2, 634–646. [Google Scholar] [CrossRef]
- Munoz-Alpizar, R.; Pavlovic, R.; Moran, M.D.; Chen, J.; Gravel, S.; Henderson, S.B.; Ménard, S.; Racine, J.; Duhamel, A.; Gilbert, S.; et al. Multi-Year (2013–2016) PM2.5 wildfire pollution exposure over North America as determined from operational air quality forecasts. Atmosphere 2017, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Efimova, N.V.; Rukavishnikov, V.S. Assessment of Smoke Pollution Caused by Wildfires in the Baikal Region (Russia). Atmosphere 2021, 12, 1542. [Google Scholar] [CrossRef]
- Kunii, O.; Kanagawa, S.; Yajima, I.; Hisamatsu, Y.; Yamamura, S.; Amagai, T.; Ismail, T.S. The 1997 haze disaster in Indonesia: Its air quality and health effects. Arch. Environ. Health. 2002, 57, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.P.; Grant, L.D. Approaches to Monitoring of Air Pollutants and Evaluation of Health Impacts Produced by Biomass Burning. In Health Guidelines for Vegetation Fire Events: Background Papers; Goh, K.-T., Schwela, D., Goldammer, J.G., Eds.; World Health Organization: Geneva, Switzerland, 1999; pp. 147–185. [Google Scholar]
- Kim, Y.H.; Warren, S.H.; Krantz, Q.T.; King, C.; Jaskot, R.; Preston, W.T.; George, B.J.; Hays, M.D.; Landis, M.S.; Higuchi, M.; et al. Mutagenicity and Lung Toxicity of Smoldering vs. Flaming Emissions from Various Biomass Fuels: Implications for Health Effects from Wildland Fires. Environ. Health Perspect. 2018, 126, 17011. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.C.; Kim, Y.H.; Martin, B.L.; Ledbetter, A.D.; Dye, J.A.; Hazari, M.S.; Gilmour, M.I.; Farraj, A.K. Pulmonary exposure to peat smoke extracts in rats decreases expiratory time and increases left heart end systolic volume. Inhal. Toxicol. 2018, 30, 439–447. [Google Scholar] [CrossRef]
- Martin, B.L.; Thompson, L.C.; Kim, Y.H.; King, C.; Snow, S.; Schladweiler, M.; Haykal-Coates, N.; George, I.; Gilmour, M.I.; Kodavanti, U.P.; et al. Peat smoke inhalation alters blood pressure, baroreflex sensitivity, and cardiac arrhythmia risk in rats. J. Toxicol. Environ. Health A 2020, 83, 748–763. [Google Scholar] [CrossRef]
- Martin, B.L.; Thompson, L.C.; Kim, Y.; Williams, W.; Snow, S.J.; Schladweiler, M.C.; Phillips, P.; King, C.; Richards, J.; Haykal-Coates, N.; et al. Acute peat smoke inhalation sensitizes rats to the postprandial cardiometabolic effects of a high fat oral load. Sci. Total. Environ. 2018, 643, 378–391. [Google Scholar] [CrossRef]
- Smollin, C.; Olson, K. Carbon monoxide poisoning (acute). BMJ Clin. Evid. 2010, 12, 2103. [Google Scholar]
- Tsai, C.F.; Yip, P.K.; Chen, S.Y.; Lin, J.C.; Yeh, Z.T.; Kung, L.Y.; Wang, C.Y.; Fan, Y.M. The impacts of acute carbon monoxide poisoning on the brain: Longitudinal clinical and 99mTc ethyl cysteinate brain SPECT characterization of patients with persistent and delayed neurological sequelae. Clin. Neurol. Neurosurg. 2014, 119, 21–27. [Google Scholar] [CrossRef]
- Oh, S.; Choi, S. Acute carbon monoxide poisoning and delayed neurological sequelae: A potential neuroprotection bundle therapy. Neural. Regen. Res. 2015, 10, 36–38. [Google Scholar] [CrossRef] [PubMed]
- Rose, J.J.; Wang, L.; Xu, Q.; McTiernan, C.F.; Shiva, S.; Tejero, J.; Gladwin, M.T. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy. Am. J. Respir. Crit. Care Med. 2017, 195, 596–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, C.L.; Maynard, R.L. Effects on health of prolonged exposure to low concentrations of carbon monoxide. Occup Environ. Med. 2002, 59, 708–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vokina, V.A.; Novikov, M.A.; Elfimova, T.A.; Bogomolova, E.S.; Alekseenko, A.N.; Sosedova, L.M. Effects of wildfire emission on the morphofunctional state of the central nervous system in white rats. Hyg. Sanit. 2019, 98, 1245–1250. [Google Scholar] [CrossRef]
- Novikov, M.A.; Vokina, V.A.; Andreeva, E.S.; Alekseenko, A.N.; Sosedova, L.M. Experimental study of the gonadotoxic effect of forest fire smoke. Hyg. Sanit. 2020, 99, 1149–1152. [Google Scholar] [CrossRef]
- Desmedt, J.E.; Tomberg, C. Transient phase-locking of 40 Hz electrical oscillations in prefrontal and parietal human cortex reflects the process of conscious somatic perception. Neurosci Lett. 1994, 168, 126–129. [Google Scholar] [CrossRef]
- Kozhechkin, S.N.; Sviderskaia, N.E.; Koshtoiants, O.; Seredin, S.B. Multiparametric analysis of the effect of ethanol in various doses on EEG in rats. Eksp. Klin. Farmakol. 2004, 67, 46–50. [Google Scholar]
- Descloux, C.; Ginet, V.; Clarke, P.G.; Puyal, J.; Truttmann, A.C. Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death. Int. J. Dev. Neurosci. 2015, 45, 75–85. [Google Scholar] [CrossRef]
- Sosedova, L.M.; Vokina, V.A.; Novikov, M.A.; Andreeva, E.S.; Alekseenko, A.N.; Zhurba, O.M.; Rukavishnikov, V.S.; Kudaeva, I.V. Reproductive function of male rats and motor activity of their offspring in fire emissions modeling. Bull. Exp. Biol. Med. 2022, 172, 472–477. [Google Scholar] [CrossRef]
- Day, J.; Savani, S.; Krempley, B.D.; Nguyen, M.; Kitlinska, J.B. Influence of paternal preconception exposures on their offspring: Through epigenetics to phenotype. Am. J. Stem. Cells. 2016, 5, 11–18. [Google Scholar]
- McPherson, N.O.; Owens, J.A.; Fullston, T.; Lane, M. Preconception diet or exercise intervention in obese fathers normalizes sperm microrna profile and metabolic syndrome in female offspring. Am. J. Physiol. Endocrinol. Metab. 2015, 308, E805–E821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messerlian, C.; Bellinger, D.; Mínguez-Alarcón, L.; Romano, M.E.; Ford, J.B.; Williams, P.L.; Calafat, A.M.; Hauser, R.; Braun, J.M. Paternal and maternal preconception urinary phthalate metabolite concentrations and child behavior. Environ. Res. 2017, 158, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Heßelbach, K.; Kim, G.-J.; Flemming, S.; Häupl, T.; Bonin, M.; Dornhof, R.; Günther, S.; Merfort, I.; Humar, M. Disease relevant modifications of the methylome and transcriptome by particulate matter (PM2.5) from biomass combustion. Epigenetics 2017, 12, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, B.; Wu, L.; Zhou, Y.; Li, Y.; Mao, X.; Chen, Y.; Wang, J.; Luo, P.; Ma, J.; et al. Association of Exposure to Ambient Fine Particulate Matter Constituents with Semen Quality Among Men Attending a Fertility Center in China. Environ. Sci. Technol. 2019, 53, 5957–5965. [Google Scholar] [CrossRef]
- Hansen, C.; Luben, T.J.; Sacks, J.D.; Olshan, A.; Jeffay, S.; Strader, L.; Perreault, S.D. The effect of ambient air pollution on sperm quality. Environ. Health Perspect. 2010, 118, 203–209. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, H.C.; Liao, C.H.; Chiang, B.J.; Chang, Y.K. The impact of the fine ambient particle on infertile male’s sperm quality. Urol. Sci. 2019, 30, 177–183. [Google Scholar] [CrossRef]
- Radwan, M.; Jurewicz, J.; Polańska, K.; Sobala, W.; Radwan, P.; Bochenek, M.; Hanke, W. Exposure to ambient air pollution-does it affect semen quality and the level of reproductive hormones? Ann. Hum. Biol. 2016, 43, 50–56. [Google Scholar] [CrossRef]
- Abdo, M.; Ward, I.; O’Dell, K.; Ford, B.; Pierce, J.R.; Fischer, E.V.; Crooks, J.L. Impact of wildfire smoke on adverse pregnancy outcomes in Colorado, 2007–2015. Int. J. Environ. Res. Public Health 2019, 16, 3720. [Google Scholar] [CrossRef] [Green Version]
- Holstius, D.; Reid, C.E.; Jesdale, B.M.; Morello-Frosch, R. Birth weight following pregnancy during the 2003 Southern California Wildfires. Environ. Health Perspect. 2012, 120, 1340–1345. [Google Scholar] [CrossRef] [Green Version]
- Willson, B.E.; Gee, N.A.; Willits, N.H.; Li, L.; Zhang, Q.; Pinkerton, K.E.; Lasley, B.L. Effects of the 2018 Camp Fire on birth outcomes in nonhuman primates: Case control study. Reprod. Toxicol. 2021, 105, 128–135. [Google Scholar] [CrossRef]
- Capitanio, J.P.; Del Rosso, L.A.; Gee, N.; Lasley, B.L. Adverse biobehavioral effects in infants resulting from pregnant rhesus macaques’ exposure to wildfire smoke. Nat. Commun. 2022, 13, 1774. [Google Scholar] [CrossRef]
- Gorbatova, D.M.; Zhanataev, A.K.; Nemova, E.P.; Durnev, A.D. DNA damage in the placenta and embryos of rats exposed to peat smoke: Antigenotoxic effects of afobazole. Russ. J. Genet. Appl. Res. 2017, 7, 712–716. [Google Scholar] [CrossRef]
- Gorbatova, D.M.; Litvinova, S.A.; Durnev, A.D.; Seredenin, S.B. Afobazole Protects Rats Exposed to Peat Smoke in Utero. Bull. Exp. Biol. Med. 2015, 158, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Gorbatova, D.M.; Nemova, E.P.; Solomina, A.S.; Durnev, A.D.; Seredenin, S.B. Prenatal Effects of Peat Combustion Products and Afobazole Correction Thereof in the Rat Progeny. Bull. Exp. Biol. Med. 2015, 158, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Ivashova, D.M.; Litvinova, S.A.; Tsorin, I.B.; Voronina, T.A. Effects prenatal exposure to peat smoke on the emotional behavior of rat offspring and its correction with fabomotizole. Med. Acad. J. 2021, 21, 47–58. [Google Scholar] [CrossRef]
Pollutant | Mean | Minimum | Maximum | Confidence Interval 95% | Recommended Short-Term (24 h) AQG Level |
---|---|---|---|---|---|
PM2.5,µg/m3 | 920 | 340 | 1420 | 760–1090 | 15 a |
CO, mg/m3 | 40.8 | 31.5 | 58.3 | 38.4–43.3 | 4 a |
NO2, µg/m3 | 37 | 26 | 49 | 33–40 | 25 a |
SO2, µg/m3 | 2.9 | 1.0 | 5.0 | 2.5–3.2 | 40 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vokina, V.A.; Sosedova, L.M.; Novikov, M.A.; Titov, E.A.; Andreeva, E.S.; Rukavishnikov, V.S. Effects of Daily Peat Smoke Exposure on Present and Next Generations. Toxics 2022, 10, 750. https://doi.org/10.3390/toxics10120750
Vokina VA, Sosedova LM, Novikov MA, Titov EA, Andreeva ES, Rukavishnikov VS. Effects of Daily Peat Smoke Exposure on Present and Next Generations. Toxics. 2022; 10(12):750. https://doi.org/10.3390/toxics10120750
Chicago/Turabian StyleVokina, Vera A., Larisa M. Sosedova, Mikhail A. Novikov, Evgeniy A. Titov, Elizaveta S. Andreeva, and Viktor S. Rukavishnikov. 2022. "Effects of Daily Peat Smoke Exposure on Present and Next Generations" Toxics 10, no. 12: 750. https://doi.org/10.3390/toxics10120750
APA StyleVokina, V. A., Sosedova, L. M., Novikov, M. A., Titov, E. A., Andreeva, E. S., & Rukavishnikov, V. S. (2022). Effects of Daily Peat Smoke Exposure on Present and Next Generations. Toxics, 10(12), 750. https://doi.org/10.3390/toxics10120750