Disposition of Aerosols of Isothiazolinone-Biocides: BIT, MIT and OIT
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biocides and Reagents
2.2. Chamber and Instruments
2.3. Sampling of Aerosolized Biocides
2.4. Sampling of the Precipitated and Airborne Fraction of Aerosolized Biocides
2.5. Sample Extraction and Calibration Sample Preparation
2.6. Liquid Chromatography-Mass Spectrometry (LC-MS/MS)
2.7. Validation of the Analytical Method
2.8. Data Analysis
3. Results
3.1. Particle Characterization of Aerosols of BIT, MIT and OIT
3.2. Deposition of Aerosols of BIT, MIT, and OIT
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pablos, C.; Romero, A.; de Diego, A.; Vargas, C.; Bascón, I.; Pérez-Rodríguez, F.; Marugán, J. Novel antimicrobial agents as alternative to chlorine with potential applications in the fruit and vegetable processing industry. Int. J. Food Microbiol. 2018, 285, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Schwensen, J.F.; Lundov, M.D.; Bossi, R.; Banerjee, P.; Gimenez-Arnau, E.; Lepoittevin, J.P.; Liden, C.; Uter, W.; Yazar, K.; White, I.R.; et al. Methylisothiazolinone and benzisothiazolinone are widely used in paint: A multicentre study of paints from five European countries. Contact Dermat. 2015, 72, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Park, D.-U.; Park, J.; Yang, K.W.; Park, J.-H.; Kwon, J.-H.; Oh, H.B. Properties of polyhexamethylene guanidine (PHMG) associated with fatal lung injury in Korea. Molecules 2020, 25, 3301. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-J.; Kim, H.-J.; Yu, J.; Lee, E.; Jung, Y.-H.; Kim, H.-Y.; Seo, J.-H.; Kwon, G.-Y.; Park, J.-H.; Gwack, J. Inhalation toxicity of humidifier disinfectants as a risk factor of children’s interstitial lung disease in Korea: A case-control study. PLoS ONE 2013, 8, e64430. [Google Scholar] [CrossRef] [PubMed]
- Taubert, K.; Kraus, S.; Schulze, B. Isothiazol-3 (2 H)-ones, part I: Synthesis, reactions and biological activity. Sulfur Rep. 2002, 23, 79–121. [Google Scholar] [CrossRef]
- Williams, T.M. The mechanism of action of isothiazolone biocide. In CORROSION 2006; OnePetro: Richardson, TX, USA, 2006. [Google Scholar]
- Collier, P.J.; Ramsey, A.J.; Austin, P.; Gilbert, P. Growth inhibitory and biocidal activity of some isothiazolone biocides. J. Appl. Bacteriol. 1990, 69, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.; Aerts, O.; de Montjoye, L.; Tromme, I.; Goossens, A.; Baeck, M. Isothiazolinone derivatives and allergic contact dermatitis: A review and update. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 267–276. [Google Scholar] [CrossRef]
- Aerts, O.; Goossens, A.; Lambert, J.; Lepoittevin, J.-P. Contact allergy caused by isothiazolinone derivatives: An overview of non-cosmetic and unusual cosmetic sources. Eur. J. Dermatol. 2017, 27, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Park, D.U.; Park, S.K.; Kim, J.; Park, J.; Ryu, S.H.; Park, J.H.; Lee, S.Y.; Oh, H.B.; Kim, S.; Zoh, K.E.; et al. Characteristics of exposure to Chloromethylisothiazolinone (CMIT) and Methylisothiazolinone (MIT) among humidifier disinfectant-associated lung injury (HDLI) patients in South Korea. Molecules 2020, 25, 5284. [Google Scholar] [CrossRef]
- Alexander, B. An assessment of the comparative sensitization potential of some common isothiazolinones. Contact Dermat. 2002, 46, 191–196. [Google Scholar] [CrossRef]
- Sardar, S.W.; Choi, Y.; Park, N.; Jeon, J. Occurrence and concentration of chemical additives in consumer products in Korea. Int. J. Environ. Res. Public Health 2019, 16, 5075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwensen, J.F.; Johansen, J.D. Isothiazolinones. Kanerva’s Occup. Dermatol. 2020, 2020, 507–520. [Google Scholar]
- Moscato, G.; Omodeo, P.; Dellabianca, A.; Colli, M.; Pugliese, F.; Locatelli, C.; Scibilia, J. Occupational asthma and rhinitis caused by 1, 2-benzisothiazolin-3-one in a chemical worker. Occup. Med. 1997, 47, 249–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aalto-Korte, K.; Alanko, K.; Henriks-Eckerman, M.L.; Kuuliala, O.; Jolanki, R. Occupational allergic contact dermatitis from 2-N-octyl-4-isothiazolin-3-one. Contact Dermat. 2007, 56, 160–163. [Google Scholar] [CrossRef]
- Fukunaga, A.; Nishiyama, S.; Shimizu, H.; Nagai, H.; Horikawa, T.; Mori, A.; Inoue, N.; Sasaki, K.; Nishigori, C. Non-occupational allergic contact dermatitis from 2-N-octyl-4-isothiazolin-3-one in a Japanese mattress gel-sheet used for cooling. Contact Dermat. 2010, 62, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Ghazavi, M.K.; Johnston, G.A. An outbreak of occupational allergic contact dermatitis caused by 2-N-octyl-4-isothiazolin-3-one among workers in an adhesive factory. Contact Dermat. 2011, 64, 114–115. [Google Scholar] [CrossRef]
- Park, S.K.; Seol, H.S.; Park, H.J.; Kim, Y.S.; Ryu, S.H.; Kim, J.; Kim, S.; Lee, J.H.; Kwon, J.H. Experimental determination of indoor air concentration of 5-chloro-2-methylisothiazol-3(2H)-one/ 2-methylisothiazol-3(2H)-one (CMIT/MIT) emitted by the use of humidifier disinfectant. Environ. Anal. Health Toxicol. 2020, 35, e2020008. [Google Scholar] [CrossRef]
- Lee, N.; Jang, D.Y.; Lee, D.H.; Jeong, H.; Nam, K.T.; Choi, D.W.; Lim, K.M. Local toxicity of biocides after direct and aerosol exposure on the human skin epidermis and airway tissue models. Toxics 2021, 9, 29. [Google Scholar] [CrossRef]
- Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839. [Google Scholar] [CrossRef]
- OECD. Test No. 413: Subchronic Inhalation Toxicity: 90-Day Study; OECD Publishing: Paris, France, 2018. [Google Scholar]
- Selkäinaho, J.; Harmo, P.; Salonen-Salkinoja, M.; Luukkaa, J.; Siren, H.M.; Riekkola, M.-L.; Andersson, M.A.; Mikkola, R.; Salonen, H.; Kurnitski, J. Water vapour mobilises building related non-volatile chemicals and mycotoxinc and may be used to remove substances of potential health hazard from indoor surfaces. Track 2018, 1, 2–5. [Google Scholar]
- Mannerström, M.; Toimela, T.; Ahoniemi, J.; Makiou, A.-S.; Heinonen, T. Cytotoxicity of water samples condensed from indoor air: An indicator of poor indoor air quality. Appl. Vitr. Toxicol. 2020, 6, 120–130. [Google Scholar] [CrossRef]
- Marika, M.; Marketa, D.; Lada, S.; Marian, R.; Filip, K.; Adam, V.; Vera, V.; Kristina, K.; Dagmar, J.; Tuula, H. New approach methods for assessing indoor air toxicity. Curr. Res. Toxicol. 2022, 3, 100090. [Google Scholar] [CrossRef] [PubMed]
- Horinek, D.; Herz, A.; Vrbka, L.; Sedlmeier, F.; Mamatkulov, S.I.; Netz, R.R. Specific ion adsorption at the air/water interface: The role of hydrophobic solvation. Chem. Phys. Lett. 2009, 479, 173–183. [Google Scholar] [CrossRef]
- Watkins, D.J.; McClean, M.D.; Fraser, A.J.; Weinberg, J.; Stapleton, H.M.; Sjödin, A.; Webster, T.F. Exposure to PBDEs in the office environment: Evaluating the relationships between dust, handwipes, and serum. Environ. Health Perspect. 2011, 119, 1247–1252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, Y.; Lee, D.H.; Choi, D.; Lim, K.M. Effect of cosmetics use on the in vitro skin absorption of a biocide, 1,2-Benzisothiazolin-3-one. Toxics 2022, 10, 108. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Netz, R.R. Water evaporation from solute-containing aerosol droplets: Effects of internal concentration and diffusivity profiles and onset of crust formation. Phys. Fluids 2021, 33, 091901. [Google Scholar] [CrossRef]
- Varga, Z.; Nicol, E.; Bouchonnet, S. Photodegradation of benzisothiazolinone: Identification and biological activity of degradation products. Chemosphere 2020, 240, 124862. [Google Scholar] [CrossRef]
- Li, A.; Chen, Z.; Wu, Q.-Y.; Huang, M.-H.; Liu, Z.-Y.; Chen, P.; Mei, L.-C.; Hu, H.-Y. Study on the removal of benzisothiazolinone biocide and its toxicity: The effectiveness of ozonation. Chem. Eng. J. 2016, 300, 376–383. [Google Scholar] [CrossRef]
- Bollmann, U.E.; Fernández-Calviño, D.; Brandt, K.K.; Storgaard, M.S.; Sanderson, H.; Bester, K. Biocide runoff from building facades: Degradation kinetics in soil. Environ. Sci. Technol. 2017, 51, 3694–3702. [Google Scholar] [CrossRef]
- Ambrosia, M.S. A molecular dynamics study of the interaction of oxygen molecules with a water droplet. J. Environ. Sci. Int. 2018, 27, 901–906. [Google Scholar] [CrossRef]
- McNeill, V.F.; Wolfe, G.M.; Thornton, J.A. The oxidation of oleate in submicron aqueous salt aerosols: Evidence of a surface process. J. Phys. Chem. A 2007, 111, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Vejerano, E.P.; Leng, W.; Huang, Q.; Willner, M.R.; Marr, L.C.; Vikesland, P.J. Aerosol microdroplets exhibit a stable pH gradient. Proc. Natl. Acad. Sci. USA 2018, 115, 7272–7277. [Google Scholar] [CrossRef] [PubMed]
- Barman, B.; Preston, H. The effects of pH on the degradation of isothiazolone biocides. Tribol. Int. 1992, 25, 281–287. [Google Scholar] [CrossRef]
- Peng, L.; Liu, H.; Wang, W.-L.; Xu, Z.-B.; Ni, X.-Y.; Wu, Y.-H.; Wu, Q.-Y.; Hu, H.-Y. Degradation of methylisothiazolinone biocide using a carbon fiber felt-based flow-through electrode system (FES) via anodic oxidation. Chem. Eng. J. 2020, 384, 123239. [Google Scholar] [CrossRef]
- Krzeminski, S.F.; Brackett, C.K.; Fisher, J.D. Fate of microbicidal 3-isothiazolone compounds in the environment: Modes and rates of dissipation. J. Agric. Food Chem. 1975, 23, 1060–1068. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Cho, E.S.; Park, K.Y.; Lim, C.H. Four-week inhalation toxicity study of 1-propanol in F344 rats. Toxicol. Res. 2020, 36, 285–292. [Google Scholar] [CrossRef] [PubMed]
Particle Size (μm) | Number of Aerosol Particles (% of total) | Volume of Aerosol Particles (% of total) | ||||
---|---|---|---|---|---|---|
BIT | MIT | OIT | BIT | MIT | OIT | |
<0.3 | - | - | - | 0.0 | 0.0 | 0.0 |
0.3–1.0 | 19.7 | 25.7 | 30.7 | 0.1 | 0.1 | 0.3 |
1.0–2.0 | 21.3 | 31.5 | 37.2 | 1.1 | 2.9 | 6.1 |
2.0–4.0 | 26.8 | 24.8 | 22.8 | 8.2 | 11.5 | 18.0 |
>4.0 | 32.2 | 18.0 | 9.3 | 90.6 | 85.5 | 75.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Park, H.-J.; Lee, E.B.; Lee, D.H.; Choi, D.; Lim, K.-M. Disposition of Aerosols of Isothiazolinone-Biocides: BIT, MIT and OIT. Toxics 2022, 10, 770. https://doi.org/10.3390/toxics10120770
Lee S, Park H-J, Lee EB, Lee DH, Choi D, Lim K-M. Disposition of Aerosols of Isothiazolinone-Biocides: BIT, MIT and OIT. Toxics. 2022; 10(12):770. https://doi.org/10.3390/toxics10120770
Chicago/Turabian StyleLee, Seungmi, Heui-Jin Park, Eunice B. Lee, Do Hyeon Lee, Dalwoong Choi, and Kyung-Min Lim. 2022. "Disposition of Aerosols of Isothiazolinone-Biocides: BIT, MIT and OIT" Toxics 10, no. 12: 770. https://doi.org/10.3390/toxics10120770
APA StyleLee, S., Park, H. -J., Lee, E. B., Lee, D. H., Choi, D., & Lim, K. -M. (2022). Disposition of Aerosols of Isothiazolinone-Biocides: BIT, MIT and OIT. Toxics, 10(12), 770. https://doi.org/10.3390/toxics10120770