Medical Psychotropics in Forensic Autopsies in European Countries: Results from a Three-Year Retrospective Study in Spain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Toxicological Analysis
2.3. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Drummer, O.H. Benzodiazepines—Effects on Human Performance and Behavior. Forensic Sci. Rev. 2002, 14, 1–14. [Google Scholar] [PubMed]
- Amado-Boccara, I.; Gougoulis, N.; Poirier Littré, M.F.; Galinowski, A.; Lôo, H. Effects of antidepressants on cognitive functions: A review. Neurosci. Biobehav. Rev. 1995, 19, 479–493. [Google Scholar] [CrossRef]
- Tominaga, M.; Michiue, T.; Inamori-Kawamoto, O.; Hishmat, A.M.; Oritani, S.; Takama, M.; Ishikawa, T.; Maeda, H. Efficacy of drug screening in forensic autopsy: Retrospective investigation of routine toxicological findings. Leg. Med. 2015, 17, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Proença, P.; Monteiro, C.; Mustra, C.; Claro, A.; Franco, J.; Corte-Real, F. Identification and Quantification of Antipsychotics in Blood Samples by LC-MS-MS: Case Reports and Data from Three Years of Routine Analysis. J. Anal. Toxicol. 2020, 44, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Gérardin, M.; Guigand, G.; Wainstein, L.; Jolliet, P.; Victorri-Vigneau, C.; Clément, R. Evaluation of problematic psychoactive substances use in people placed in police custody. J. Forensic Leg. Med. 2017, 49, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Bensley, K.M.K.; Kerr, W.C.; Barnett, S.B.; Mulia, N. Postmortem screening of opioids, benzodiazepines, and alcohol among rural and urban suicide decedents. J. Rural. Health 2022, 38, 77–86. [Google Scholar] [CrossRef]
- Darke, S.; Duflou, J.; Torok, M. Drugs and violent death: Comparative toxicology of homicide and non-substance toxicity suicide victims. Addiction 2009, 104, 1000–1005. [Google Scholar] [CrossRef]
- Sheehan, C.M.; Rogers, R.G.; Boardman, J.D. Postmortem Presence of Drugs and Method of Violent Suicide. J. Drug Issues 2015, 45, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Dodds, T.J. Prescribed Benzodiazepines and Suicide Risk: A Review of the Literature. Prim. Care Companion CNS Disord. 2017, 19, 22746. [Google Scholar] [CrossRef]
- Mason, M.; Welch, S.B.; McLone, S.; Bartell, T.; Lank, P.M.; Sheehan, K.; Post, L.A. A cross-sectional study of opioid involvement in non-poisoning suicide—Risks and prevention opportunities. BMC Public Health 2021, 21, 767. [Google Scholar] [CrossRef]
- Demesmaeker, A.; Chazard, E.; Vaiva, G.; Amad, A. A pharmacoepidemiological study of the association of suicide reattempt risk with psychotropic drug exposure. J. Psychiatr. Res. 2021, 138, 256–263. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M. Antidepressant use has doubled in rich nations in past 10 years. BMJ 2013, 347, f7261. [Google Scholar] [CrossRef]
- O’Brien, P.L.; Thomas, C.P.; Hodgkin, D.; Levit, K.R.; Mark, T.L. The diminished pipeline for medications to treat mental health and substance use disorders. Psychiatr. Serv. 2014, 65, 1433–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Organisation for Economic Co-Operation and Development, P.M. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=HEALTH_PHMC (accessed on 3 April 2021).
- Linnet, K.; Gudmundsson, L.S.; Birgisdottir, F.G.; Sigurdsson, E.L.; Johannsson, M.; Tomasdottir, M.O.; Sigurdsson, J.A. Multimorbidity and use of hypnotic and anxiolytic drugs: Cross-sectional and follow-up study in primary healthcare in Iceland. BMC Fam. Pract. 2016, 17, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrie, J.E.; Kumari, M.; Salo, P.; Singh-Manoux, A.; Kivimäki, M. Sleep epidemiology—A rapidly growing field. Int. J. Epidemiol. 2011, 40, 1431–1437. [Google Scholar] [CrossRef]
- Azevedo, K.; Johnson, M.; Wassermann, M.; Evans-Wall, J. Drugs of Abuse-Opioids, Sedatives, Hypnotics. Crit. Care Clin. 2021, 37, 501–516. [Google Scholar] [CrossRef]
- McHugh, R.K.; Nielsen, S.; Weiss, R.D. Prescription drug abuse: From epidemiology to public policy. J. Subst. Abus. Treat. 2015, 48, 1–7. [Google Scholar] [CrossRef] [Green Version]
- McCauley, J.L.; Amstadter, A.B.; Danielson, C.K.; Ruggiero, K.J.; Kilpatrick, D.G.; Resnick, H.S. Mental health and rape history in relation to non-medical use of prescription drugs in a national sample of women. Addict. Behav. 2009, 34, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Masnoon, N.; Shakib, S.; Kalisch-Ellett, L.; Caughey, G.E. What is polypharmacy? A systematic review of definitions. BMC Geriatr. 2017, 17, 230. [Google Scholar] [CrossRef] [Green Version]
- Brett, J.; Pearson, S.A.; Daniels, B.; Wylie, C.E.; Buckley, N.A. A cross sectional study of psychotropic medicine use in Australia in 2018: A focus on polypharmacy. Br. J. Clin. Pharmacol. 2021, 87, 1369–1377. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, M.; Sempere-Verdú, E.; Vicens-Caldentey, C.; González-Rubio, F.; Miguel-García, F.; Palop-Larrea, V.; Orueta-Sánchez, R.; Esteban-Jiménez, Ó.; Sempere-Manuel, M.; Arroyo-Aniés, M.P.; et al. Drug Prescription Profiles in Patients with Polypharmacy in Spain: A Large-Scale Pharmacoepidemiologic Study Using Real-World Data. Int. J. Environ. Res. Public Health 2021, 18, 4754. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Santaella-Tenorio, J.; Mauro, P.M.; Martins, S.S. Past-year use of prescription opioids and/or benzodiazepines among adults in the United States: Estimating medical and nonmedical use in 2015-2016. Drug Alcohol Depend. 2019, 204, 107458. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.D.; Mogali, S.; Comer, S.D. Polydrug abuse: A review of opioid and benzodiazepine combination use. Drug Alcohol. Depend. 2012, 125, 8–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estadística, I.C. Demografia. Available online: http://www.gobiernodecanarias.org/istac/estadisticas/demografia/ (accessed on 13 April 2021).
- Almeida-Gonzalez, M.; Henriquez-Hernandez, L.A.; Luzardo, O.P.; Zumbado, M.; Zaragoza, E.; Meilan, M.J.; Camacho, M.; Boada, L.D. Ethanol levels in legally autopsied subjects: Analytical approach and epidemiological relevance in a prospective study in the touristic region of the Canary Islands (Spain). J. Forensic Leg. Med. 2017, 52, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Sanidad, M. Informe 2021: Alcohol, Tabaco y Drogas en España. Secretaría de Estado de Sanidad, Madrid, España. Available online: https://pnsd.sanidad.gob.es/profesionales/sistemasInformacion/sistemaInformacion/pdf/2019-20_Informe_EDADES.pdf (accessed on 10 November 2021).
- Almeida-González, M.; Luzardo, O.P.; Boada, L.D.; Zaragoza, E.; Meilán, M.J.; Zumbado, M.; Henríquez-Hernández, L.A. Ethanol levels in legally autopsied subjects (2016–2017): Update of data and epidemiological implications in relation to violent deaths in Canary Islands (Spain). J. Forensic Leg. Med. 2019, 68, 101868. [Google Scholar] [CrossRef]
- Pelletti, G.; Verstraete, A.G.; Reyns, T.; Barone, R.; Rossi, F.; Garagnani, M.; Pelotti, S. Prevalence of therapeutic drugs in blood of drivers involved in traffic crashes in the area of Bologna, Italy. Forensic Sci. Int. 2019, 302, 109914. [Google Scholar] [CrossRef]
- Herrera-Gómez, F.; García-Mingo, M.; Álvarez, F.J. Prevalence of alcohol and other psychoactive substances in motor vehicle drivers in Spain, 2018: Cross-sectional dataset analysis with studies from 2008 and 2013. Forensic Sci. Int. 2020, 313, 110266. [Google Scholar] [CrossRef]
- Ji Kwon, N.; Han, E. A review of drug abuse in recently reported cases of driving under the influence of drugs (DUID) in Asia, USA, and Europe. Forensic Sci. Int. 2019, 302, 109854. [Google Scholar] [CrossRef]
- EMCDDA. Driving under the Influence of Drugs, Alcohol and Medicines in Europe—Findings from the DRUID Project. Available online: https://www.emcdda.europa.eu/publications/thematic-papers/druid (accessed on 26 April 2021).
- Ravera, S.; Monteiro, S.P.; de Gier, J.J.; van der Linden, T.; Gómez-Talegón, T.; Alvarez, F.J.; Partners, D.P.W. A European approach to categorizing medicines for fitness to drive: Outcomes of the DRUID project. Br. J. Clin. Pharmacol. 2012, 74, 920–931. [Google Scholar] [CrossRef] [Green Version]
- Brubacher, J.R.; Chan, H.; Erdelyi, S.; Zed, P.J.; Staples, J.A.; Etminan, M. Medications and risk of motor vehicle collision responsibility in British Columbia, Canada: A population-based case-control study. Lancet Public Health 2021, 6, e374–e385. [Google Scholar] [CrossRef]
- Domingo-Salvany, A.; Herrero, M.J.; Fernandez, B.; Perez, J.; Del Real, P.; González-Luque, J.C.; de la Torre, R. Prevalence of psychoactive substances, alcohol and illicit drugs, in Spanish drivers: A roadside study in 2015. Forensic Sci. Int. 2017, 278, 253–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, J.; Slørdal, L.; Vege, Å.; Nordrum, I.S. Forensic autopsies in a naturalistic setting in Norway: Autopsy rates and toxicological findings. Forensic Sci. Int. 2012, 223, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Ferrari Júnior, E.; Dos Santos, J.B.A.; Caldas, E.D. Drugs, pesticides and metabolites in forensic post-mortem blood samples. Med. Sci. Law 2021, 61, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Forsman, J.; Taipale, H.; Masterman, T.; Tiihonen, J.; Tanskanen, A. Comparison of dispensed medications and forensic-toxicological findings to assess pharmacotherapy in the Swedish population 2006 to 2013. Pharmacoepidemiol. Drug Saf. 2018, 27, 1112–1122. [Google Scholar] [CrossRef] [Green Version]
- Hedlund, J.; Forsman, J.; Sturup, J.; Masterman, T. Psychotropic Medications in Swedish Homicide Victims and Offenders: A Forensic-Toxicological Case-Control Study of Adherence and Recreational Use. J. Clin. Psychiatry 2017, 78, e797–e802. [Google Scholar] [CrossRef]
- Mantinieks, D.; Gerostamoulos, D.; Glowacki, L.; Di Rago, M.; Schumann, J.; Woodford, N.W.; Drummer, O.H. Postmortem Drug Redistribution: A Compilation of Postmortem/Antemortem Drug Concentration Ratios. J. Anal. Toxicol. 2021, 45, 368–377. [Google Scholar] [CrossRef]
- Gleba, J.; Kim, J. A Mechanism-Based Forensic Investigation into the Postmortem Redistribution of Morphine. J. Anal. Toxicol. 2020, 44, 256–262. [Google Scholar] [CrossRef]
- Nedahl, M.; Johansen, S.S.; Linnet, K. Postmortem Brain-Blood Ratios of Codeine, Fentanyl, Oxycodone and Tramadol. J. Anal. Toxicol. 2021, 45, 53–59. [Google Scholar] [CrossRef]
- Brockbals, L.; Staeheli, S.N.; Gascho, D.; Ebert, L.C.; Kraemer, T.; Steuer, A.E. Time- and Site-Dependent Postmortem Redistribution of Antidepressants and Neuroleptics in Blood and Alternative Matrices. J. Anal. Toxicol. 2021, 45, 356–367. [Google Scholar] [CrossRef]
- Neves, I.T.; Oliveira, J.S.S.; Fernandes, M.C.C.; Santos, O.R.; Maria, V.A.J. Physicians’ beliefs and attitudes about Benzodiazepines: A cross-sectional study. BMC Fam. Pract. 2019, 20, 71. [Google Scholar] [CrossRef]
- Zheng, D.; Brett, J.; Daniels, B.; Buckley, N.A.; Pearson, S.A.; Schaffer, A.L. Potentially inappropriate benzodiazepine use in Australian adults: A population-based study (2014-2017). Drug Alcohol Rev. 2020, 39, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Landolt, S.; Rosemann, T.; Blozik, E.; Brüngger, B.; Huber, C.A. Benzodiazepine and Z-Drug Use in Switzerland: Prevalence, Prescription Patterns and Association with Adverse Healthcare Outcomes. Neuropsychiatr. Dis. Treat. 2021, 17, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Lagnaoui, R.; Depont, F.; Fourrier, A.; Abouelfath, A.; Bégaud, B.; Verdoux, H.; Moore, N. Patterns and correlates of benzodiazepine use in the French general population. Eur. J. Clin. Pharmacol. 2004, 60, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Carr, M.J.; Steeg, S.; Webb, R.T.; Kapur, N.; Chew-Graham, C.A.; Abel, K.M.; Hope, H.; Pierce, M.; Ashcroft, D.M. Effects of the COVID-19 pandemic on primary care-recorded mental illness and self-harm episodes in the UK: A population-based cohort study. Lancet Public Health 2021, 6, e124–e135. [Google Scholar] [CrossRef]
- Diez-Quevedo, C.; Iglesias-González, M.; Giralt-López, M.; Rangil, T.; Sanagustin, D.; Moreira, M.; López-Ramentol, M.; Ibáñez-Caparrós, A.; Lorán, M.E.; Bustos-Cardona, T.; et al. Mental disorders, psychopharmacological treatments, and mortality in 2150 COVID-19 Spanish inpatients. Acta Psychiatr. Scand. 2021, 143, 526–534. [Google Scholar] [CrossRef]
- Armitage, R. Antidepressants, primary care, and adult mental health services in England during COVID-19. Lancet Psychiatry 2021, 8, e3. [Google Scholar] [CrossRef]
- Bachhuber, M.A.; Hennessy, S.; Cunningham, C.O.; Starrels, J.L. Increasing Benzodiazepine Prescriptions and Overdose Mortality in the United States, 1996-2013. Am. J. Public Health 2016, 106, 686–688. [Google Scholar] [CrossRef]
- Neale, G.; Smith, A.J. Self-harm and suicide associated with benzodiazepine usage. Br. J. Gen. Pract. 2007, 57, 407–408. [Google Scholar]
- Schepis, T.S.; Simoni-Wastila, L.; McCabe, S.E. Prescription opioid and benzodiazepine misuse is associated with suicidal ideation in older adults. Int. J. Geriatr. Psychiatry 2019, 34, 122–129. [Google Scholar] [CrossRef]
- Bech, A.B.; Clausen, T.; Waal, H.; Vindenes, V.; Edvardsen, H.E.; Frost, J.; Skeie, I. Post-mortem toxicological analyses of blood samples from 107 patients receiving opioid agonist treatment: Substances detected and pooled opioid and benzodiazepine concentrations. Addiction 2020, 116, 845–855. [Google Scholar] [CrossRef]
- Lavie, E.; Fatséas, M.; Denis, C.; Auriacombe, M. Benzodiazepine use among opiate-dependent subjects in buprenorphine maintenance treatment: Correlates of use, abuse and dependence. Drug Alcohol Depend. 2009, 99, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Dietze, P.; Lee, N.; Dunlop, A.; Taylor, D. Concurrent buprenorphine and benzodiazepines use and self-reported opioid toxicity in opioid substitution treatment. Addiction 2007, 102, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Fernández Sobrino, A.M.; Fernández Rodríguez, V.; López Castro, J. Benzodiazepine use in a sample of patients on a treatment program with opiate derivatives (PTDO). Adicciones 2009, 21, 143–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuss, C.F.; Hasselstrøm, J.B.; Linnet, K.; Christoffersen, D.J.; Leth, P.M.; Boel, L.W.T.; Banner, J. Increased risk of fatal intoxication and polypharmacy among psychiatric patients at death. J. Forensic Sci. 2021, 66, 255–264. [Google Scholar] [CrossRef]
- Chen, K.W.; Berger, C.C.; Forde, D.P.; D’Adamo, C.; Weintraub, E.; Gandhi, D. Benzodiazepine use and misuse among patients in a methadone program. BMC Psychiatry 2011, 11, 90. [Google Scholar] [CrossRef] [Green Version]
- Clarot, F.; Proust, B.; Vaz, E.; Goullé, J.P. Tramadol-benzodiazepines and buprenorphine-benzodiazepines: Two potentially fatal cocktails? J. Clin. Forensic Med. 2003, 10, 125–126. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Understanding the Epidemic, CDC’s Response to the Opioid Overdose Epidemic. Available online: https://www.cdc.gov/opioids/basics/epidemic.html (accessed on 20 June 2021).
n | (%) | ||
---|---|---|---|
Whole Series | 394 | 100 | |
Date (Year) | 2015 | 124 | 31.5 |
2016 | 108 | 27.4 | |
2017 | 162 | 41.1 | |
Gender | Male | 298 | 75.0 |
Female | 96 | 24.4 | |
Age (Years) | ≤45 | 156 | 39.6 |
>45 | 238 | 60.4 | |
Cause of Death | Traffic accident | 42 | 10.7 |
Violent death a | 152 | 38.6 | |
Suicide | 78 | 19.8 | |
Others b | 122 | 31.0 |
Group | Type | Compound | n (%) | Mean (SD) | Median (IR) | LOD | LOQ |
---|---|---|---|---|---|---|---|
Benzodiazepines (BZDs) | 95 (24.1) | ||||||
Short-acting BZDs | 17 (4.3) | ||||||
Midazolam | 17 (4.3) | 367.5 (455.7) | 180.6 (621.4) | 1.50 | 4.50 | ||
Intermediate-acting BZDs | 48 (12.1) | ||||||
Alprazolam | 18 (4.5) | 226.7 (201.4) | 163.7 (254.9) | 1.50 | 4.50 | ||
Bromazepam | 0 | - | - | 6.25 | 18.75 | ||
Clonazepam | 0 | - | - | 6.25 | 18.75 | ||
Lorazepam | 6 (1.5) | 61.5 (32.9) | 57.1 (63.8) | 6.25 | 18.75 | ||
Oxazepam | 14 (3.5) | 295.3 (288.4) | 190.8 (314.9) | 6.25 | 18.75 | ||
Temazepam | 15 (3.8) | 567.5 (663.5) | 285.5 (484.4) | 1.50 | 4.50 | ||
Lormetazepam | 6 (1.5) | 273.2 (396.5) | 112.8 (382.4) | 6.25 | 1.75 | ||
Long-acting BZDs | 30 (7.6) | ||||||
Nordiazepam | 54 (13.7) | 1592.3 (3022.2) | 610 (1533.8) | 1.50 | 4.50 | ||
Clordiazepoxide | 1 (0.3) | 43.34 (-) | - | 1.50 | 4.50 | ||
Diazepam | 34 (8.6) | 288.7 (323.3) | 155.9 (304.9) | 1.00 | 3.00 | ||
Flurazepam | 1 (0.3) | 458.96 (-) | - | 1.50 | 4.50 | ||
Z-Drugs | Z-Drugs | 8 (2.0) | |||||
Zolpidem | 6 (1.5) | 110.7 (203.9) | 14.1 (207.5) | 1.00 | 3.00 | ||
Zoplicone | 2 (0.5) | 180.5 (223.5) | 180.5 (-) | 6.25 | 18.75 | ||
Antidepressants (ADPs) | 41 (10.4) | ||||||
Tri- & Tetra-cyclic ADPs | 9 (2.3) | ||||||
Amitriptiline | 8 (2.0) | 821.01 (796.6) | 705.2 (1501.3) | 1.00 | 3.00 | ||
Nortriptiline | 9 (2.3) | 265.04 (308.3) | 193.7 (400.4) | 1.00 | 3.00 | ||
Maprotiline | 6 (1.5) | 667.8 (789.9) | 366.01 (1504.2) | 1.00 | 3.00 | ||
Selective Serotonin Reuptake Inhibitors | 33 (8.4) | ||||||
Paroxetine | 12 (3.1) | 350.9 (514.8) | 143.7 (333.3) | 6.25 | 18.75 | ||
Sertraline | 8 (2.0) | 399.3 (383.2) | 249.3 (571.1) | 1.00 | 3.00 | ||
Citalopram | 15 (3.8) | 232.5 (148.8) | 223.8 (184.6) | 1.00 | 3.00 | ||
Medical Opiates (MOs) | 90 (23) | ||||||
Morphine | 33 (8.4) | 142.9 (214.9) | 71.6 (88.6) | 1.00 | 3.00 | ||
Tramadol | 31 (7.9) | 1164.2 (3345.4) | 178.4 (629.1) | 1.00 | 3.00 | ||
Codeine | 7 (1.8) | 118.2 (155.7) | 23.1 (188.6) | 1.00 | 3.00 | ||
Fentany | 8 (2.0) | 20.5 (36.8) | 5.1 (22.7) | 0.50 | 1.50 | ||
Methadone | 28 (7.1) | 406.04 (384.4) | 309.2 (333.1) | 1.00 | 3.00 | ||
Barbiturates | 1 (0.3) | ||||||
Fenobarbital | 1 (0.3) | 352.5 (-) | 1.00 | 3.00 |
Drugs Detected | Gender | Age | Cause of Death | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Women (%) | Men (%) | p Value | ≤45 (%) | >45 (%) | p Value | Traffic Accident (%) | Violent Death (%) | Suicide (%) | Others (%) | p Value | |
BZDs 1 (n = 95) | 32 (33.7) | 63 (66.3) | 0.002 | 38 (40.0) | 57 (60.0) | 0.064 | 8 (8.4) | 38 (40.0) | 25 (26.3) | 24 (25.3) | <0.001 |
Short-acting BZDs (n = 17) | 4 (23.5) | 13 (76.5) | 0.049 | 3 (17.6) | 14 (82.4) | 0.013 | 7 (41,2) | 9 (52.9) | 1 (5.9) | 0 (0.0) | 0.047 |
Intermediate-acting BZDs (n = 48) | 16 (33.3) | 32 (66.7) | 0.029 | 26 (54.2) | 22 (45.8) | 0.665 | 1 (2.1) | 16 (33.3) | 15 (31.3) | 16 (33.3) | 0.004 |
Long-acting BZDs (n = 30) | 15 (50.0) | 15 (50.0) | 1 | 11 (36.7) | 19 (63.3) | 0.2 | 1 (3.3) | 13 (43.3) | 7 (23.3) | 9 (30.0) | 0.019 |
ADPs 2 (n = 41) | 18 (43.9) | 23 (56.1) | 0.533 | 13 (31.7) | 28 (68.3) | 0.028 | 1 (2.4) | 18 (43.9) | 15 (36.6) | 7 (17.1) | 0.001 |
SSRIs-ADPs 3 (n = 33) | 16 (48.5) | 17 (51.5) | 1 | 11 (33.3) | 22 (66.7) | 0.08 | 1 (3.0) | 17 (51.5) | 9 (27.3) | 6 (18.2) | 0.001 |
Tri & Tetracyclic ADPs 4 (n = 9) | 3 (33.3) | 6 (66.7) | 0.508 | 2 (22.2) | 7 (77.8) | 0.180 | 0 (0.0) | 1 (11.1) | 7 (77.8) | 1 (11.1) | 0.018 |
Mos 5 (n = 90) | 31 (34.4) | 59 (65.6) | 0.004 | 35 (38.9) | 55 (61.1) | 0.045 | 11 (12.2) | 37 (41.1) | 13 (14.4) | 29 (32.2) | <0.001 |
One drug (n = 67) | 19 (28.4) | 48 (71.6) | 0.001 | 26 (38.8) | 41 (61.2) | 0.086 | 9 (13.4) | 24 (35.8) | 9 (13.4) | 25 (37.3) | 0.002 |
Two drugs (n = 42) | 15 (35.7) | 27 (64.3) | 0.088 | 18 (42.9) | 24 (57.1) | 0.441 | 5 (11.9) | 20 (47.6) | 11 (26.2) | 6 (14.3) | 0.004 |
≥3 drugs (n = 50) | 20 (40.0) | 30 (60.0) | 0.203 | 18 (36.0) | 32 (64.0) | 0.065 | 1 (2.0) | 19 (38.0) | 17 (34.0) | 13 (26.0) | 0.001 |
Drugs Detected (Number or Combination of Drugs) | Gender (% Total Samples) | Age (% Total Samples) | Cause of Death (% Total Samples) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Women | Men | p Value | ≤45 Y. | >45 Y. | p Value | Traffic Accident | Violent Death | Suicide | Others | p Value | |
BZDs 1 + ADPs 2 (n = 24) | 12 (50.0) | 12 (50.0) | 1 | 7 (29.2) | 17 (70.8) | 0.064 | 0 (0.0) | 12 (50.0) | 7 (29.2) | 5 (20.8) | 0.197 |
BZDs + SSRIs-ADPs 3 (n = 21) | 10 (47.6) | 11 (52.4) | 1 | 6 (28.6) | 15 (71.4) | 0.078 | 0 (0.0) | 11 (52.4) | 6 (28.6) | 4 (19.0) | 0.156 |
BZDs + Tri & Tetracyclic-ADPs 4 (n = 3) | 2 (66.7) | 1 (33.3) | 1 | 1 (33.3) | 2 (66.7) | 1 | 0 (0.0) | 1 (33.3) | 1 (33.3) | 1 (33.3) | 1 |
Intermediate-acting BZDs + ADPs (n = 12) | 6 (50.0) | 6 (50.0) | 1 | 6 (50.0) | 6 (50.0) | 1 | 0 (0.0) | 5 (41.7) | 4 (33.3) | 3 (25.0) | 0.779 |
Long-acting BZDs + ADPs (n = 7) | 5 (71.4) | 2 (28.6) | 0.453 | 2 (28.6) | 5 (71.4) | 0.453 | 0 (0.0) | 1 (14.3) | 2 (28.6) | 4 (57.1) | 0.368 |
BZDs + Mos 5 (n = 45) | 16 (35.6) | 29 (64.4) | 0.072 | 18 (40.0) | 27 (60.0) | 0.233 | 5 (11.1) | 18 (40.0) | 10 (22.2) | 12 (26.7) | 0.052 |
Intermediate-acting BZDs + MOs (n = 24) | 8 (33.3) | 16 (66.7) | 0.152 | 14 (58.3) | 10 (41.7) | 0.541 | 1 (4.2) | 9 (37.5) | 5 (20.8) | 9 (37.5) | 0.062 |
Long-acting BZDs + MOs (n = 15) | 6 (40.0) | 9 (60.0) | 0.607 | 6 (40.0) | 9 (60.0) | 0.607 | 1 (6.7) | 6 (40.0) | 3 (20.0) | 5 (33.3) | 0.269 |
MOs + ADPs (n = 13) | 6 (46.2) | 7 (53.8) | 1 | 3 (23.1) | 10 (76.9) | 0.092 | 0 (0.0) | 9 (69.2) | 3 (23.1) | 1 (7.7) | 0.018 |
MOs + SSRIs-ADPs (n = 11) | 5 (45.5) | 6 (54.5) | 1 | 3 (27.3) | 8 (72.7) | 0.227 | 0 (0.0) | 9 (81.8) | 2 (18.2) | 0 (0.0) | 0.035 |
MOs + Tri & Tetracyclic ADPs (n = 2) | 1 (50.0) | 1 (50.0) | - | 0 (0.0) | 2 (100.0) | - | 0 (0.0) | 0 (0.0) | 1 (50.0) | 1 (50.0) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida-González, M.; Boada, L.D.; Henríquez-Hernández, L.A.; Luzardo, O.P.; Zaragoza, E.; Burillo-Putze, G.; Quintana-Montesdeoca, M.P.; Zumbado, M. Medical Psychotropics in Forensic Autopsies in European Countries: Results from a Three-Year Retrospective Study in Spain. Toxics 2022, 10, 64. https://doi.org/10.3390/toxics10020064
Almeida-González M, Boada LD, Henríquez-Hernández LA, Luzardo OP, Zaragoza E, Burillo-Putze G, Quintana-Montesdeoca MP, Zumbado M. Medical Psychotropics in Forensic Autopsies in European Countries: Results from a Three-Year Retrospective Study in Spain. Toxics. 2022; 10(2):64. https://doi.org/10.3390/toxics10020064
Chicago/Turabian StyleAlmeida-González, Maira, Luis D. Boada, Luis Alberto Henríquez-Hernández, Octavio P. Luzardo, Enrique Zaragoza, Guillermo Burillo-Putze, María P. Quintana-Montesdeoca, and Manuel Zumbado. 2022. "Medical Psychotropics in Forensic Autopsies in European Countries: Results from a Three-Year Retrospective Study in Spain" Toxics 10, no. 2: 64. https://doi.org/10.3390/toxics10020064
APA StyleAlmeida-González, M., Boada, L. D., Henríquez-Hernández, L. A., Luzardo, O. P., Zaragoza, E., Burillo-Putze, G., Quintana-Montesdeoca, M. P., & Zumbado, M. (2022). Medical Psychotropics in Forensic Autopsies in European Countries: Results from a Three-Year Retrospective Study in Spain. Toxics, 10(2), 64. https://doi.org/10.3390/toxics10020064