Moss Biomonitoring of Atmospheric Pollution with Trace Elements in the Moscow Region, Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studied Area
2.2. Sampling and Chemical Analysis
2.3. Data Evaluation
2.4. Pollution Indices
3. Results and Discussion
3.1. Factor Analysis
3.2. Pollution Indices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nickel, S.; Schröder, W.; Schmalfuss, R.; Saathoff, M.; Harmens, H.; Mills, G.; Frontasyeva, M.V.; Barandovski, L.; Blum, O.; Carballeira, A.; et al. Modelling spatial patterns of correlations between concentrations of heavy metals in mosses and atmospheric deposition in 2010 across Europe. Environ. Sci. Eur. 2018, 30, 53. [Google Scholar] [CrossRef] [PubMed]
- Harmens, H.; Mills, G.; Hayes, F.; Norris, D.A.; Sharps, K. Twenty-eight years of ICP Vegetation: An overview of its activities. Ann. Di Bot. 2015, 5, 31–43. [Google Scholar] [CrossRef]
- Vergel, K.N.; Frontasyeva, M.V.; Kamanina, I.Z.; Pavlov, S.S. Biomonitoring of atmospheric de positions on the north-westof the Moscow region using moss-biomonitors techniques. Ekol. Urban. Terit. 2009, 2, 88–95. [Google Scholar]
- Vergel, K.; Zinicovscaia, I.; Yushin, N.; Frontasyeva, M.V. Heavy Metal Atmospheric Deposition Study in Moscow Region, Russia. Bull. Environ. Contam. Toxicol. 2019, 103, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Frontasyeva, M.; Harmens, H. United Nations Economic Commission For Europe Convention On Long-Range Transboundary Air Pollution Monitoring Of Atmospheric Deposition Of Heavy Metals, Nitrogen And Pops In Europe Using Bryophytes Monitoring Manual 2015 Survey Icp Vegetation Moss Survey; ICP Vegetation Coordination Centre: Gwynedd, UK, 2010. [Google Scholar]
- Zinicovscaia, I.; Hramco, C.; Chaligava, O.; Yushin, N.; Grozdov, D.; Vergel, K.; Duca, G. Accumulation of potentially toxic elements in mosses collected in the Republic of Moldova. Plants 2021, 10, 471. [Google Scholar] [CrossRef]
- Fernández, J.A.; Carballeira, A. Evaluation of contamination, by different elements, in terrestrial mosses. Arch Environ. Contam. Toxicol. 2001, 40, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Wu, P.; Yang, F.; Sun, D.; Zhang, D.X.; Zhou, Y.K. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci. Total Environ. 2018, 630, 53–61. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Vergel, K.; Zinicovscaia, I.; Yushin, N.; Gundorina, S. Assessment of atmospheric deposition in Central Russia using moss biomonitors, neutron activation analysis and GIS technologies. J. Radioanal. Nucl. Chem. 2020, 325, 807–816. [Google Scholar] [CrossRef]
- Jeske, A.; Gworek, B. Distribution and mobility of scandium and yttrium in selected types of soils in Poland. Chem. Speciat. Bioavailab. 2013, 25, 216–222. [Google Scholar] [CrossRef]
- Vučković, I.; Špirić, Z.; Stafilov, T.; Kušan, V.; Bačeva, K. The study on air pollution with nickel and vanadium in croatia by using moss biomonitoring and ICP-AES. Bull. Environ. Contam. Toxicol. 2013, 91, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Monji, A.B.; Ahmadi, S.J.; Zolfonoun, E. Selective biosorption of zirconium and hafnium from acidic aqueous solutions by rice bran, wheat bran and platanus orientalis tree leaves. Sep. Sci. Technol. 2008, 43, 597–608. [Google Scholar] [CrossRef]
- Hasany, S.M.; Shamsi, A.M.; Rauf, M.A. Sorption of hafnium on hydrous titanium oxide using radiotracer technique. J. Radioanal. Nucl. Chem. 1997, 219, 51–54. [Google Scholar] [CrossRef]
- Moreno, T.; Querol, X.; Alastuey, A.; de la Rosa, J.; Sánchez de la Campa, A.M.; Minguillón, M.C.; Pandolfi, M.; González-Castanedo, Y.; Monfort, E.; Gibbons, W. Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Sci. Total Environ. 2010, 408, 4569–4579. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.S.; Lee, C.H.; Chung, Y.F.; Tien, K.W.; Chen, Y.J.; Chen, Y.A. Recovery of rubidium and cesium resources from brine of desalination through t-BAMBP extraction. Metals 2020, 10, 607. [Google Scholar] [CrossRef]
- Nur, T.; Naidu, G.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Rubidium recovery using potassium cobalt hexacyanoferrate sorbent. Desalin. Water Treat. 2016, 57, 26577–26585. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, D.L.; Liu, M.M.; Deng, T.L. Rubidium and cesium recovery from brine resources. In Advanced Materials Research; Trans Tech Publications Ltd.: Freienbach, Switzerland, 2014; Volume 1015, pp. 417–420. [Google Scholar]
- Meyer, M.; Schröder, W.; Pesch, R.; Steinnes, E.; Uggerud, H.T. Multivariate association of regional factors with heavy metal concentrations in moss and natural surface soil sampled across Norway between 1990 and 2010. J. Soils Sediments 2015, 15, 410–422. [Google Scholar] [CrossRef]
- Ozaki, H.; Watanabe, I.; Kuno, K. Investigation of the heavy metal sources in relation to automobiles. Water. Air. Soil Pollut. 2004, 157, 209–223. [Google Scholar] [CrossRef]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [Green Version]
- Skorbiłowicz, M.; Skorbiłowicz, E. Content of calcium, magnesium, sodium and potassium in the street dust from the area of Bialystok (Poland). J. Ecol. Eng. 2019, 20, 125–131. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, W.; Bai, Z.; Yang, W.; Zhao, X.; Han, B.; Wang, X. Characteristics of PM10 chemical source profiles for geological dust from the south-west region of China. Atmosphere 2016, 7, 146. [Google Scholar] [CrossRef] [Green Version]
Element | SRMs | Concentrations, ppm | Uncertainties, % | ||
---|---|---|---|---|---|
Determined | Certified | Determined | Certified | ||
Na | 2709a | 11,934 | 12,200 | 7.8 | 2.5 |
Mg | 1575a | 1345 | 1060 | 7.6 | 16 |
Al | 1632c | 8896 | 9150 | 6.3 | 1.5 |
Cl | 1575a | 417 | 421 | 3.4 | 1.7 |
K | 1632c | 1590 | 1100 | 2.3 | 3 |
Ca | 1575a | 2427 | 2500 | 8.2 | 4 |
Sc | 1632c | 2.92 | 2.91 | 3.2 | 1.2 |
V | 1632c | 17.3 | 23.7 | 5.9 | 2.2 |
Cr | 1632c | 15.23 | 13.73 | 8.5 | 1.5 |
Mn | 1632c | 13.8 | 13.04 | 9.4 | 4 |
Fe | 2709a | 32,595 | 33,600 | 5.5 | 2.1 |
Co | 2709a | 12.3 | 12.8 | 5.3 | 1.6 |
Ni | 2709a | 10.8 | 9.32 | 8.8 | 5.5 |
Zn | 1632c | 11.7 | 12.1 | 9.4 | 10.7 |
As | FFA1 | 53.4 | 53.6 | 5.4 | 5 |
Se | 1632c | 1.3 | 1.3 | 43 | 5.4 |
Br | 1632c | 20.8 | 18.7 | 4.4 | 2.1 |
Rb | 2709a | 96.6 | 99 | 6.6 | 3 |
Sr | 1632c | 63.1 | 63.8 | 7.7 | 2.2 |
Sb | FFA1 | 17.9 | 17.6 | 6.1 | 14.2 |
Cs | FFA1 | 46.5 | 48.2 | 3.7 | 5.4 |
Ba | 1632c | 43.5 | 41.1 | 4.4 | 3.9 |
La | 2709a | 20.9 | 21.7 | 7.4 | 1.8 |
Ce | 1632c | 12.2 | 11.9 | 7.2 | 1.7 |
Sm | FFA1 | 10.2 | 10.9 | 9.1 | 5.5 |
Tb | FFA1 | 1.365 | 1.38 | 4.1 | 10.1 |
Hf | FFA1 | 7.75 | 6.09 | 5.5 | 7.4 |
Ta | FFA1 | 1.83 | 2.11 | 3.2 | 7.6 |
W | FFA1 | 10.5 | 10.5 | 11.1 | 10.5 |
Th | 2709a | 9.97 | 10.9 | 4.8 | 1.8 |
U | FFA1 | 13.6 | 15.1 | 3.9 | 5.3 |
Cd | IC-INCT-OBTL-5 | 2.5 | 2.64 | 5.5 | 5.3 |
Pb | IC-INCT-OBTL-5 | 1.94 | 2.01 | 7.2 | 15.4 |
Cu | IC-INCT-OBTL-5 | 9.8 | 10.1 | 4.3 | 4.0 |
Element | Range | Median | Mean ± st.dev | Q1 | Q3 | CV (%) | Percentile 90 |
---|---|---|---|---|---|---|---|
Na | 85–508 | 155 | 177 ± 76 | 126 | 202 | 43.0 | 296.6 |
Mg | 166–2970 | 1790 | 1762 ± 498 | 1460 | 2070 | 28.3 | 2418 |
Al | 108–2990 | 853 | 993 ± 487 | 656 | 1190 | 49.1 | 1648 |
Cl | 9.6–284 | 85.0 | 87 ± 55 | 54.0 | 112 | 63.1 | 146 |
K | 493–14,300 | 7230 | 7388 ± 1824 | 6110 | 8390 | 24.7 | 9690 |
Ca | 727–9050 | 4480 | 4611 ± 1490 | 3610 | 5670 | 32.3 | 6610 |
Sc | 0.06–0.52 | 0.17 | 0.20 ± 0.09 | 0.14 | 0.23 | 47.8 | 0.34 |
V | 0.32–5.3 | 1.90 | 2.0 ± 0.9 | 1.44 | 2.50 | 44.1 | 3.28 |
Cr | 1.01–7.5 | 2.63 | 3.1 ± 1.4 | 2.10 | 3.80 | 45.7 | 5.17 |
Mn | 0.46–1540 | 449 | 462 ± 258 | 293 | 577 | 55.9 | 748.6 |
Fe | 254–2270 | 690 | 784 ± 380 | 531 | 941 | 48.5 | 1304 |
Co | 0.11–1.07 | 0.38 | 0.4 ± 0.2 | 0.28 | 0.52 | 47.2 | 0.72 |
Ni | 0.46–6.3 | 2.87 | 3.05 ± 1.28 | 2.20 | 3.90 | 42.1 | 5.00 |
Zn | 1.3–145 | 57.0 | 62.5 ± 23.4 | 47.0 | 75.0 | 37.5 | 89.6 |
As | 0.03–0.49 | 0.18 | 0.20 ± 0.08 | 0.14 | 0.23 | 40.6 | 0.29 |
Se | 0.04–0.36 | 0.17 | 0.17 ± 0.05 | 0.14 | 0.20 | 31.9 | 0.24 |
Br | 1.07–4.4 | 2.26 | 2.37 ± 0.66 | 1.90 | 2.80 | 28.0 | 3.40 |
Rb | 0.14–39.5 | 13.8 | 16.48 ± 9.5 | 8.60 | 23.5 | 57.7 | 31.9 |
Sr | 4.2–30.5 | 15.3 | 15.8 ± 5.5 | 12.3 | 19.4 | 35.0 | 23.0 |
Sb | 0.0048–1.13 | 0.23 | 0.27 ± 0.18 | 0.16 | 0.34 | 64.7 | 0.50 |
Cs | 0.0062–0.47 | 0.14 | 0.16 ± 0.08 | 0.097 | 0.20 | 49.3 | 0.28 |
Ba | 3.1–113 | 44.0 | 46.1 ± 22.1 | 29.0 | 59.0 | 47.9 | 79.8 |
La | 0.19–1.76 | 0.54 | 0.63 ± 0.32 | 0.41 | 0.73 | 51.1 | 1.12 |
Ce | 0.27–3.4 | 1.20 | 1.37 ± 0.63 | 0.91 | 1.70 | 46.0 | 2.29 |
Sm | 0.028–0.24 | 0.08 | 0.09 ± 0.04 | 0.064 | 0.11 | 47.2 | 0.16 |
Tb | 0.0015–0.04 | 0.013 | 0.014 ± 0.007 | 0.0096 | 0.016 | 47.1 | 0.025 |
Hf | 0.02–0.61 | 0.13 | 0.16 ± 0.09 | 0.10 | 0.19 | 58.9 | 0.28 |
Ta | 0.0018–0.06 | 0.016 | 0.018 ± 0.0095 | 0.012 | 0.022 | 52.9 | 0.032 |
W | 0.04–1.13 | 0.18 | 0.22 ± 0.18 | 0.12 | 0.24 | 78.2 | 0.44 |
Th | 0.04–0.44 | 0.14 | 0.16 ± 0.08 | 0.11 | 0.19 | 48.0 | 0.29 |
U | 0.0029–0.16 | 0.052 | 0.057 ± 0.027 | 0.039 | 0.066 | 47.3 | 0.097 |
Cd | 0.08–0.54 | 0.24 | 0.25 ± 0.09 | 0.18 | 0.31 | 37.0 | 0.39 |
Pb | 1.33–14 | 4.82 | 5.28 ± 2.71 | 3.29 | 6.44 | 51.3 | 8.99 |
Cu | 3.03–43 | 7.61 | 8.23 ± 3.81 | 6.26 | 9.41 | 46.3 | 11.6 |
Ref. | Moscow Region (Present Work) | Moscow Region (Vergel et al. 2019) | Moscow Region (Vergel et al. 2009) | Vladimir Region (Vergel et al. 2014) | Yaroslavl Region | |||||
---|---|---|---|---|---|---|---|---|---|---|
156 (present study) | 39 [3] | 34 [4] | 73 [10] | 53 [10] | ||||||
Element | MD | Range | MD | Range | MD | Range | MD | Range | MD | Range |
Na | 155 | 85–508 | 230 | 71–726 | 240 | 87–1716 | 128 | 75–942 | 98 | 56–290 |
Mg | 1790 | 166–2970 | 1860 | 1010–4970 | 1963 | 364–5412 | 1910 | 1020–3030 | 1370 | 880–2150 |
Al | 0.09 | 0.011–0.3 | 0.12 | 0.045–0.69 | 0.08 | 0.03–0.92 | 0.065 | 0.019–0.23 | 0.05 | 0.033–0.17 |
Cl | 85 | 10–284 | 108 | 47–1040 | 182 | 54–815 | 68 | 9–434 | 68 | 39–200 |
K | 0.72 | 0.05–1.43 | 0.85 | 0.23–1.7 | 1.08 | 0.55–2.26 | 0.47 | 0.47–1.4 | 0.63 | 0.44–0.9 |
Ca | 0.45 | 0.07–0.91 | 0.47 | 0.24–0.9 | 0.35 | 0.12–0.92 | 0.21 | 0.21–0.78 | 0.34 | 0.2–0.53 |
Sc | 0.17 | 0.06–0.52 | 0.26 | 0.08–1.3 | 0.16 | 0.036–2 | 0.06 | 0.06–0.59 | 0.14 | 0.06–0.31 |
Ti | – | – | 146 | 35–1050 | – | – | – | – | 68 | 20–141 |
V | 1.9 | 0.32–5.3 | 2.5 | 0.94–11 | 2.3 | 0.68–13 | 1.9 | 0.95–6.3 | 1.7 | 0.8–8 |
Cr | 2.63 | 1.01–7.5 | 3.2 | 0.72–9.5 | 3.1 | 0.51–22 | 2.5 | 1.3–7 | 1.8 | 0.39–5.8 |
Mn | 449 | 0.46–1540 | 347 | 76–848 | 405 | 43–1222 | 431 | 118–931 | 382 | 48–964 |
Fe | 0.07 | 0.025–0.23 | 0.1 | 0.03–0.34 | 0.08 | 0.02–0.57 | 0.05 | 0.025–0.16 | 0.047 | 0.023–0.11 |
Co | 0.38 | 0.11–1.07 | 0.56 | 0.14–2.1 | 0.34 | 0.04–2.1 | 0.38 | 0.18–0.86 | 0.29 | 0.13–0.87 |
Ni | 2.87 | 0.46–6.3 | 3.2 | 0.66–8.4 | 2.4 | 0.83–9 | 2.8 | 1.24–5.7 | 1.83 | 0.8–6.5 |
Cu | 7.61 | 3.03–43 | 7.1 | 2.9–21 | – | – | 6.1 | 4.3–9.3 | 5.8 | 3.7–10 |
Zn | 57 | 1.3–145 | 50 | 21–159 | 51 | 21–115 | 48 | 32–98 | 34 | 23–169 |
As | 0.18 | 0.03–0.49 | 0.32 | 0.12–1.1 | 0.19 | 0.04–0.89 | 0.16 | 0.01–0.5 | 0.46 | 0.23–1.0 |
Se | 0.17 | 0.04–0.36 | 0.16 | 0.09–0.4 | 0.18 | 0.005–0.6 | – | – | 0.19 | 0.08–1.1 |
Br | 2.26 | 1.07–4.4 | 1.9 | 0.7–5.1 | 1.7 | 0.7–5.1 | 2.2 | 1.1–5 | 3.1 | 1.98–4.45 |
Rb | 13.8 | 0.14–40 | 19 | 7.5–36 | 17 | 7.4–65 | 11 | 3.7–50 | 15 | 4.65–71 |
Sr | 15.3 | 4.2–31 | 17 | 5.6–32 | 17 | 7.7–50 | 13 | 6.1–66 | 11 | 6.2–23 |
Mo | – | – | 0.18 | 0.06–1.9 | 0.37 | 0.18–1 | – | – | – | – |
Cd | 0.24 | 0.08–0.54 | 0.3 | 0.12–0.67 | – | – | 0.29 | 0.14–0.67 | 0.15 | 0.082–0.43 |
Sb | 0.23 | 0.005–1.13 | 0.3 | 0.045–1.5 | 0.22 | 0.08–0.96 | 0.15 | 0.073–0.43 | 0.11 | 0.06–0.29 |
I | – | – | 1.5 | 0.36–2.4 | – | – | – | – | 0.5 | 0.2–0.78 |
Cs | 0.14 | 0.006–0.47 | 0.18 | 0.1–0.7 | 0.16 | 0.06–0.62 | 0.12 | 0.06–0.4 | 0.1 | 0.05–0.35 |
Ba | 44 | 3.1–113 | 48 | 7.5–188 | 48 | 7.3–203 | 36 | 5.5–93 | 30 | 2.34–218 |
La | 0.54 | 0.19–1.76 | 0.84 | 0.26–4.2 | 0.67 | 0.12–8.5 | 0.44 | 0.17–2.6 | 0.4 | 0.2–2.1 |
Ce | 1.2 | 0.27–3.4 | 1.6 | 0.57–7.5 | 2.1 | 0.07–25 | 1.0 | 0.49–4.4 | 0.72 | 0.32–2.1 |
Sm | 0.08 | 0.03–0.24 | 0.13 | 0.04–0.72 | 0.12 | 0.019–1.4 | 0.056 | 0.03–0.39 | 0.05 | 0.025–0.16 |
Tb | 0.013 | 0.001–0.04 | 0.02 | 0.005–0.1 | 0.013 | 0.002–0.19 | 0.01 | 0.004–0.05 | 0.008 | 0.003–0.02 |
Hf | 0.13 | 0.02–0.61 | 0.29 | 0.068–2.4 | 0.15 | 0.026–2.7 | 0.09 | 0.017–0.6 | 0.07 | 0.0005–0.2 |
W | 0.18 | 0.04–1.13 | 0.47 | 0.11–200 | 0.35 | 0.08–0.78 | 0.1 | 0.02–0.53 | – | 0.04–0.28 |
Pb | 4.82 | 1.33–14 | 0.67 | 0.12–2.2 | – | – | 4.2 | 1.9–8.8 | 2.8 | 0.003–0.07 |
Th | 0.14 | 0.04–0.44 | 0.23 | 0.067–1.5 | 0.19 | 0.036–2.6 | 0.11 | 0.03–0.7 | 0.1 | 1.2–9.5 |
U | 0.052 | 0.003–0.16 | 0.08 | 0.01–0.19 | 0.08 | 0.008–0.6 | 0.04 | 0.01–0.17 | 0.029 | 0.058–0.25 |
Element | Factor 1 | Factor 2 | Factor 3 | Factor 4 | Factor 5 |
---|---|---|---|---|---|
Na | 0.82 | 0.40 | −0.01 | 0.09 | 0.13 |
Mg | 0.12 | 0.04 | −0.32 | 0.06 | 0.81 |
Al | 0.72 | 0.09 | 0.16 | 0.12 | 0.52 |
Ca | 0.14 | 0.13 | −0.20 | 0.06 | 0.86 |
Sc | 0.88 | 0.41 | 0.01 | 0.14 | 0.12 |
V | 0.60 | −0.01 | 0.35 | 0.17 | 0.49 |
Cr | 0.63 | 0.56 | 0.25 | 0.17 | 0.11 |
Fe | 0.75 | 0.57 | 0.13 | 0.16 | 0.09 |
Co | 0.52 | 0.64 | −0.01 | 0.08 | 0.19 |
Ni | 0.56 | 0.52 | −0.20 | 0.26 | 0.03 |
Zn | 0.14 | −0.05 | 0.09 | 0.74 | 0.14 |
As | 0.77 | 0.20 | 0.17 | 0.15 | −0.02 |
Rb | −0.18 | 0.12 | 0.82 | 0.03 | −0.23 |
Sb | 0.49 | 0.70 | 0.18 | 0.16 | −0.01 |
Cs | 0.13 | 0.08 | 0.83 | 0.02 | −0.15 |
La | 0.92 | 0.21 | 0.05 | 0.17 | 0.10 |
Ce | 0.87 | 0.28 | 0.01 | 0.18 | 0.15 |
Sm | 0.93 | 0.25 | 0.00 | 0.15 | 0.12 |
Tb | 0.88 | 0.26 | −0.12 | 0.16 | 0.08 |
Hf | 0.84 | 0.02 | −0.21 | 0.12 | 0.20 |
Ta | 0.83 | 0.33 | −0.10 | 0.12 | 0.07 |
W | 0.49 | 0.75 | 0.22 | 0.07 | 0.05 |
Th | 0.92 | 0.26 | −0.02 | 0.13 | 0.13 |
U | 0.88 | 0.32 | 0.04 | 0.12 | 0.07 |
Cd | 0.45 | 0.05 | −0.33 | 0.55 | 0.04 |
Pb | 0.42 | 0.18 | 0.30 | 0.67 | −0.18 |
Cu | 0.00 | 0.36 | −0.06 | 0.70 | 0.09 |
Prp.Totl | 0.43 | 0.13 | 0.08 | 0.08 | 0.08 |
Element | Mean | SD | Element | Mean | SD |
---|---|---|---|---|---|
Mg | 1.07 | 0.30 | As | 1.59 | 0.64 |
Al | 1.47 | 0.72 | Rb | 0.97 | 0.56 |
Ca | 0.97 | 0.31 | Sb | 1.90 | 1.23 |
V | 1.48 | 0.65 | Cs | 0.97 | 0.48 |
Cr | 1.31 | 0.60 | W | 1.58 | 1.23 |
Fe | 1.34 | 0.65 | Cd | 1.58 | 0.58 |
Co | 1.06 | 0.50 | Pb | 1.64 | 0.84 |
Ni | 1.50 | 0.63 | Cu | 1.33 | 0.62 |
Zn | 1.52 | 0.57 | PLI | 1.12 | 0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergel, K.; Zinicovscaia, I.; Yushin, N.; Chaligava, O.; Nekhoroshkov, P.; Grozdov, D. Moss Biomonitoring of Atmospheric Pollution with Trace Elements in the Moscow Region, Russia. Toxics 2022, 10, 66. https://doi.org/10.3390/toxics10020066
Vergel K, Zinicovscaia I, Yushin N, Chaligava O, Nekhoroshkov P, Grozdov D. Moss Biomonitoring of Atmospheric Pollution with Trace Elements in the Moscow Region, Russia. Toxics. 2022; 10(2):66. https://doi.org/10.3390/toxics10020066
Chicago/Turabian StyleVergel, Konstantin, Inga Zinicovscaia, Nikita Yushin, Omari Chaligava, Pavel Nekhoroshkov, and Dmitrii Grozdov. 2022. "Moss Biomonitoring of Atmospheric Pollution with Trace Elements in the Moscow Region, Russia" Toxics 10, no. 2: 66. https://doi.org/10.3390/toxics10020066
APA StyleVergel, K., Zinicovscaia, I., Yushin, N., Chaligava, O., Nekhoroshkov, P., & Grozdov, D. (2022). Moss Biomonitoring of Atmospheric Pollution with Trace Elements in the Moscow Region, Russia. Toxics, 10(2), 66. https://doi.org/10.3390/toxics10020066