Interspecies-Extrapolated Biotic Ligand Model to Predict Arsenate Toxicity to Terrestrial Plants with Consideration of Cell Membrane Surface Electrical Potential
Abstract
:1. Introduction
2. Materials and Methods
2.1. Toxicity Test
2.2. Effect of Ca2+ Concentration on Arsenate Toxicity to H. vulgare
2.3. Chemical Analysis
2.4. Calculation of the Electrical Potential of Root Cell PM Surface
2.5. Interspecies Extrapolation of BLM
3. Results and Discussion
3.1. Effect of Increasing Ca2+ Concentrations on As(V) Toxicity
3.2. Interspecies Extrapolation of BLM to Predict As(V) Toxicity to H. vulgare and T. aestivum
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Samanta, G.; Mandal, B.K.; Chowdhury, T.R.; Chanda, C.R.; Chowdhury, P.P.; Basu, G.K.; Chakraborti, D. Arsenic in groundwater in six districts of West Bengal, India. Environ. Geochem. Health 1996, 18, 5–15. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Jeong, B.; Jeong, S.; Nam, K. Diffusive gradients in thin films technique coupled to X-ray fluorescence spectrometry for the determination of bioavailable arsenic concentrations in soil. Spectrochim. Acta Part B At. Spectrosc. 2020, 164, 105752. [Google Scholar] [CrossRef]
- Park, J.; Chung, J.; Kim, S.H.; An, J.; Nam, K. Effect of neutralizing agents on the type of as co-precipitates formed by in situ Fe oxides synthesis and its impact on the bioaccessibility of as in soil. Sci. Total Environ. 2020, 743, 140686. [Google Scholar] [CrossRef]
- An, J.; Jeong, B.; Nam, K. Evaluation of the effectiveness of in situ stabilization in the field aged arsenic-contaminated soil: Chemical extractability and biological response. J. Hazard. Mat. 2019, 367, 137–143. [Google Scholar] [CrossRef]
- Lamb, D.T.; Kader, M.; Wang, L.; Choppala, G.; Rahman, M.M.; Megharaj, M.; Naidu, R. Pore-water carbonate and phosphate as predictors of arsenate toxicity in soil. Environ. Sci. Technol. 2016, 50, 13062–13069. [Google Scholar] [CrossRef]
- Rubinos, D.A.; Calvo, V.; Iglesias, L.; Barral, M.T. Acute toxicity of arsenic to Aliivibrio fischeri (Microtox® bioassay) as influenced by potential competitive-protective agents. Environ. Sci. Pollut. Res. 2014, 21, 8631–8644. [Google Scholar] [CrossRef]
- Dyer, S.D.; Versteeg, D.J.; Belanger, S.E.; Chaney, J.G.; Raimondo, S.; Barron, M.G. Comparison of species sensitivity distributions derived from interspecies correlation models to distributions used to derive water quality criteria. Environ. Sci. Technol. 2008, 42, 3076–3083. [Google Scholar] [CrossRef]
- Lock, K.; Van Eeckhout, H.; De Schamphelaere, K.A.C.; Criel, P.; Janssen, C.R. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare). Chemosphere 2007, 66, 1346–1352. [Google Scholar] [CrossRef]
- De Schamphelaere, K.A.C.; Janssen, C.R. A biotic ligand model predicting acute copper toxicity for Daphnia magna: The effects of calcium, magnesium, sodium, potassium, and pH. Environ. Sci. Technol. 2002, 36, 48–54. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Ma, Y.; Hua, L. Development of a biotic ligand model for acute zinc toxicity to barley root elongation. Ecotoxicol. Environ. Saf. 2010, 73, 1272–1278. [Google Scholar] [CrossRef]
- An, J.; Jeong, S.; Moon, H.S.; Jho, E.H.; Nam, K. Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil. J. Hazard. Mat. 2012, 203, 69–76. [Google Scholar] [CrossRef]
- An, J.; Jeong, B.; Nam, K. Extension of biotic ligand model to account for the effects of pH and phosphate in accurate prediction of arsenate toxicity. J. Hazard. Mat. 2020, 385, 121619. [Google Scholar] [CrossRef]
- Newman, M.C.; Ownby, D.R.; Mézin, L.C.A.; Powell, D.C.; Christensen, T.R.L.; Lerberg, S.B.; Anderson, B.-A. Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environ. Toxicol. Chem. 2000, 19, 508–515. [Google Scholar] [CrossRef] [Green Version]
- De Schamphelaere, K.A.C.; Janssen, C.R. Cross-phylum extrapolation of the Daphnia magna chronic biotic ligand model for zinc to the snail Lymnaea stagnalis and the rotifer Brachionus calyciflorus. Sci. Total Environ. 2010, 408, 5414–5422. [Google Scholar] [CrossRef]
- Schlekat, C.E.; Van Genderen, E.; De Schamphelaere, K.A.C.; Antunes, P.M.C.; Rogevich, E.C.; Stubblefield, W.A. Cross-species extrapolation of chronic nickel biotic ligand models. Sci. Total Environ. 2010, 408, 6148–6157. [Google Scholar] [CrossRef]
- De Schamphelaere, K.A.C.; Heijerick, D.G.; Janssen, C.R. Cross-phylum comparison of a chronic biotic ligand model to predict chronic toxicity of copper to a freshwater rotifer, Brachionus calyciflorus (Pallas). Ecotoxicol. Environ. Saf. 2006, 63, 189–195. [Google Scholar] [CrossRef]
- Verschoor, A.J.; Vink, J.P.M.; de Snoo, G.R.; Vijver, M.G. Spatial and temporal variation of watertype-specific no-effect concentrations and risks of Cu, Ni, and Zn. Environ. Sci. Technol. 2011, 45, 6049–6056. [Google Scholar] [CrossRef]
- Van Sprang, P.A.; Verdonck, F.A.M.; Van Assche, F.; Regoli, L.; De Schamphelaere, K.A.C. Environmental risk assessment of zinc in European freshwaters: A critical appraisal. Sci. Total Environ. 2009, 407, 5373–5391. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Kinraide, T.B.; Wang, P.; Blamey, F.P.C.; Reichman, S.M.; Menzies, N.W. Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface. Environ. Sci. Technol. 2011, 45, 4966–4973. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhou, D.; Kinraide, T.B.; Luo, X.; Li, L.; Li, D.; Zhang, H. Cell membrane surface potential (Ψ0) plays a dominant role in the phytotoxicity of copper and arsenate. Plant Physiol. 2008, 148, 2134–2143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.M.; Kinraide, T.B.; Wang, P.; Hao, X.Z.; Zhou, D.M. Surface electrical potentials of root cell plasma membranes: Implications for ion interactions, rhizotoxicity, and uptake. Int. J. Mol. Sci. 2014, 15, 22661–22677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soil Quality—Determination of the Effects of Pollutants on Soil Flora. Part 1. Method for the Measurement of Inhibition of Root Growth; No. 11269-1:2012; International Organization for Standardization (ISO): Geneva, Switzerland, 2012.
- Le, T.T.Y.; Peijnenburg, W.J.G.M.; Hendriks, A.J.; Vijver, M.G. Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model. Environ. Toxicol. Chem. 2012, 31, 355–359. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Visual Minteq Ver 3.1. 2014. Available online: http://vminteq.lwr.kth.se/ (accessed on 20 December 2020).
- Kopittke, P.M.; Wang, P.; Menzies, N.W.; Naidu, R.; Kinraide, T.B. A web-accessible computer program for calculating electrical potentials and ion activities at cell-membrane surfaces. Plant Soil 2014, 375, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Rosen, B.P.; Liu, Z. Transport pathways for arsenic and selenium: A minireview. Environ. Int. 2009, 35, 512–515. [Google Scholar] [CrossRef] [Green Version]
- Muehe, E.M.; Eisele, J.F.; Daus, B.; Kappler, A.; Harter, K.; Chaban, C. Are rice (Oryza sativa L.) phosphate transporters regulated similarly by phosphate and arsenate? A comprehensive study. Plant Mol. Biol. 2014, 85, 301–316. [Google Scholar] [CrossRef]
(a) Parameters of BLM for As(V) obtained from An et al. [14] | ||||
Conditional binding constant a | log KXH2AsO4 | log KXHAsO4 | log KXH2PO4 | log KXHPO4 |
Value (L/mol) | 3.067 | 4.802 | 3.424 | 4.588 |
(b) Inherent sensitivity of A. fischeri and terrestrial plants | ||||
Species | Toxic endpoint | f50 (dimensionless) | ||
Aliivibrio fischeri | 5 min bioluminescence inhibition | 0.616 b | ||
Hordeum vulgare | 5 days relative root elongation | 0.626 c,d | ||
Triticum aestivum | 2 days relative root elongation | 0.015 c,e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J. Interspecies-Extrapolated Biotic Ligand Model to Predict Arsenate Toxicity to Terrestrial Plants with Consideration of Cell Membrane Surface Electrical Potential. Toxics 2022, 10, 78. https://doi.org/10.3390/toxics10020078
An J. Interspecies-Extrapolated Biotic Ligand Model to Predict Arsenate Toxicity to Terrestrial Plants with Consideration of Cell Membrane Surface Electrical Potential. Toxics. 2022; 10(2):78. https://doi.org/10.3390/toxics10020078
Chicago/Turabian StyleAn, Jinsung. 2022. "Interspecies-Extrapolated Biotic Ligand Model to Predict Arsenate Toxicity to Terrestrial Plants with Consideration of Cell Membrane Surface Electrical Potential" Toxics 10, no. 2: 78. https://doi.org/10.3390/toxics10020078
APA StyleAn, J. (2022). Interspecies-Extrapolated Biotic Ligand Model to Predict Arsenate Toxicity to Terrestrial Plants with Consideration of Cell Membrane Surface Electrical Potential. Toxics, 10(2), 78. https://doi.org/10.3390/toxics10020078