Sorption/Desorption and Kinetics of Atrazine, Chlorfenvinphos, Endosulfan Sulfate and Trifluralin on Agro-Industrial and Composted Organic Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Organic Matrices
2.2. Sorption Experiments
2.2.1. Effect of Sorbent Dosage
2.2.2. Kinetic Study
Equilibrium Time
Kinetic Modelling
2.2.3. Adsorption Isotherms
2.2.4. Desorption
2.3. Sample Extraction and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Sorption Experiments
3.1.1. Effect of Adsorbent Dose
3.1.2. Kinetic Study
Equilibrium Period
Kinetic Modelling
3.1.3. Adsorption Isotherms and Adsorption Model
3.1.4. Desorption
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Wilde, T.; Spanoghe, P.; Ryckeboer, J.; Jaeken, P.; Springael, D. Sorption characteristics of pesticides on matrix substrates used in biopurification systems. Chemosphere 2009, 75, 100–108. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy; Document L:2013:226; Publications Office of the European Union EUR-Lex & Legal Information Unit: Luxembourg, 2013; Volume 56, pp. 1–17. ISSN 1977-0677. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2013:226:TOC (accessed on 8 February 2022). [CrossRef]
- Cabrera, A.; Cox, L.; Spokas, K.; Hermosín, M.C.; Cornejo, J.; Koskinen, W.C. Influence of biochar amendments on the sorption–desorption of aminocyclopyrachlor, bentazone and pyraclostrobin pesticides to an agricultural soil. Sci. Total Environ. 2014, 470–471, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Moreno, L.; Nogales, R.; Romero, E. Vermiremediation of Biomixtures from Biobed Systems Contaminated with Pesticides. Appl. Sci. 2020, 10, 3173. [Google Scholar] [CrossRef]
- El Bakouri, H.; Morillo, J.; Usero, J.; Ouassini, A. Natural attenuation of pesticide water contamination by using ecological adsorbents: Application for chlorinated pesticides included in European Water Framework Directive. J. Hydrol. 2009, 364, 175–181. [Google Scholar] [CrossRef]
- Fenoll, J.; Vela, N.; Navarro, G.; Pérez-Lucas, G.; Navarro, S. Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil. Sci. Total Environ. 2014, 493, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lonappan, L.; Brar, S.K.; Yang, S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Sci. Total Environ. 2018, 645, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, K.; Singh, N. Effect of soil amendments on sorption and mobility of metribuzin in soils. Chemosphere 2007, 66, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Lucas, G.; Vela, N.; Escudero, J.A.; Navarro, G.; Navarro, S. Valorization of Organic Wastes to Reduce the Movement of Priority Substances Through a Semiarid Soil. Water Air Soil Pollut. 2017, 228, 119. [Google Scholar] [CrossRef]
- Diez, C.; Tortella, G.; Briceño, G.; Castillo, M.d.P.; Diaz, J.; Palma, G.; Altamirano, C.; Calderón, C.; Rubilar, O. Influence of novel lignocellulosic residues in a biobed biopurification system on the degradation of pesticides applied in repeatedly high doses. Electron. J. Biotechnol. 2013, 16, 1–11. [Google Scholar] [CrossRef]
- Concilla, A.; Liu, H. Presence of Agricultural Herbicide Atrazine in Water, Foods, and Human Urine Samples. Int. J. Environ. Monit. Anal. 2017, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Jurado, A.; Vàzquez-Suñé, E.; Carrera, J.; López de Alda, M.; Pujades, E.; Barceló, D. Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context. Sci. Total Environ. 2012, 440, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Jia, J.; Liu, A.; Yu, Z.; Zhao, Z. Pollution levels of banned and non-banned pesticides in surface sediments from the East China Sea. Mar. Pollut. Bull. 2019, 139, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Moreno-González, R.; Campillo, J.A.; García, V.; León, V.M. Seasonal input of regulated and emerging organic pollutants through surface watercourses to a Mediterranean coastal lagoon. Chemosphere 2013, 92, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Pinasseau, L.; Wiest, L.; Volatier, L.; Mermillod-Blondin, F.; Vulliet, E. Emerging polar pollutants in groundwater: Potential impact of urban stormwater infiltration practices. Environ. Pollut. 2020, 266, 115387. [Google Scholar] [CrossRef]
- Vonberg, D.; Vanderborght, J.; Cremer, N.; Pütz, T.; Herbst, M.; Vereecken, H. 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany. Water Res. 2014, 50, 294–306. [Google Scholar] [CrossRef]
- Vryzas, Z.; Papadakis, E.N.; Vassiliou, G.; Papadopoulou-Mourkidou, E. Occurrence of pesticides in transboundary aquifers of North-eastern Greece. Sci. Total Environ. 2012, 441, 41–48. [Google Scholar] [CrossRef]
- Zhong, G.; Tang, J.; Xie, Z.; Mi, W.; Chen, Y.; Möller, A.; Sturm, R.; Zhang, G.; Ebinghaus, R. Selected current-use pesticides (CUPs) in coastal and offshore sediments of Bohai and Yellow seas. Environ. Sci. Pollut. Res. 2015, 22, 1653–1661. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the Protection of Groundwater against Pollution and Deterioration; Document L:2006:372:TOC; Publications Office of the European Union EUR-Lex & Legal Information Unit: Luxembourg, 2006; Volume 49, pp. 19–31. ISSN 1725-2555. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02006L0118-20140711 (accessed on 8 February 2022).
- Siedt, M.; Schäffer, A.; Smith, K.E.C.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Lanzén, A.; Mijangos, I.; Garbisu, C. The application of fresh and composted horse and chicken manure affects soil quality, microbial composition and antibiotic resistance. Appl. Soil Ecol. 2019, 135, 73–84. [Google Scholar] [CrossRef]
- Jindo, K.; Martim, S.A.; Navarro, E.C.; Pérez-Alfocea, F.; Hernandez, T.; Garcia, C.; Aguiar, N.O.; Canellas, L.P. Root growth promotion by humic acids from composted and non-composted urban organic wastes. Plant Soil 2012, 353, 209–220. [Google Scholar] [CrossRef]
- Pesticide Properties Database (PPDB), Developed by the Agriculture and Environment Research Unit, University of Hert-Fordshire, UK. Available online: http://sitem.herts.ac.uk/aeru/ppdb/index.htm (accessed on 15 August 2020).
- Page, A.L. Methods of Soil Analysis. Part 2: Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; Agronomy Monographs; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1983. [Google Scholar] [CrossRef] [Green Version]
- Karas, P.; Metsoviti, A.; Zisis, V.; Ehaliotis, C.; Omirou, M.; Papadopoulou, E.S.; Menkissoglou-Spiroudi, U.; Manta, S.; Komiotis, D.; Karpouzas, D.G. Dissipation, metabolism and sorption of pesticides used in fruit-packaging plants: Towards an optimized depuration of their pesticide-contaminated agro-industrial effluents. Sci. Total Environ. 2015, 530–531, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y.; Jafry, A.T.; Bang Kang, S.; Young Seo, J.; Baek, K.-Y.; Kim, E.-J.; Pan, J.-G.; Choi, J.-Y.; Kim, H.-J.; Han Lee, K.; et al. Organophosphorus hydrolase-poly-β-cyclodextrin as a stable self-decontaminating bio-catalytic material for sorption and degradation of organophosphate pesticide. J. Hazard. Mater. 2019, 365, 261–269. [Google Scholar] [CrossRef]
- Narayanan, N.; Gupta, S.; Gajbhiye, V.T.; Manjaiah, K.M. Optimization of isotherm models for pesticide sorption on biopolymer-nanoclay composite by error analysis. Chemosphere 2017, 173, 502–511. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 106: Adsorption—Desorption Using a Batch Equilibrium Method; OECD Guidelines for the Testing of Chemicals, Section 1; OECD Publishing: Paris, France, 2000; pp. 1–44. [Google Scholar] [CrossRef]
- Wang, P.; Liu, X.; Yu, B.; Wu, X.; Xu, J.; Dong, F.; Zheng, Y. Characterization of peanut-shell biochar and the mechanisms underlying its sorption for atrazine and nicosulfuron in aqueous solution. Sci. Total Environ. 2020, 702, 134767. [Google Scholar] [CrossRef] [PubMed]
- Kyriakopoulos, G.; Doulia, D.; Anagnostopoulos, E. Adsorption of pesticides on porous polymeric adsorbents. Chem. Eng. Sci. 2005, 60, 1177–1186. [Google Scholar] [CrossRef]
- Kasozi, G.N.; Nkedi-Kizza, P.; Li, Y.; Zimmerman, A.R. Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin. Environ. Pollut. 2012, 169, 12–19. [Google Scholar] [CrossRef]
- Lima, D.L.D.; Silva, C.P.; Schneider, R.J.; Esteves, V.I. Development of an ELISA procedure to study sorption of atrazine onto a sewage sludge-amended luvisol soil. Talanta 2011, 85, 1494–1499. [Google Scholar] [CrossRef]
- Yadav, S.; Singh, N. Increased Sorption of Atrazine and Fipronil in the Sugarcane Trash Ash–Mixed Soils of Northern India. J. Soil Sci. Plant Nutr. 2021, 21, 1263–1276. [Google Scholar] [CrossRef]
- Delgado-Moreno, L.; Wu, L.; Gan, J. Effect of dissolved organic carbon on sorption of pyrethroids to sediments. Environ. Sci. Technol. 2010, 44, 8473–8478. [Google Scholar] [CrossRef]
- Saha, A.; Gajbhiye, V.T.; Gupta, S.; Kumar, R.; Ghosh, R.K. Simultaneous Removal of Pesticides from Water by Rice Husk Ash: Batch and Column Studies. Water Environ. Res. 2014, 86, 2176–2185. [Google Scholar] [CrossRef]
- Mandal, A.; Singh, N.; Purakayastha, T.J. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci. Total Environ. 2017, 577, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Osma, J.F.; Saravia, V.; Toca-Herrera, J.L.; Couto, S.R. Sunflower seed shells: A novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions. J. Hazard. Mater. 2007, 147, 900–905. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, I.; González, M.A.; Rodríguez-Rivas, F.; Ulibarri, M.A.; Barriga, C. Caprylate intercalated layered double hydroxide as adsorbent of the linuron, 2,4-DB and metamitron pesticides from aqueous solution. Appl. Clay Sci. 2013, 80–81, 76–84. [Google Scholar] [CrossRef]
- Tubić, A.; Lončarski, M.; Apostolović, T.; Kragulj Isakovski, M.; Tričković, J.; Molnar Jazić, J.; Agbaba, J. Adsorption mechanisms of chlorobenzenes and trifluralin on primary polyethylene microplastics in the aquatic environment. Environ. Sci. Pollut. Res. 2021, 28, 59416–59429. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Weber, W.; Morris, J. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Khenifi, A.; Derriche, Z.; Mousty, C.; Prévot, V.; Forano, C. Adsorption of Glyphosate and Glufosinate by Ni2AlNO3 layered double hydroxide. Appl. Clay Sci. 2010, 47, 362–371. [Google Scholar] [CrossRef]
- Mondal, P.; Majumder, C.B.; Mohanty, B. Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. J. Hazard. Mater. 2008, 150, 695–702. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Shin, J.; Kwak, J.; Kim, S.; Son, C.; Cho, K.H.; Chon, K. Effects of NaOH Activation on Adsorptive Removal of Herbicides by Biochars Prepared from Ground Coffee Residues. Energies 2021, 14, 1297. [Google Scholar] [CrossRef]
- Melo, A.M.d.S.; Valentim, I.B.; Goulart, M.O.F.; Abreu, F.C. de Adsorption studies of trifluralin on chitosan and its voltammetric determination on a modified chitosan glassy carbon electrode. J. Braz. Chem. Soc. 2008, 19, 704–710. [Google Scholar] [CrossRef]
- Tsibranska, I.; Hristova, E. Comparison of different kinetic models for adsorption of heavy metals onto activated carbon from apricot stones. Bulg. Chem. Commun. 2011, 43, 370–377. [Google Scholar]
- Zhang, H.; Lin, K.; Wang, H.; Gan, J. Effect of Pinus radiata derived biochars on soil sorption and desorption of phenanthrene. Environ. Pollut. 2010, 158, 2821–2825. [Google Scholar] [CrossRef] [PubMed]
- Kodešová, R.; Kočárek, M.; Kodeš, V.; Drábek, O.; Kozák, J.; Hejtmánková, K. Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. J. Hazard. Mater. 2011, 186, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Cruz, S.; Andrades, M.S.; Sanchez-Camazano, M.; Sanchez-Martin, M.J. Relationship between The Adsorption Capacity of Pesticides by Wood Residues and The Properties of Woods and Pesticides. Environ. Sci. Technol. 2007, 41, 3613–3619. [Google Scholar] [CrossRef]
- Boivin, A.; Cherrier, R.; Schiavon, M. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils. Chemosphere 2005, 61, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Togue Kamga, F. Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust. Appl. Water Sci. 2019, 9, 1. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, R.; Atwater, J.W.; Hall, K.J.; Parkinson, P. Sorption of endosulphan sulphate in soil organic matter. Environ. Technol. 2011, 32, 1875–1881. [Google Scholar] [CrossRef]
- Blasco, C.; Fernández, M.; Picó, Y.; Font, G. Comparison of solid-phase microextraction and stir bar sorptive extraction for determining six organophosphorus insecticides in honey by liquid chromatography–mass spectrometry. J. Chromatogr. A 2004, 1030, 77–85. [Google Scholar] [CrossRef]
- Huertas, C.; Morillo, J.; Usero, J.; Gracia-Manarillo, I. Validation of stir bar sorptive extraction for the determination of 24 priority substances from the European Water Framework Directive in estuarine and sea water. Talanta 2007, 72, 1149–1156. [Google Scholar] [CrossRef]
- Garrido Frenich, A.; Romero-González, R.; Martínez Vidal, J.L.; Martínez Ocaña, R.; Baquero Feria, P. Comparison of solid phase microextraction and hollow fiber liquid phase microextraction for the determination of pesticides in aqueous samples by gas chromatography triple quadrupole tandem mass spectrometry. Anal. Bioanal. Chem. 2011, 399, 2043–2059. [Google Scholar] [CrossRef]
- Ureña-Amate, M.D.; Socías-Viciana, M.; González-Pradas, E.; Saifi, M. Effects of ionic strength and temperature on adsorption of atrazine by a heat treated kerolite. Chemosphere 2005, 59, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Kovaios, I.D.; Paraskeva, C.A.; Koutsoukos, P.G.; Payatakes, A.C. Adsorption of atrazine on soils: Model study. J. Colloid Interface Sci. 2006, 299, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, Y.; Yan, X.; Shi, B.; Wang, D.; Tang, H. Sorption of atrazine onto humic acids (HAs) coated nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2009, 347, 90–96. [Google Scholar] [CrossRef]
- Engel, M.; Chefetz, B. Removal of triazine-based pollutants from water by carbon nanotubes: Impact of dissolved organic matter (DOM) and solution chemistry. Water Res. 2016, 106, 146–154. [Google Scholar] [CrossRef]
- Rouchaud, J.; Thirion, A.; Wauters, A.; Van de Steene, F.; Benoit, F.; Ceustermans, N.; Gillet, J.; Marchand, S.; Vanparys, L. Effects of fertilizer on insecticides adsorption and biodegradation in crop soils. Arch. Environ. Contam. Toxicol. 1996, 31, 98–106. [Google Scholar] [CrossRef]
- Francioso, O.; Bak, E.; Rossi, N.; Sequi, P. Sorption of atrazine and trifluralin in relation to the physio-chemical characteristics of selected soils. Sci. Total Environ. 1992, 123–124, 503–512. [Google Scholar] [CrossRef]
- Lule, G.M.; Atalay, M.U. Comparison of Fenitrothion and Trifluralin Adsorption on Organo-Zeolites and Activated Carbon. Part I: Pesticides Adsorption Isotherms on Adsorbents. Part. Sci. Technol. 2014, 32, 418–425. [Google Scholar] [CrossRef]
- Cooke, C.M.; Shaw, G.; Collins, C.D. Determination of solid–liquid partition coefficients (Kd) for the herbicides isoproturon and trifluralin in five UK agricultural soils. Environ. Pollut. 2004, 132, 541–552. [Google Scholar] [CrossRef]
- Correia, F.V.; Macrae, A.; Guilherme, L.R.G.; Langenbach, T. Atrazine sorption and fate in a Ultisol from humid tropical Brazil. Chemosphere 2007, 67, 847–854. [Google Scholar] [CrossRef]
- Duhan, A.; Oliver, D.P.; Rashti, M.R.; Du, J.; Kookana, R.S. Organic waste from sugar mills as a potential soil ameliorant to minimise herbicide runoff to the Great Barrier Reef. Sci. Total Environ. 2020, 713, 136640. [Google Scholar] [CrossRef]
- Kumar, M.; Philip, L. Adsorption and desorption characteristics of hydrophobic pesticide endosulfan in four Indian soils. Chemosphere 2006, 62, 1064–1077. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.C.; Patel, R.K. Removal of endosulfan by sal wood charcoal. J. Hazard. Mater. 2008, 152, 730–736. [Google Scholar] [CrossRef]
- Burns, M.; Crossan, A.N.; Kennedy, I.R.; Rose, M.T. Sorption and Desorption of Endosulfan Sulfate and Diuron to Composted Cotton Gin Trash. J. Agric. Food Chem. 2008, 56, 5260–5265. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Shan, R.; Fan, Y.; Sun, X. Effects of tall fescue biochar on the adsorption and desorption of atrazine in different types of soil. Environ. Sci. Pollut. Res. 2021, 28, 4503–4514. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Ge, C.; Feng, D.; Yu, H.; Deng, H.; Fu, B. Adsorption–desorption behavior of atrazine on agricultural soils in China. J. Environ. Sci. 2017, 57, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Gebremariam, S.Y. Mineralization, Sorption and Desorption of Chlorpyrifos in Aquatic Sediments and Soils. Ph.D. Thesis, Doctor of Philosophy, Washington State University (Department of Civil and Environmental Engineering), Wahington, DC, USA, May 2011. [Google Scholar]
- Celis, R.; Cornejo, J.; Hermosín, M.C.; Koskinen, W.C. Sorption-Desorption of Atrazine and Simazine by Model Soil Colloidal Components. Soil Sci. Soc. Am. J. 1997, 61, 436. [Google Scholar] [CrossRef]
TOC | SE | pH | C | N | O | Na | Mg | Al | Si | P | S | Cl | K | Ca | Ti | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | (m2 g−1) | upH | % | % | % | % | % | % | % | % | % | % | % | % | % | % | |
OR1 | 50.0 | 0.43 | 6.45 | 68.0 | - | 32.0 | - | - | - | - | - | - | - | - | - | - | - |
OR2 | 17.9 | 0.85 | 7.06 | 53.4 | 1.60 | 33.2 | 0.10 | 0.50 | 0.80 | 2.70 | 0.30 | 0.20 | 0.50 | 1.80 | 3.40 | - | 1.20 |
OR3 | 48.9 | 0.25 | 7.04 | 56.3 | 2.40 | 37.4 | - | 0.40 | - | 0.30 | - | - | 0.20 | 2.40 | 0.60 | - | - |
OR4 | 25.4 | 1.60 | 7.53 | 50.1 | - | 30.2 | 1.40 | 0.60 | 1.30 | 3.10 | - | 1.30 | 1.00 | 0.90 | 8.20 | 0.10 | 1.80 |
Lagergren | Ho and McKay | Morris-Weber | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pesticide | Qeexp | Qeest | K1 | r2 | Qeest | K2 | r2 | ki | xi | r2 | |
OR1 | Atrazine | 5.38 | 1.98 ± 0.06 | 0.013 ± 0.001 | 0.92 | 5.49 ± 0.01 | 0.024 ± 0.002 | 1.00 | 0.111 ± 0.006 | 3.55 ± 0.10 | 0.72 |
Chlorfenvinphos | 14.0 | 2.20 ± 0.71 | 0.024 ± 0.008 | 0.78 | 14.9 ± 0.05 | 0.014 ± 0.002 | 1.00 | 0.197 ± 0.063 | 11.4 ± 1.50 | 0.43 | |
Endosulfan sulfate | 13.5 | 2.25 ± 0.44 | 0.031 ± 0.005 | 0.96 | 13.7 ± 0.04 | 0.036 ± 0.001 | 1.00 | 0.115 ± 0.012 | 11.8 ± 0.21 | 0.54 | |
Trifluralin | 14.1 | 0.05 ± 0.00 | 0.023 ± 0.001 | 0.97 | 14.1 ± 0.00 | 1.442 ± 0.047 | 1.00 | 0.002 ± 0.000 | 14.1 ± 0.00 | 0.67 | |
OR2 | Atrazine | 4.46 | 3.79 ± 0.12 | 0.012 ± 0.001 | 0.86 | 5.51 ± 2.39 | 0.005 ± 0.000 | 0.99 | 0.245 ± 0.020 | 0.47 ± 0.07 | 0.82 |
Chlorfenvinphos | 12.4 | 4.75 ± 0.85 | 0.030 ± 0.002 | 0.97 | 13.3 ± 0.98 | 0.011 ± 0.003 | 1.00 | 0.260 ± 0.041 | 8.68 ± 0.97 | 0.60 | |
Endosulfan sulfate | 13.3 | 0.92 ± 0.14 | 0.027 ± 0.001 | 0.84 | 13.5 ± 0.00 | 0.053 ± 0.003 | 1.00 | 0.059 ± 0.007 | 12.4 ± 0.10 | 0.63 | |
Trifluralin | 15.0 | 0.78 ± 0.01 | 0.031 ± 0.001 | 0.96 | 15.1 ± 0.06 | 0.089 ± 0.024 | 1.00 | 0.040 ± 0.002 | 14.4 ± 0.00 | 0.56 | |
OR3 | Atrazine | 4.03 | 3.13 ± 0.09 | 0.054 ± 0.002 | 0.93 | 4.09 ± 0.01 | 0.046 ± 0.003 | 1.00 | 0.088 ± 0.005 | 2.68 ± 0.08 | 0.55 |
Chlorfenvinphos | 13.2 | 4.56 ± 0.79 | 0.021 ± 0.003 | 0.91 | 13.5 ± 0.03 | 0.013 ± 0.002 | 1.00 | 0.257 ± 0.059 | 9.12 ± 0.85 | 0.58 | |
Endosulfan sulfate | 14.5 | 2.12 ± 0.06 | 0.088 ± 0.009 | 0.99 | 14.5 ± 0.00 | 0.219 ± 0.054 | 1.00 | 0.046 ± 0.005 | 13.8 ± 0.08 | 0.35 | |
Trifluralin | 16.0 | 0.41 ± 0.02 | 0.030 ± 0.002 | 0.94 | 16.0 ± 0.00 | 0.232 ± 0.021 | 1.00 | 0.021 ± 0.002 | 15.7 ± 0.03 | 0.51 | |
OR4 | Atrazine | 3.79 | 4.15 ± 1.09 | 0.010 ± 0.003 | 0.89 | 4,85 ± 0,15 | 0,003 ± 0.00 | 0.97 | 0.233 ± 0.009 | -0.43 ± 0.06 | 0.87 |
Chlorfenvinphos | 14.6 | 9.09 ± 1.55 | 0.036 ± 0.006 | 0.85 | 13.8 ± 0.16 | 0.004 ± 0.001 | 1.00 | 0.549 ± 0.030 | 4.24 ± 0.53 | 0.54 | |
Endosulfan sulfate | 11.9 | 2.57 ± 0.88 | 0.030 ± 0.009 | 0.69 | 16.1 ± 0.27 | 0.004 ± 0.001 | 0.95 | 0.330 ± 0.021 | 10.2 ± 0.32 | 0.22 | |
Trifluralin | 16.0 | 2.14 ± 0.51 | 0.058 ± 0.003 | 0.86 | 16.1 ± 0.03 | 0.047 ± 0.016 | 1.00 | 0.200 ± 0.037 | 13.3 ± 0.51 | 0.19 |
Freundlich | Langmuir | kd | Koc | ||||||
---|---|---|---|---|---|---|---|---|---|
nf | Kf (L kg−1) | r2 | Qm | K | r2 | (L kg−1) | (L kg−1) | ||
OR1 | Atrazine | 0.77 ± 0.06 | 67.7 ±21.2 | 0.94 | 1.73 ± 0.57 | 0.050 ± 0.017 | 0.84 | 39.8 ± 7.63 | 79.5 ± 15.2 |
Chlorfenvinphos | 0.63 ± 0.10 | 189 ± 46 | 0.88 | 3.43 ± 0.95 | 0.036 ± 0.012 | 0.90 | 33.4 ± 2.82 | 66.7 ± 5.65 | |
Endosulfan sulfate | 0.83 ± 0.02 | 753 ± 80 | 0.96 | −9.72 ± 3.72 | −0.051 ± 0.020 | 0.95 | 358 ± 65.9 | 715 ± 132 | |
Trifluralin | 0.93 ± 0.05 | 571 ± 146 | 0.99 | 16.3 ± 3.76 | 0.038 ± 0.004 | 1.00 | 461 ± 0 | 922 ± 0 | |
OR2 | Atrazine | 0.79 ± 0.10 | 136 ± 34 | 0.84 | −3.98 ± 0.39 | −0.012 ± 0.001 | 0.65 | 30.5 ± 2.3 | 169 ± 13 |
Chlorfenvinphos | 1.12 ± 0.08 | 15.6 ± 4.0 | 0.97 | −1.91 ± 0.04 | −0.008 ± 0.002 | 0.97 | 35.3 ± 0.48 | 197 ± 3 | |
Endosulfan sulfate | 0.91 ± 0.01 | 493 ± 53 | 0.99 | −562 ± 297 | −0.001 ± 0.010 | 1.00 | 325 ± 1.01 | 1810 ± 6 | |
Trifluralin | 1.01 ± 0.02 | 685 ± 100 | 0.98 | 14.6 ± 0.88 | 0.055 ± 0.004 | 0.99 | 770 ± 2.58 | 4290 ± 14 | |
OR3 | Atrazine | 0.53 ± 0.06 | 358 ± 68 | 0.93 | 6.37 ± 0.20 | 0.037 ± 0.009 | 0.95 | 26.6 ± 6.62 | 104 ± 26 |
Chlorfenvinphos | 0.57 ± 0.00 | 612 ± 124 | 0.99 | 5.44 ± 0.32 | 0.181 ± 0.059 | 0.97 | 61.3 ± 16.8 | 241 ± 63 | |
Endosulfan sulfate | 0.70 ± 0.05 | 2021 ± 162 | 0.97 | 15.6 ± 5.91 | 0.217 ± 0.078 | 0.99 | 555 ± 187 | 2184 ± 791 | |
Trifluralin | 0.71 ± 0.00 | 3660 ± 269 | 0.98 | 17.0 ± 1.54 | 0.402 ± 0.090 | 0.99 | 1973 ± 522 | 7764 ± 2054 | |
OR4 | Atrazine | 0.39 ± 0.03 | 723 ± 26.3 | 0.91 | 6.19 ± 0.36 | 0.12 ± 0.02 | 0.95 | 24.5 ± 2.3 | 96.4 ± 11.8 |
Chlorfenvinphos | 0.65 ± 0.05 | 566 ± 68 | 0.96 | 5.67 ± 0.12 | 0.17 ± 0.04 | 0.97 | 88.4 ± 2.8 | 348 ± 11 | |
Endosulfan sulfate | 0.70 ± 0.04 | 2023 ± 167 | 0.97 | 15.6 ± 4.1 | 0.22 ± 0.05 | 0.99 | 596 ± 167 | 2344 ± 486 | |
Trifluralin | 0.71 ± 0.02 | 3693 ± 122 | 0.98 | 27.1 ± 4.6 | 0.26 ± 0.06 | 0.99 | 2093 ± 394 | 8232 ± 1551 |
nfd | Kfd (L kg−1) | r2 | H | %D | ||
---|---|---|---|---|---|---|
OR1 | Atrazine | 0.14 ± 0.01 | 2726 ± 188 | 0.91 | 498 | 40 |
Chlorfenvinphos | 1.98 ± 0.69 | 0.60 ± 0.33 | 0.58 | 36 | 100 | |
Endosulfan sulfate | 0.20 ± 0.04 | 6628 ± 463 | 0.75 | 400 | 25 | |
Trifluralin | 0.13 ± 0.01 | 9118 ± 610 | 0.96 | 630 | 18 | |
OR2 | Atrazine | 0.13 ± 0.01 | 2287 ± 39 | 0.95 | 571 | 80 |
Chlorfenvinphos | (a) | (a) | (a) | (a) | 100 | |
Endosulfan sulfate | 0.24 ± 0.03 | 5472 ± 612 | 0.94 | 387 | 28 | |
Trifluralin | 0.08 ± 0.01 | 11,844 ± 286 | 0.91 | 1236 | 11 | |
OR3 | Atrazine | 0.028 ± 0.01 | 3449 ± 290 | 0.93 | 1783 | 15 |
Chlorfenvinphos | (a) | (a) | (a) | (a) | 100 | |
Endosulfan sulfate | 0.083 ± 0.002 | 9562 ± 1236 | 0.74 | 680 | 25 | |
Trifluralin | 0.017 ± 0.005 | 15,312 ± 134 | 0.79 | 4201 | 4 | |
OR4 | Atrazine | 0.14 ± 0.05 | 1542 ± 542 | 0.73 | 258 | 60 |
Chlorfenvinphos | (a) | (a) | (a) | (a) | 103 | |
Endosulfan sulfate | 0.08 ± 0.01 | 10,645 ± 1401 | 0.62 | 861 | 19 | |
Trifluralin | 0.02 ± 0.00 | 15,350 ± 113 | 0.77 | 4164 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rojas, R.; Repetto, G.; Morillo, J.; Usero, J. Sorption/Desorption and Kinetics of Atrazine, Chlorfenvinphos, Endosulfan Sulfate and Trifluralin on Agro-Industrial and Composted Organic Wastes. Toxics 2022, 10, 85. https://doi.org/10.3390/toxics10020085
Rojas R, Repetto G, Morillo J, Usero J. Sorption/Desorption and Kinetics of Atrazine, Chlorfenvinphos, Endosulfan Sulfate and Trifluralin on Agro-Industrial and Composted Organic Wastes. Toxics. 2022; 10(2):85. https://doi.org/10.3390/toxics10020085
Chicago/Turabian StyleRojas, Raquel, Guillermo Repetto, José Morillo, and José Usero. 2022. "Sorption/Desorption and Kinetics of Atrazine, Chlorfenvinphos, Endosulfan Sulfate and Trifluralin on Agro-Industrial and Composted Organic Wastes" Toxics 10, no. 2: 85. https://doi.org/10.3390/toxics10020085
APA StyleRojas, R., Repetto, G., Morillo, J., & Usero, J. (2022). Sorption/Desorption and Kinetics of Atrazine, Chlorfenvinphos, Endosulfan Sulfate and Trifluralin on Agro-Industrial and Composted Organic Wastes. Toxics, 10(2), 85. https://doi.org/10.3390/toxics10020085