Using Human Biomonitoring Data to Support Risk Assessment of Cosmetic Ingredients—A Case Study of Benzophenone-3
Abstract
:1. Introduction
2. Methodological Approach
2.1. Risk Assessment Based on External Approach
2.1.1. Margin of Safety Calculation
2.1.2. Hazard Assessment: Selection of an External Critical Dose
2.1.3. Exposure Dose (SED) Calculation Based on Skin Application
2.2. Risk Assessment Based on Internal Approach
2.2.1. Risk Characterization Based on HBM Data
2.2.2. Provisional HBM-GV Derivation Using the Urinary Mass Balance Approach
- -
- provisional HBM-GV: the human biomonitoring guidance value below which no adverse health effect should be expected, expressed as the substance concentration per gram creatinine (µg/g creatinine).
- -
- TRV: toxicological reference value, the external human value corresponding to the animal PoD (mg/kg bw/day).
- -
- Fue: substance-specific steady-state fraction of urinary excretion, the daily proportion of the intake dose excreted in urine.
- -
- Creatinine excretion rate adjusted to BW: typical 24 h creatinine excreted, adjusted to default human bodyweight (g/kg bw/day), to compensate for differences in the volume of urine excreted.
2.2.3. Systemic Exposure Dose Calculation Based on an Internal Approach
3. Results
3.1. Risk Assessment Based on External Approach
3.1.1. Selection of External Critical Dose
3.1.2. Systemic Exposure Dose (SED) Calculation Based on an External Approach
- Skin penetration
- Calculation of the SED
3.1.3. MoS Calculation
- -
- The use of BP-3 as a UV-filter up to a maximum concentration of 6% in sunscreen products is not safe for the consumer with the exception of face cream, hand cream, and lipsticks
- -
- The use of BP-3 up to 0.5% in cosmetic products to protect the cosmetic formulation is safe for the consumer.
3.2. Risk Assessment Based on Internal Approach
3.2.1. Provisional HBM-GV Derivation Using the Urinary Mass Balance Approach
- Allometric scaling (rat to human): 4
- Remaining interspecies differences: 2.5
- Intraspecies differences: 10
- Duration extrapolation: 1
- Overall AF: 4 * 2.5 * 10 * 1 = 100
3.2.2. Systemic Exposure Dose Calculation Based on an Internal Approach
3.2.3. Risk Characterization Ratio (RCR) Calculation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Report from the Commission to the European Parliament and the Council Review of Regulation (EC) No 1223/2009 of the European Parliament and of the Council on Cosmetic Products with Regard to Substances with Endocrine-Disrupting Properties. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52018DC0739 (accessed on 16 October 2021).
- Scientific Committee on Consumer Safety (SCCS). Request for a Scientific Opinion on Benzophenone-3 (CAS No 131-57-7, EC No 205-031-5). Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs2016_q_038.pdf (accessed on 16 October 2021).
- Scientific Committee on Consumer Safety (SCCS). The SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation 11th Revision, Adopted in March 2021. Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_250.pdf (accessed on 16 October 2021).
- Louro, H.; Heinälä, M.; Bessems, J.; Buekers, J.; Vermeire, T.; Woutersen, M.; van Engelen, J.; Borges, T.; Rousselle, C.; Ougier, E.; et al. Human biomonitoring in health risk assessment in Europe: Current practices and recommendations for the future. Int. J. Hyg. Environ. Health 2019, 222, 727–737. [Google Scholar] [CrossRef] [PubMed]
- HBM4EU–Science and Policy for a Healthy Future. Available online: https://www.hbm4eu.eu/ (accessed on 16 October 2021).
- European Chemical Agency (ECHA). Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.8: Characterisation of Dose [Concentration]-Response for Human Health. Available online: https://echa.europa.eu/documents/10162/13632/information_requirements_r8_en.pdf/e153243a-03f0-44c5-8808-88af66223258 (accessed on 16 October 2021).
- European Chemical Agency (ECHA). Substance Information Benzophenone 3. Available online: https://echa.europa.eu/de/substance-information/-/substanceinfo/100.003.943 (accessed on 16 October 2021).
- Scientific Committee on Consumer Safety (SCCS). Basic Criteria for the In Vitro Assessment of Dermal Absorption of Cosmetic Ingredients, Adopted June 2010. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_002.pdf (accessed on 5 January 2022).
- Apel, P.; Rousselle, C.; Lange, R.; Sissoko, F.; Kolossa-Gehring, M.; Ougier, E. Human biomonitoring initiative (HBM4EU)-Strategy to derive human biomonitoring guidance values (HBM-GVs) for health risk assessment. Int. J. Hyg. Environ. Health 2020, 230, 113622. [Google Scholar] [CrossRef] [PubMed]
- Angerer, J.; Aylward, L.L.; Hays, S.M.; Heinzow, B.; Wilhelm, M. Human biomonitoring assessment values: Approaches and data requirements. Int. J. Hyg. Environ. Health 2011, 214, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Nielsen, O.; Skakkebaek, N.E.; Juul, A.; Andersson, A.-M. UV Filters Analyzed by Isotope Diluted TurboFlow-LC–MS/MS in Urine from Danish Children and Adolescents. Int. J. Hyg. Environ. Health 2017, 220, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, H.K.; Alexander, J. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 2018, 16, 5194. [Google Scholar]
- Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers (SCCNFP). Opinion on the Evaluation of Potentially Estrogenic Effects of UV-Filters Adopted by the SCCNFP during the 17th Plenary Meeting of 12 June 2001. Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/opinions/sccnfp_opinions_97_04/sccp_out145_en.htm (accessed on 5 January 2022).
- Scientific Committee on Consumer Products (SCCP). Opinion on Benzophenone-3. (COLIPA N° S38), SCCS/1069/06, Adopted 19 December 2006. Available online: https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_078.pdf (accessed on 5 January 2022).
- Scientific Committee on Consumer Products (SCCP). Opinion on Benzophenone-3. (COLIPA N° S38), SCCS/1201/08, Adopted 16 December 2008. Available online: https://ec.europa.eu/health/ph_risk/committees/04_sccp/docs/sccp_o_159.pdf (accessed on 5 January 2022).
- Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on Classification, Labelling and Packaging of Substances and Mixtures, Amending and Repealing Directives 67/548/EEC and 1999/45/EC, and Amending Regulation (EC) No 1907/2006. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32008R1272 (accessed on 16 October 2021).
- Ghazipura, M.; McGowan, R.; Arslan, A.; Hossain, T. Exposure to benzo-phenone-3 and reproductive toxicity: A systematic review of human and animal studies. Reprod. Toxicol. 2017, 7, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Choi, K. Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: A mini-review. Environ. Int. 2014, 70, 143–157. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Inselman, A.; White, G.A.; Chang, C.-W.; Trbojevich, R.A.; Sephr, E.; Voris, K.L.; Patton, R.E.; Bryant, M.S.; Harrouk, W.; et al. Effects of maternal and lactational exposure to 2-hydroxy-4-methoxybenzone on development and reproductive organs in male and female rat offspring. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2015, 104, 35–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, C.; Roberts, M.; Benson, H.A. Systemic absorption of sunscreen after topical application. Lancet 1997, 350, 863–864. [Google Scholar] [CrossRef]
- Sarveiya, V.; Risk, S.; Benson, H.A. Liquid chromatographic assay for common sunscreen agents: Application to in vivo assessment of skin penetration and systemic absorption in human volunteers. J. Chromatogr. B 2004, 803, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Aylward, L.L.; Hays, S.M.; Gagné, M.; Krishnan, K. Derivation of Biomonitoring Equivalents for di(2-ethylhexyl)phthalate (CAS No. 117-81-7). Regul. Toxicol. Pharmacol. 2009, 55, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Adoamnei, E.; Mendiola, J.; Moñino-García, M.; Vela-Soria, F.; Iribarne-Durán, L.M.; Fernández, M.F.; Olea, N.; Jørgensen, N.; Swan, S.; Torres-Cantero, A.M. Urinary concentrations of benzophenone-type ultra violet light filters and reproductive parameters in young men. Int. J. Hyg. Environ. Health 2018, 221, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Dewalque, L.; Pirard, C.; Charlier, C. Measurement of Urinary Biomarkers of Parabens, Benzophenone-3, and Phthalates in a Belgian Population. BioMed Res. Int. 2014, 2014, 649314. [Google Scholar] [CrossRef] [PubMed]
- Frederiksen, H.; Nielsen, J.K.S.; Mørck, T.A.; Hansen, P.W.; Jensen, J.F.; Nielsen, O.; Andersson, A.-M.; Knudsen, L.E. Urinary excretion of phthalate metabolites, phenols and parabens in rural and urban Danish mother–child pairs. Int. J. Hyg. Environ. Health 2013, 216, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Zamoiski, R.D.; Cahoon, E.K.; Freedman, D.M.; Linet, M.S. Self-reported sunscreen use and urinary benzophenone-3 concentrations in the United States: NHANES 2003–2006 and 2009–2012. Environ. Res. 2015, 142, 563–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machtinger, R.; Berman, T.; Adir, M.; Mansur, A.; Baccarelli, A.A.; Racowsky, C.; Calafat, A.M.; Hauser, R.; Nahum, R. Urinary concentrations of phthalate metabolites, bisphenols and personal care product chemical biomarkers in pregnant women in Israel. Environ. Int. 2018, 116, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Vogel, N.; Conrad, A.; Apel, P.; Rucic, E.; Kolossa-Gehring, M. Human biomonitoring reference values: Differences and similarities between approaches for identifying unusually high exposure of pollutants in humans. Int. J. Hyg. Environ. Health 2018, 222, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Harley, K.G.; Kogut, K.; Madrigal, D.S.; Cardenas, M.; Vera, I.A.; Meza-Alfaro, G.; She, J.; Gavin, Q.; Zahedi, R.; Bradman, A.; et al. Reducing Phthalate, Paraben, and Phenol Exposure from Personal Care Products in Adolescent Girls: Findings from the HERMOSA Intervention Study. Environ. Health Perspect. 2016, 124, 1600–1607. [Google Scholar] [CrossRef] [PubMed]
- Dodson, R.E.; Boronow, K.E.; Susmann, H.; Udesky, J.O.; Rodgers, K.M.; Weller, D.; Woudneh, M.; Brody, J.G.; Rudel, R.A. Consumer behavior and exposure to parabens, bisphenols, triclosan, dichlorophenols, and benzophenone-3: Results from a crowdsourced biomonitoring study. Int. J. Hyg. Environ. Health 2020, 230, 113624. [Google Scholar] [CrossRef] [PubMed]
Description | Parameter | Value | Unit |
---|---|---|---|
Amount of sunscreen product used | A | 18 | g/day |
Concentration of BP-3 | C | 6 | % |
Dermal absorption | DAp | 9.9 | % |
Human body weight | Bw | 60 | kg |
Systemic exposure dose (SED) | A × 1000 mg/kg × C/100 × DAp/100/bw | 1.78 | mg/kg bw/day |
Product Categories | Conc. | Surface | Total * Systemic Exposure Dose (SED) mg/kg bw/d | NOAEL ** | MoS |
---|---|---|---|---|---|
UV cream | 6% | whole body | 1.78 | 67.9 | 38 |
UV aerosolized spray | 6% | whole body | 1.89 | 67.9 | 36 |
UV pump spray | 6% | whole body | 1.78 | 67.9 | 38 |
UV face cream | 6% | face | 0.15 | 67.9 | 447 |
UV hand cream | 6% | hand | 0.21 | 67.9 | 317 |
Non-UV *** | 0.50% | whole body | 0.12 | 67.9 | 585 |
Lipstick | 6% | lips | 0.05 | 67.9 | 1257 |
Parameter | Value | Source |
---|---|---|
Animal PoD | NOAEL = 67.9 mg/kg bw/day | SCCS opinion (2021) [2] |
Overall AF | AF = 100 | ECHA R.8 guidance, SCCS opinion [6] |
Fue | 1% or 0.01 | Hayden et al. (1997); Sarveiya et al. (2004) [20,21] |
24 h creatinine | 0.02 g/kg bw/day | HBM4EU default from Aylward et al. (2009) [22] |
Study | Sampling Period | N/Sex | Age Range | Sample | Chemical | LOD (%>LOD) | P50 | P75 | P95 (RCR) | Max |
---|---|---|---|---|---|---|---|---|---|---|
Frederiksen et al. (2013) Denmark | September 2011–December 2011 | 143 M/F | 6–11 | Morning | BP-3 | 0.07 (97.0%) | 2.00 | 6.30 | 33.00 (0.1) | 408.00 |
154 F | 31–52 | Morning | BP-3 | 0.07 (98.0%) | 4.40 | 15.00 | 392.00 (1.15) | 2139.00 | ||
Dewalque et al. (2014) Belgium | January 2013–April 2013 | 123 M | 2–75 | Spot | BP-3 | 0.20 (82.1%) | 0.60 | 2.00 | 28.80 (0.08) | 414.20 |
138 F | 1–85 | Spot | BP-3 | 0.20 (83.3%) | 1.30 | 4.40 | 33.30 (0.1) | 141.30 | ||
Adoamnei et al. (2018) Spain | October 2010–November 2011 | 215 M | 18–23 | Morning | BP-3 | 0.20 (65.6%) | 0.96 | 4.60 | 16.30 (0.05) | NA |
BP-1 | 0.10 (97.2%) | 1.60 | 3.10 | 9.90 (0.03) | NA |
Current SCCS Approach | HBM Approach | |
---|---|---|
Dose estimation | Modeled/estimated | Measured, real-world conditions |
Exposure pathways | Dermal exposure | Provides data on total exposure from all exposure pathways |
Temporality | No time lag; can be used in a predictive approach | Time lag between exposure estimate and risk assessment; only retrospective; cannot be used in a prospective approach |
Product specificity | Calculations per product type, combining several conservative parameters in a deterministic assessment may lead to overestimation | No product-specific data: aggregate exposure modeling needed to identify relative contribution of a product to the overall exposure |
Consideration for toxicokinetic aspects | Generally uses in vitro studies for dermal absorption and historic animal studies for PoD and applies an AF to correct for animal–human differences | Considers biotransformation and elimination of the substance in humans, but requires appropriate timing of sampling |
Conclusion of risk assessment for BP-3 | Exposure at the intended use levels exceeds safe dose for whole-body cream and spray but not face or hand cream | Exposure exceeds safe dose in highly exposed individuals |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rousselle, C.; Meslin, M.; Berman, T.; Woutersen, M.; Bil, W.; Wildeman, J.; Chaudhry, Q. Using Human Biomonitoring Data to Support Risk Assessment of Cosmetic Ingredients—A Case Study of Benzophenone-3. Toxics 2022, 10, 96. https://doi.org/10.3390/toxics10020096
Rousselle C, Meslin M, Berman T, Woutersen M, Bil W, Wildeman J, Chaudhry Q. Using Human Biomonitoring Data to Support Risk Assessment of Cosmetic Ingredients—A Case Study of Benzophenone-3. Toxics. 2022; 10(2):96. https://doi.org/10.3390/toxics10020096
Chicago/Turabian StyleRousselle, Christophe, Matthieu Meslin, Tamar Berman, Marjolijn Woutersen, Wieneke Bil, Jenna Wildeman, and Qasim Chaudhry. 2022. "Using Human Biomonitoring Data to Support Risk Assessment of Cosmetic Ingredients—A Case Study of Benzophenone-3" Toxics 10, no. 2: 96. https://doi.org/10.3390/toxics10020096
APA StyleRousselle, C., Meslin, M., Berman, T., Woutersen, M., Bil, W., Wildeman, J., & Chaudhry, Q. (2022). Using Human Biomonitoring Data to Support Risk Assessment of Cosmetic Ingredients—A Case Study of Benzophenone-3. Toxics, 10(2), 96. https://doi.org/10.3390/toxics10020096