Nanoparticled Titanium Dioxide to Remediate Crude Oil Exposure. An In Vivo Approach in Dicentrarchus labrax
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation and Characterization of NPs
2.3. In Vivo Exposure
2.4. DNA Primary Damage
2.5. Statistical Analysis
3. Results
3.1. n-TiO2 Powder Characterization
3.2. In Vivo Exposure
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossi, S. The destruction of the ‘animal forests’ in the oceans: Towards an over-simplification of the benthic ecosystems. Ocean Coast. Manag. 2013, 84, 77–85. [Google Scholar] [CrossRef]
- Pasquevich, M.; Dreon, M.; Rivera, J.G.; Boucard, C.V.; Heras, H. Effect of crude oil petroleum hydrocarbons on protein expression of the prawn Macrobrachium borellii. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2013, 157, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, L.C.C.; Delunardo, F.A.C.; Simões, L.N.; Paulino, M.G.; Vargas, T.S.; Fernandes, M.N.; Scherer, R.; Chippari-Gomes, A.R. Water-soluble fraction of petroleum induces genotoxicity and morphological effects in fat snook (Centropomus parallelus). Ecotoxicol. Environ. Saf. 2017, 144, 275–282. [Google Scholar] [CrossRef]
- Bayat, A.; Aghamiri, S.F.; Moheb, A.; Vakili-Nezhaad, G.R. Oil Spill Cleanup from Sea Water by Sorbent Materials. Chem. Eng. Technol. 2005, 28, 1525–1528. [Google Scholar] [CrossRef]
- Bolognesi, C.; Perrone, E.; Roggieri, P.; Sciutto, A. Bioindicators in monitoring long term genotoxic impact of oil spill: Haven case study. Mar. Environ. Res. 2006, 62, S287–S291. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, C.C.; Edoziuno, F.O.; Orakwe, L.C. Environmental Nano-remediation in Nigeria: A Review of its potentials. Alger. J. Eng. Technol. 2020, 3, 43–57. [Google Scholar]
- Kuppusamy, S.; Thavamani, P.; Venkateswarlu, K.; Lee, Y.B.; Naidu, R.; Megharaj, M. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions. Chemosphere 2016, 168, 944–968. [Google Scholar] [CrossRef]
- Lei, C.; Sun, Y.; Khan, E.; Chen, S.; Tsang, D.C.; Graham, N.J.; Ok, Y.S.; Yang, X.; Lin, D.; Feng, Y.; et al. Removal of chlorinated organic solvents from hydraulic fracturing wastewater by bare and entrapped nanoscale zero-valent iron. Chemosphere 2018, 196, 9–17. [Google Scholar] [CrossRef]
- Hanna, S.K.; Miller, R.J.; Lenihan, H.S. Deposition of carbon nanotubes by a marine suspension feeder revealed by chemical and isotopic tracers. J. Hazard. Mater. 2014, 279, 32–37. [Google Scholar] [CrossRef]
- Callaghan, N.; MacCormack, T.J. Ecophysiological perspectives on engineered nanomaterial toxicity in fish and crustaceans. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017, 193, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Ogunkunle, C.O.; Odulaja, D.A.; Akande, F.O.; Varun, M.; Vishwakarma, V.; Fatoba, P.O. Cadmium toxicity in cowpea plant: Effect of foliar intervention of nano-TiO2 on tissue Cd bioaccumulation, stress enzymes and potential dietary health risk. J. Biotechnol. 2020, 310, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Guidi, P.; Bernardeschi, M.; Palumbo, M.; Genovese, M.; Scarcelli, V.; Fiorati, A.; Riva, L.; Punta, C.; Corsi, I.; Frenzilli, G. Suitability of a Cellulose-Based Nanomaterial for the Remediation of Heavy Metal Contaminated Freshwaters: A Case-Study Showing the Recovery of Cadmium Induced DNA Integrity Loss, Cell Proliferation Increase, Nuclear Morphology and Chromosomal Alterations on Dreissena polymorpha. Nanomaterials 2020, 10, 1837. [Google Scholar]
- Dhasmana, A.; Jamal, Q.M.S.; Mir, S.S.; Bhatt, M.L.B.; Rahman, Q.; Gupta, R.; Siddiqui, M.H.; Lohani, M. Titanium Dioxide Nanoparticles As Guardian against Environmental Carcinogen Benzo[alpha]Pyrene. PLoS ONE 2014, 9, e107068. [Google Scholar] [CrossRef] [PubMed]
- Bernardeschi, M.; Guidi, P.; Palumbo, M.; Genovese, M.; Alfè, M.; Gargiulo, V.; Lucchesi, P.; Scarcelli, V.; Falleni, A.; Bergami, E.; et al. Suitability of Nanoparticles to Face Benzo(a)pyrene-Induced Genetic and Chromosomal Damage in M. galloprovincialis. An In Vitro Approach. Nanomaterials 2021, 11, 1309. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Kwon, J.Y.; Lee, J.K.; Seo, Y.R. Recent Advances in In Vivo Genotoxicity Testing: Prediction of Carcinogenic Potential Using Comet and Micronucleus Assay in Animal Models. J. Cancer Prev. 2013, 18, 277–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, Y.F.; Kawaguchi, S.; Kamaya, A.; Ohshita, M.; Kabasawa, K.; Iwama, K.; Taniguchi, K.; Tsuda, S. The comet assay with 8 mouse organs: Results with 39 currently used food additives. Mutat. Res. Toxicol. Environ. Mutagen. 2002, 519, 103–119. [Google Scholar] [CrossRef]
- Guidi, P.; Lyons, B.P.; Frenzilli, G. The Comet Assay in Marine Animals. Methods Mol. Biol. 2019, 2031, 275–286. [Google Scholar]
- Bolognesi, C.; Perrone, E.; Roggieri, P.; Pampanin, D.M.; Sciutto, A. Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquat. Toxicol. 2006, 78, S93–S98. [Google Scholar] [CrossRef]
- Della Torre, C.; Balbi, T.; Grassi, G.; Frenzilli, G.; Bernardeschi, M.; Smerilli, A.; Guidi, P.; Canesi, L.; Nigro, M.; Monaci, F.; et al. Titanium dioxide nanoparticles modulate the toxicological response to cadmium in the gills of Mytilus galloprovincialis. J. Hazard. Mater. 2015, 297, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Rial, D.; Vázquez, J.A.; Murado, M.A. Toxicity of spill-treating agents and oil to sea urchin embryos. Sci. Total Environ. 2014, 472, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Kerambrun, E.; Le Floch, S.; Sanchez, W.; Guyon, H.T.; Meziane, T.; Henry, F.; Amara, R. Responses of juvenile sea bass, Dicentrarchus labrax, exposed to acute concentrations of crude oil, as assessed by molecular and physiological biomarkers. Chemosphere 2012, 87, 692–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ASTM. International Standard Guide for Conducting Static Acute Toxicity Tests Starting with Embryos of Four Species of SaltWater Bivalve Molluscs. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/E724-98.htm (accessed on 10 December 2021).
- Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.-C.; Sasaki, Y.F. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 2000, 35, 206–221. [Google Scholar] [CrossRef]
- Hartmann, A. Recommendations for conducting the in vivo alkaline Comet assay. Mutagenesis 2003, 18, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberatori, G.; Grassi, G.; Guidi, P.; Bernardeschi, M.; Fiorati, A.; Scarcelli, V.; Genovese, M.; Faleri, C.; Protano, G.; Frenzilli, G.; et al. Effect-Based Approach to Assess Nanostructured Cellulose Sponge Removal Efficacy of Zinc Ions from Seawater to Prevent Ecological Risks. Nanomaterials 2020, 10, 1283. [Google Scholar] [CrossRef] [PubMed]
- Bilberg, K.; Hovgaard, M.B.; Besenbacher, F.; Baatrup, E. In Vivo Toxicity of Silver Nanoparticles and Silver Ions in Zebrafish (Danio rerio). J. Toxicol. 2011, 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, B.; Whitley, E.M.; Kimura, K.; Crumpton, A.; Palić, D. Titanium dioxide nanoparticles enhance mortality of fish exposed to bacterial pathogens. Environ. Pollut. 2015, 203, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Sosic, B.B.; Simic, R.; Mihaljevic, A. Protection of Animals Used for Scientific Purposes; Hrvatska Veterinarska Komora, Veterinarski Fakultet in Zagrebu: Zagreb, Croatia, 2018. [Google Scholar]
- Nigro, M.; Bernardeschi, M.; Costagliola, D.; Della Torre, C.; Frenzilli, G.; Guidi, P.; Lucchesi, P.; Mottola, F.; Santonastaso, M.; Scarcelli, V.; et al. n-TiO2 and CdCl2 co-exposure to titanium dioxide nanoparticles and cadmium: Genomic, DNA and chromosomal damage evaluation in the marine fish European sea bass (Dicentrarchus labrax). Aquat. Toxicol. 2015, 168, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Kumaravel, T.; Jha, A.N. Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat. Res. Toxicol. Environ. Mutagen. 2006, 605, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Faksness, L.-G.; Brandvik, P.J.; Sydnes, L.K. Composition of the water accommodated fractions as a function of exposure times and temperatures. Mar. Pollut. Bull. 2008, 56, 1746–1754. [Google Scholar] [CrossRef]
- Jiang, Z.; Huang, Y.; Chen, Q.; Zeng, J.; Xu, X. Acute toxicity of crude oil water accommodated fraction on marine copepods: The relative importance of acclimatization temperature and body size. Mar. Environ. Res. 2012, 81, 12–17. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (US) Committee on Oil in the Sea: Inputs, Fates, and Effects. Oil in the sea III: Inputs, Fates, and Effects; National Research Council (US): Washington, DC, USA, 2003; p. 278. [Google Scholar]
- Abbriano, R.; Carranza, M.; Hogle, S.; Levin, R.; Netburn, A.; Seto, K.; Snyder, S.; Franks, P. Deepwater Horizon Oil Spill: A Review of the Planktonic Response. Oceanography 2011, 24, 294–301. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures; IARC Press: Geneva, Switzerland, 2010. [Google Scholar]
- Singer, M.; Aurand, D.; Bragin, G.; Clark, J.; Coelho, G.; Sowby, M.; Tjeerdema, R. Standardization of the Preparation and Quantitation of Water-accommodated Fractions of Petroleum for Toxicity Testing. Mar. Pollut. Bull. 2000, 40, 1007–1016. [Google Scholar] [CrossRef]
- Bessa, F.; Barría, P.; Neto, J.; Frias, J.; Otero, V.; Sobral, P.; Marques, J.C. Occurrence of microplastics in commercial fish from a natural estuarine environment. Mar. Pollut. Bull. 2018, 128, 575–584. [Google Scholar] [CrossRef]
- Gravato, C.A.; Santos, M. Juvenile Sea Bass Liver P450, EROD Induction, and Erythrocytic Genotoxic Responses to PAH and PAH-like Compounds. Ecotoxicol. Environ. Saf. 2002, 51, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, L.; da Silva, D.G.H.; Oliveira, T.Y.K.; da Rosa, J.M.C.; Felício, A.A.; de Almeida, E.A. Biochemical responses in armored catfish (Pterygoplichthys anisitsi) after short-term exposure to diesel oil, pure biodiesel and biodiesel blends. Chemosphere 2013, 93, 311–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delunardo, F.A.C.; da Silva, B.F.; Paulino, M.G.; Fernandes, M.N.; Chippari-Gomes, A.R. Genotoxic and morphological damage in Hippocampus reidi exposed to crude oil. Ecotoxicol. Environ. Saf. 2012, 87, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fedato, R.; Simonato, J.; Martinez, C.; Sofia, S. Genetic damage in the bivalve mollusk Corbicula fluminea induced by the water-soluble fraction of gasoline. Mutat. Res. Toxicol. Environ. Mutagen. 2010, 700, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Bettim, F.L.; Galvan, G.L.; Cestari, M.M.; Yamamoto, C.I.; de Assis, H.C.S. Biochemical responses in freshwater fish after exposure to water-soluble fraction of gasoline. Chemosphere 2016, 144, 1467–1474. [Google Scholar] [CrossRef]
- Carmo, T.L.L.D.; Azevedo, V.C.; De Siqueira, P.R.; Galvão, T.D.; Dos Santos, F.A.; Martinez, C.B.D.R.; Appoloni, C.R.; Fernandes, M.N. Reactive oxygen species and other biochemical and morphological biomarkers in the gills and kidneys of the Neotropical freshwater fish, Prochilodus lineatus, exposed to titanium dioxide (TiO2) nanoparticles. Environ. Sci. Pollut. Res. 2018, 25, 22963–22976. [Google Scholar] [CrossRef] [PubMed]
- Barmo, C.; Ciacci, C.; Canonico, B.; Fabbri, R.; Cortese, K.; Balbi, T.; Marcomini, A.; Pojana, G.; Gallo, G.; Canesi, L. In vivo effects of n-TiO2 on digestive gland and immune function of the marine bivalve Mytilus galloprovincialis. Aquat. Toxicol. 2013, 132–133, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Mahboob, S.; Al-Ghanim, K.A.; Al-Mulhim, N.M.A. Fish Exposure to Sub-Lethal Toxicity of Nano-Titanium Oxide and Changes in Muscular Antioxidant Enzymes and Protective Role of Vitamins C and E in Clarias gariepinus. Int. J. Agric. Biol. 2017, 19, 1505–1510. [Google Scholar] [CrossRef]
- Canesi, L.; Frenzilli, G.; Balbi, T.; Bernardeschi, M.; Ciacci, C.; Corsolini, S.; Della Torre, C.; Fabbri, R.; Faleri, C.; Focardi, S.; et al. Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis. Aquat. Toxicol. 2014, 153, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, K.S.; Kanipandian, N.; Thirumurugan, R. Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Appl. Nanosci. 2015, 6, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, T.; Jautzus, N.; Mehling, S.; Springer, C.; Londong, J. Photocatalytic degradation of hydrocarbons and methylene blue using floatable titanium dioxide catalysts in contaminated water. J. Water Reuse Desalination 2021, 11, 224–235. [Google Scholar] [CrossRef]
- Pedanekar, R.; Shaikh, S.; Rajpure, K. Thin film photocatalysis for environmental remediation: A status review. Curr. Appl. Phys. 2020, 20, 931–952. [Google Scholar] [CrossRef]
- Shukla, R.; Sharma, V.; Pandey, A.K.; Singh, S.; Sultana, S.; Dhawan, A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol. Vitr. 2011, 25, 231–241. [Google Scholar] [CrossRef]
- Clemente, Z.; Castro, V.L.; Moura, M.; Jonsson, C.; Fraceto, L. Toxicity assessment of TiO2 nanoparticles in zebrafish embryos under different exposure conditions. Aquat. Toxicol. 2014, 147, 129–139. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guidi, P.; Bernardeschi, M.; Scarcelli, V.; Lucchesi, P.; Palumbo, M.; Corsi, I.; Frenzilli, G. Nanoparticled Titanium Dioxide to Remediate Crude Oil Exposure. An In Vivo Approach in Dicentrarchus labrax. Toxics 2022, 10, 111. https://doi.org/10.3390/toxics10030111
Guidi P, Bernardeschi M, Scarcelli V, Lucchesi P, Palumbo M, Corsi I, Frenzilli G. Nanoparticled Titanium Dioxide to Remediate Crude Oil Exposure. An In Vivo Approach in Dicentrarchus labrax. Toxics. 2022; 10(3):111. https://doi.org/10.3390/toxics10030111
Chicago/Turabian StyleGuidi, Patrizia, Margherita Bernardeschi, Vittoria Scarcelli, Paolo Lucchesi, Mara Palumbo, Ilaria Corsi, and Giada Frenzilli. 2022. "Nanoparticled Titanium Dioxide to Remediate Crude Oil Exposure. An In Vivo Approach in Dicentrarchus labrax" Toxics 10, no. 3: 111. https://doi.org/10.3390/toxics10030111
APA StyleGuidi, P., Bernardeschi, M., Scarcelli, V., Lucchesi, P., Palumbo, M., Corsi, I., & Frenzilli, G. (2022). Nanoparticled Titanium Dioxide to Remediate Crude Oil Exposure. An In Vivo Approach in Dicentrarchus labrax. Toxics, 10(3), 111. https://doi.org/10.3390/toxics10030111