Effect of Perinatal Dioxin Exposure Originating from Agent Orange on Gaze Behavior in 3-Year-Old Children Living in the Most Dioxin-Contaminated Areas in Vietnam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas and Subjects
2.1.1. Study Areas
2.1.2. Study Subjects
2.2. Dioxin Measurements
2.3. Gaze Behavior Examination
2.4. Neurodevelopmental Assessment
2.5. Statistical Analysis
3. Results
3.1. Effects of Perinatal TCDD and TEQ-PCDD/F Exposure on Gaze Behavior
3.2. Gaze Behavior and Neurodevelopment as Indicated by Bayley III and ASRS Scores
3.3. Gaze Behavior and Head Circumference at Birth and 3 Years of Age
4. Discussion
4.1. Effect of Perinatal Dioxin Exposure on Gaze Behavior in 3-Year-Old Children
4.2. Gaze Behavior and Child Neurodevelopment including Autistic Traits
4.3. Gaze Behavior and Head Circumference
4.4. Sex Differences in Dioxin Effects on Neurodevelopment and Behavior in Children
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nghi, T.N.; Nishijo, M.; Manh, H.D.; Tai, P.T.; Van Luong, H.; Anh, T.H.; Thao, P.N.; Trung, N.V.; Waseda, T.; Nakagawa, H.; et al. Dioxins and Nonortho PCBs in Breast Milk of Vietnamese Mothers Living in the Largest Hot Spot of Dioxin Contamination. Environ. Sci. Technol. 2015, 49, 5732–5742. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Knutsen, H.K.; Barregård, J.A.L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. EFSA J. 2018, 16, e05333. [Google Scholar]
- Fernandez-Salguero, P.M.; Hilbert, D.M.; Rudikoff, S.; Ward, J.M.; Gonzalez, F.J. Arylhydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-pdioxin-induced toxicity. Toxicol. Appl. Pharmacol. 1996, 140, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Mably, T.A.; Moore, R.W.; Goy, R.W.; Peterson, R.E. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol. 1992, 114, 108–117. [Google Scholar] [CrossRef]
- Gray, L.E., Jr.; Kelce, W.R.; Monosson, E.; Ostby, J.S.; Birnbaum, L.S. Exposure to TCDD during development permanently alters reproductive function in male Long Evans rats and hamsters: Reduced ejaculated and epididymal sperm numbers and sex accessory gland weights in offspring with normal androgenic status. Toxicol. Appl. Pharmacol. 1995, 131, 108–118. [Google Scholar] [CrossRef]
- Gray, L.E., Jr.; Wolf, C.; Mann, P.; Ostby, J.S. In utero exposure to low doses of 2,3,7,8-tetrachlorodibenzo-p-dioxin alters reproductive development of female Long Evans hooded rat offspring. Toxicol. Appl. Pharmacol. 1997, 146, 237–244. [Google Scholar] [CrossRef]
- Takeda, T.; Fujii, M.; Hattori, Y.; Yamamoto, M.; Shimazoe, T.; Ishii, Y.; Himeno, M.; Yamada, H. Maternal exposure to dioxin imprints sexual immaturity of the pups through fixing the status of the reduced expression of hypothalamic gonadotropinreleasing hormone. Mol. Pharmacol. 2014, 85, 74–82. [Google Scholar] [CrossRef]
- Takeda, T.; Taura, J.; Hattori, Y.; Ishii, Y.; Yamada, H. Dioxin-induced retardation of development through a reduction in the expression of pituitary hormones and possible involvement of an aryl hydrocarbon receptor in this defect: A comparative study using two strains of mice with different sensitivities to dioxin. Toxicol. Appl. Pharmacol. 2014, 278, 220–229. [Google Scholar]
- Guo, Y.L.; Hsu, P.C.; Hsu, C.C.; Lambert, G.H. Semen quality after prenatal exposure to polychlorinated biphenyls and dibenzofurans. Lancet 2000, 356, 1240–1241. [Google Scholar] [CrossRef]
- Tsukimori, K.; Uchi, H.; Tokunaga, S.; Yasukawa, F.; Chiba, T.; Kajiwara, J.; Hirata, T.; Furue, M. Blood levels of PCDDs, PCDFs, and coplanar PCBs in Yusho mothers and their descendants: Association with fetal Yusho disease. Chemosphere 2013, 90, 1581–1588. [Google Scholar] [CrossRef]
- Mocarelli, P.; Gerthoux, P.M.; Needham, L.L.; Patterson, D.G., Jr.; Limonta, G.; Falbo, R.; Signorini, S.; Bertona, M.; Crespi, C.; Sarto, C.; et al. Perinatal exposure to low doses of dioxin can permanently impair human semen quality. Environ. Health Perspect. 2011, 119, 713–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manh, H.D.; Kido, T.; Okamoto, R.; Xianliang, S.; Viet, N.H.; Nakano, M.; Tai, P.T.; Maruzeni, S.; Nishijo, M.; Nakagawa, H.; et al. The relationship between dioxins and salivary steroid hormones in Vietnamese primiparae. Environ. Health Prev. Med. 2013, 18, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Warner, M.; Rauch, S.; Ames, J.; Mocarelli, P.; Brambilla, P.; Signorini, S.; Eskenazi, B. Prenatal dioxin exposure and thyroid hormone levels in the Seveso second generation study. Environ. Res. 2020, 183, 109280. [Google Scholar] [CrossRef] [PubMed]
- Knickmeyer, R.; Baron-Cohen, S.; Raggatt, P.; Taylor, K. Fetal testosterone, social relationships, and restricted interests in children. J. Child Psychol. Psychiatry 2005, 46, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Auyeung, B.; Knickmeyer, R.; Ashwin, E.; Taylor, K.; Hackett, G.; Baron-Cohen, S. Effects of fetal testosterone on visuospatial ability. Arch. Sex. Behav. 2012, 41, 571–581. [Google Scholar] [CrossRef] [PubMed]
- Auyeung, B.; Baron-Cohen, S.; Ashwin, E.; Knickmeyer, R.; Taylor, K.; Hackett, G. Fetal testosterone and autistic traits. Br. J. Psychol. 2009, 100 Pt 1, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Baron-Cohen, S.; Auyeung, B.; Nørgaard-Pedersen, B.; Hougaard, D.M.; Abdallah, M.W.; Melgaard, L.; Cohen, A.S.; Chakrabarti, B.; Ruta, L.; Lombardo, M.V. Elevated fetal steroidogenic activity in autism. Mol. Psychiatry. 2015, 20, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Silver, M.K.; Meeker, J.D. Chapter 14—Endocrine disruption of developmental pathways and children’s health. In Endocrine Disruption and Human Health, 2nd ed.; Darbre, P.D., Ed.; Elsevier: Berlin/Heidelberg, Germany, 2021; pp. 291–320. [Google Scholar]
- Pham, N.T.; Nishijo, M.; Pham, T.T.; Tran, N.N.; Le, V.Q.; Tran, H.A.; Phan, H.; Nishino, Y.; Nishijo, H. Perinatal dioxin exposure and neurodevelopment of 2-year-old Vietnamese children in the most contaminated area from Agent Orange in Vietnam. Sci Total Environ. 2019, 678, 217–226. [Google Scholar] [CrossRef]
- Pham, N.T.; Nishijo, M.; Nghiem, T.; Pham, T.T.; Tran, N.N.; Le, V.Q.; Vu, T.H.; Tran, H.A.; Phan, H.; Do, Q.; et al. Effects of perinatal dioxin exposure on neonatal electroencephalography (EEG) activity of the quiet sleep stage in the most contaminated area from Agent Orange in Vietnam. Int. J. Hyg. Environ. Health 2021, 232, 113661. [Google Scholar] [CrossRef]
- Van der Geest, J.N.; Kemner, C.; Verbaten, M.N.; van Engeland, H. Gaze behavior of children with pervasive developmental disorder toward human faces: A fixation time study. J. Child Psychol. Psychiatry 2002, 43, 669–678. [Google Scholar] [CrossRef]
- Rigby, S.N.; Stoesz, B.M.; Jakobson, L.S. Gaze patterns during scene processing in typical adults and adults with autism spectrum disorders. Res. Autism Spectr. Disord. 2016, 25, 24–36. [Google Scholar] [CrossRef] [Green Version]
- Nakano, T.; Tanaka, K.; Endo, Y.; Yamane, Y.; Yamamoto, T.; Nakano, Y.; Ohta, H.; Kato, N.; Kitazawa, S. Atypical gaze patterns in children and adults with autism spectrum disorders dissociated from developmental changes in gaze behaviour. Proc. Biol Sci. 2010, 277, 2935–2943. [Google Scholar] [CrossRef] [Green Version]
- Thao, P.N.; Nishijo, M.; Tai, P.T.; Nghi, T.N.; Quan, L.V.; Anh, T.H.; Vu, P.H.A.; Nishino, Y.; Nishijo, H. Effects of dioxin exposure on gaze behavior in 3-year-old children in Vietnam. Organohalog. Compd. 2018, 80, 125–128. [Google Scholar]
- Fombonne, E.; Rogé, B.; Claverie, J.; Courty, S.; Frémolle, J. Microcephaly and macrocephaly in autism. J. Autism Dev. Disord. 1999, 29, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Gillberg, C.; de Souza, L. Head circumference in autism, Asperger syndrome, and ADHD: A comparative study. Dev. Med. Child Neurol. 2002, 44, 296–300. [Google Scholar] [CrossRef]
- Lainhart, J.E.; Bigler, E.D.; Bocian, M.; Coon, H.; Dinh, E.; Dawson, G.; Deutsch, C.K.; Dunn, M.; Estes, A.; Tager-Flusberg, H.; et al. Head circumference and height in autism: A study by the Collaborative Program of Excellence in Autism. Am. J. Med. Genet. A 2006, 140, 2257–2574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crucitti, J.; Hyde, C.; Enticott, P.G.; Stokes, M.A. Head circumference trends in autism between 0 and 100 months. Autism 2020, 24, 1726–1739. [Google Scholar] [CrossRef]
- The Office of the Vietnam National Steering Committee 33; Hatfield Consultants. Environmental and Human Health As-Sessment of Dioxin Contamination at Bien Hoa Airbase, Viet Nam; Final Report; Hatfield Consultants: North Vancouver, BC, Canada, 2011. [Google Scholar]
- Schecter, A.; Dai, L.C.; Papke, O.; Prange, J.; Constable, J.D.; Matsuda, M.; Thao, V.D.; Piskac, A.L. Recent dioxin contamination from Agent Orange in residents of a southern Vietnam city. J. Occup. Environ. Med. 2001, 43, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Tawara, K.; Honda, R.; Nishijo, M.; Nakagawa, H. Pretreatment procedure of dioxin analysis for a small volume of human breast milk. J. Kanazawa Med. Univ. 2003, 28, 17–25. [Google Scholar]
- Van den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef] [Green Version]
- Tai, P.T.; Nishijo, M.; Kido, T.; Nakagawa, H.; Maruzeni, S.; Naganuma, R.; Anh, N.T.; Morikawa, Y.; Luong, H.V.; Anh, T.H.; et al. Dioxin concentrations in breast milk of Vietnamese nursing mothers: A survey four decades after the herbicide spraying. Environ. Sci. Technol. 2011, 45, 6625–6632. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.N.; Nishijo, M.; Pham, T.T.; Vu, H.T.; Tran, N.N.; Tran, A.H.; Do, Q.; Takiguchi, T.; Nishino, Y.; Nishijo, H. Dioxin exposure and sexual dimorphism of gaze behavior in prepubertal Vietnamese children living in Da Nang, a hot spot for dioxin contamination. Sci. Total Environ. 2020, 749, 141083. [Google Scholar] [CrossRef] [PubMed]
- Nishijo, M.; Pham, T.T.; Nguyen, A.T.; Tran, N.N.; Nakagawa, H.; Hoang, L.V.; Tran, A.H.; Morikawa, Y.; Ho, M.D.; Kido, T.; et al. 2,3,7,8-Tetrachlorodibenzo-p-dioxin in breast milk increases autistic traits of 3-year-old children in Vietnam. Mol. Psychiatry 2014, 19, 1220–1226. [Google Scholar] [CrossRef] [PubMed]
- Tai, P.T.; Nishijo, M.; Anh, N.T.; Maruzeni, S.; Nakagawa, H.; Van Luong, H.; Anh, T.H.; Honda, R.; Kido, T.; Nishijo, H. Dioxin exposure in breast milk and infant neurodevelopment in Vietnam. Occup. Environ. Med. 2013, 70, 656–662. [Google Scholar] [CrossRef] [PubMed]
- Doi, H.; Nishitani, S.; Fujisawa, T.X.; Nagai, T.; Kakeyama, M.; Maeda, T.; Shinohara, K. Prenatal exposure to a polychlorinated biphenyl (PCB) congener influences fixation duration on biological motion at 4-months-old: A preliminary study. PLoS ONE 2013, 8, e59196. [Google Scholar] [CrossRef] [Green Version]
- Nowack, N.; Wittsiepe, J.; Kasper-Sonnenberg, M.; Wilhelm, M.; Schölmerich, A. Influence of Low-Level Prenatal Exposure to PCDD/Fs and PCBs on Empathizing, Systemizing and Autistic Traits: Results from the Duisburg Birth Cohort Study. PLoS ONE 2015, 10, e0129906. [Google Scholar] [CrossRef] [PubMed]
- Boraston, Z.; Blakemore, S.J. The application of eye-tracking technology in the study of autism. J. Physiol. 2007, 581, 893–898. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Dudbridge, F.; Kent, L.; Wheelwright, S.; Hill-Cawthorne, G.; Allison, C.; Banerjee-Basu, S.; Baron-Cohen, S. Genes related to sex steroids, neural growth, and social-emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Res. 2009, 2, 157–177. [Google Scholar] [CrossRef]
- Crider, A.; Thakkar, R.; Ahmed, A.O.; Pillai, A. Dysregulation of estrogen receptor beta (ERβ), aromatase (CYP19A1), and ER co-activators in the middle frontal gyrus of autism spectrum disorder subjects. Mol. Autism 2014, 5, 46. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, C.; Bui, Q.M.; Huggins, R.; Loesch, D.Z. Growth in stature and head circumference in high-functioning autism and Asperger disorder during the first 3 years of life. Dev. Psychopathol. 2006, 18, 381–393. [Google Scholar] [CrossRef] [Green Version]
- Tai, P.T.; Nishijo, M.; Nghi, T.N.; Nakagawa, H.; Van Luong, H.; Anh, T.H.; Nishijo, H. Effects of Perinatal Dioxin Exposure on Development of Children during the First 3 Years of Life. J. Pediatr. 2016, 175, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.N.; Pham, T.T.; Ozawa, K.; Nishijo, M.; Nguyen, A.T.; Tran, T.Q.; Hoang, L.V.; Tran, A.H.; Phan, V.H.; Nakai, A.; et al. Impacts of Perinatal Dioxin Exposure on Motor Coordination and Higher Cognitive Development in Vietnamese Preschool Children: A Five-Year Follow-Up. PLoS ONE 2016, 11, e0147655. [Google Scholar] [CrossRef] [PubMed]
- Pham The, T.; Pham Ngoc, T.; Hoang Van, T.; Nishijo, M.; Tran Ngoc, N.; Vu Thi, H.; Hoang Van, L.; Tran Hai, A.; Nishino, Y.; Nishijo, H. Effects of perinatal dioxin exposure on learning abilities of 8-year-old children in Vietnam. Int. J. Hyg. Environ. Health 2020, 223, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Pham-The, T.; Nishijo, M.; Pham-Ngoc, T.; Vu-Thi, H.; Tran-Ngoc, N.; Tran-Hai, A.; Hoang-Van, L.; Nishino, Y.; Nishijo, H. Effects of prenatal dioxin exposure on children behaviors at 8 years of age of age. In Proceedings of the 39th International Symposium on Halogenated Persistent Organic Pollutants—Dioxin in 2019, Kyoto, Japan, 25–30 August 2019; Organizing Committee of the Symposium: Kyoto, Japan, 2019; p. 517. [Google Scholar]
- Vu, H.T.; Nishijo, M.; Pham, T.N.; Pham-The, T.; Hoanh, L.V.; Tran, A.H.; Tran, N.N.; Nishino, Y.; Do, Q.; Nishijo, H. Effects of perinatal dioxin exposure on mirror neuron activity in 9-year-old children living in a hot spot of dioxin contamination in Vietnam. Neuropsychologia 2021, 161, 108001. [Google Scholar] [CrossRef]
- Ames, J.; Warner, M.; Siracusa, C.; Signorini, S.; Brambilla, P.; Mocarelli, P.; Eskenazi, B. Prenatal dioxin exposure and neuropsychological functioning in the Seveso Second Generation Health Study. Int. J. Hyg. Environ. Health 2019, 222, 425–433. [Google Scholar] [CrossRef]
- Vreugdenhil, H.J.; Slijper, F.M.; Mulder, P.G.; Weisglas-Kuperus, N. Effects of perinatal exposure to PCBs and dioxins on play behavior in Dutch children at school age. Environ. Health Perspect. 2002, 110, A593–A598. [Google Scholar] [CrossRef] [Green Version]
- Winneke, G.; Ranft, U.; Wittsiepe, J.; Kasper-Sonnenberg, M.; Fürst, P.; Krämer, U.; Seitner, G.; Wilhelm, M. Behavioral sexual dimorphism in school-age children and early developmental exposure to dioxins and PCBs: A follow-up study of the Duisburg Cohort. Environ. Health Perspect. 2014, 122, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Poland, A.; Knutson, J.C. 2,3,7,8-tetrachlorodibenzo-p-dioxin and related halogenated aromatic hydrocarbons: Examination of the mechanism of toxicity. Annu. Rev. Pharmacol. Toxicol. 1982, 22, 517–554. [Google Scholar] [CrossRef]
- Peterson, R.E.; Theobald, H.M.; Kimmel, G.L. Developmental and reproductive toxicity of dioxins and related compounds: Cross-species comparisons. Crit. Rev. Toxicol. 1993, 23, 283–335. [Google Scholar] [CrossRef]
- Takeda, T.; Matsumoto, Y.; Koga, T.; Mutoh, J.; Nishimura, Y.; Shimazoe, T.; Ishii, Y.; Ishida, T.; Yamada, H. Maternal exposure to dioxin disrupts gonadotropin production in fetal rats and imprints defects in sexual behavior. J. Pharmacol. Exp. Ther. 2009, 329, 1091–1099. [Google Scholar] [CrossRef] [Green Version]
- Hattori, Y.; Takeda, T.; Nakamura, A.; Nishida, K.; Shioji, Y.; Fukumitsu, H.; Yamada, H.; Ishii, Y. The aryl hydrocarbon receptor is indispensable for dioxin-induced defects in sexually-dimorphic behaviors due to the reduction in fetal steroidogenesis of the pituitary-gonadal axis in rats. Biochem. Pharmacol. 2018, 154, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Furue, M.; Ishii, Y.; Tsukimori, K.; Tsuji, G. Aryl Hydrocarbon receptor and dioxin-related health hazards-lessons from Yusho. Int. J. Mol. Sci. 2021, 22, 708. [Google Scholar] [CrossRef] [PubMed]
- Dobs, K.; Bülthoff, I.; Schultz, J. Use and Usefulness of Dynamic Face Stimuli for Face Perception Studies-a Review of Behavioral Findings and Methodology. Front. Psychol. 2018, 9, 1355. [Google Scholar] [CrossRef] [PubMed]
Year | Age | Performance | N | Examinations |
---|---|---|---|---|
2012 | at birth | Recruitment at the hospital | 224 | Body sizes |
1 month | Maternal breast milk collection | 210 | Body sizes | |
2014 | 2 years | Follow-up | 174 * | Body sizes and neurodevelopment |
2015 | 3 years | Follow-up | 193 | Body sizes and neurodevelopment |
153 | Gaze behavior | |||
142 | For present analysis |
All Cohort | Total (N = 142) | Boys (N = 80) | Girls (N = 62) | ||
---|---|---|---|---|---|
Characteristics | Units | Mean (SD), N (%) | Mean (SD), N (%) | Mean (SD), N (%) | Mean (SD), N (%) |
Mothers | |||||
Age | years | 28.5 (4.6) | 28.5 (4.8) | 28.9 (4.9) | 27.9 (4.6) |
Education | years | 11.3 (3.1) | 11.3 (3.2) | 11.4 (3.3) | 11.2 (3.3) |
Income (per a month) | million VND | 9.8 (11.3) | 10.2 (13.5) | 9.6 (5.2) | 11.0 (19.6) |
Parity (% primipara) | N (%) | 82 (37.6) | 55 (38.7) | 29 (36.3) | 26 (41.9) |
Alcohol drinking | N (%) | 10 (4.7) | 7 (4.9) | 6 (7.5) | 1 (1.6) |
Family smoking | N (%) | 140 (65.4) | 95 (66.9) | 50 (62.5) | 45 (72.6) |
Children | |||||
Gender (rate of boys) | N (%) | 116 (53.2) | 80 (56.3) | ||
Gestational period | weeks | 39.0 (1.2) | 39.0 (1.3) | 39.0 (1.3) | 39.0 (1.2) |
At birth | |||||
Weight | g | 3297 (411) | 3272 (416) | 3353 (425) | 3168 (383) |
Z-score | 0.01 (0.82) | −0.05 (0.82) | 0.014 (0.83) | −0.13 (0.80) | |
Length | cm | 49.9 (2.2) | 49.8 (2.1) | 50.1 (2.0) | 49.5 (2.2) |
Z-score | 0.18 (1.19) | −0.04 (2.48) | 0.12 (1.04) | −0.25 (3.58) | |
Head circumference | cm | 34.2 (3.4) | 34.0 (3.8) | 34.5 (3.2) | 33.4 (1.8) |
Z-score | 0.12 (2.10) | 0.03 (2.18) | 0.34 (2.54) | −0.38 (1.51) | |
BMI | 13.3 (1.4) | 13.2 (1.4) | 13.3(1.4) | 13.0 (1.3) | |
Z-score | −0.09 (1.03) | −0.15 (1.04) | −0.05 (1.08) | −0.27 (0.99) | |
At 3 years old | |||||
Age | month | 37.5 (0.7) | 37.5 (0.8) | 37.6 (0.6) | |
Weight # | kg | 15.2 (2.7) | 15.5 (2.8) | 14.7 (2.6) | |
Z-score | 0.41 (1.35) | 0.52 (1.47) | 0.26 (1.17) | ||
Height # | cm | 95.1 (3.5) | 95.3 (3.5) | 94.9 (3.5) | |
Z-score | −0.32 (0.92) | −0.38 (0.94) | −0.23 (0.89) | ||
Head circumference # | cm | 48.5 (1.5) | 49.0 (1.4) | 47.7 (1.3) | |
Z-score | −0.48 (0.95) | −0.38 (0.98) | −0.60 (0.91) | ||
BMI # | 16.7 (2.2) | 16.9 (2.2) | 16.2 (2.1) | ||
Z-score | 0.88 (1.65) | 1.07 (1.75) | 0.63 (1.50) | ||
Breast milk | |||||
TCDD | GM (GSD) | 2.3 (2.3) | 2.4 (2.3) | 2.4 (2.2) | 2.4 (2.5) |
TEQ-PCDD/Fs | GM (GSD) | 9.1 (1.7) | 9.4 (1.7) | 9.5 (1.7) | 9.3 (1.7) |
Low Exposure Group | High Exposure Group | ||||||||
---|---|---|---|---|---|---|---|---|---|
N | Mean | adj. Mean | 95% CI (Lower, Upper) | N | Mean | adj. Mean | 95% CI (Lower, Upper) | p-Value | |
Boys | |||||||||
TCDD | 62 | 48.0 | 46.6 | (40.8, 52.4) | 18 | 46.6 | 51.3 | (39.8, 62.8) | 0.483 |
TEQ-PCDDs/Fs | 60 | 45.7 | 45.6 | (39.7, 51.5) | 20 | 53.7 | 53.8 | (43.2, 64.5) | 0.194 |
Girls | |||||||||
TCDD | 45 | 43.1 | 43.4 | (35.8, 50.9) | 17 | 26.3 | 25.5 | (12.7, 38.3) | 0.025 |
TEQ-PCDDs/Fs | 46 | 40.1 | 40.2 | (32.5, 47.8) | 16 | 33.8 | 33.6 | (20.1, 47.0) | 0.410 |
Boys | Girls | |||||||
---|---|---|---|---|---|---|---|---|
N | β | 95% CI (Lower, Upper) | p-Value | N | β | 95% CI (Lower, Upper) | p-Value | |
Bayley III | ||||||||
Congnition | 80 | −0.081 | (−0.381, 0.220) | 0.594 | 59 | 0.137 | (−0.140, 0.360) | 0.380 |
Language (composite) | 77 | 0.010 | (−0.208, 0.226) | 0.934 | 56 | 0.293 | (−0.011, 0.653) | 0.058 |
Receptive language | 79 | 0.021 | (−0.203, 0.242) | 0.864 | 57 | 0.245 | (−0.019, 0.616) | 0.064 |
Expressive language | 77 | 0.043 | (−0.171, 0.247) | 0.717 | 56 | 0.236 | (−0.083, 0.599) | 0.135 |
Motor (composite) | 78 | 0.166 | (−0.063, 0.350) | 0.170 | 60 | 0.091 | (−0.234, 0.448) | 0.533 |
Fine Motor | 80 | 0.113 | (−0.110, 0.309) | 0.348 | 61 | −0.079 | (−0.439, 0.258) | 0.604 |
Gross Motor | 78 | 0.159 | (−0.069, 0.350) | 0.184 | 60 | 0.195 | (−0.111, 0.556) | 0.186 |
ASRS | ||||||||
Social communication | 80 | −0.132 | (−0.327, 0.092) | 0.267 | 62 | −0.290 | (−0.637, −0.019) | 0.038 |
Unusual behavior | 80 | 0.022 | (−0.193, 0.233) | 0.854 | 62 | 0.027 | (−0.287, 0.347) | 0.852 |
Total score | 80 | −0.066 | (−0.263, 0.147) | 0.574 | 62 | −0.193 | (−0.547, 0.101) | 0.173 |
DSM-score | 80 | −0.031 | (−0.234, 0.179) | 0.792 | 62 | −0.224 | (−0.574, 0.060) | 0.110 |
Boys | Girls | |||||||
---|---|---|---|---|---|---|---|---|
N | β | 95% CI (Lower, Upper) | p-Value | N | β | 95% CI (Lower, Upper) | p-Value | |
At birth | ||||||||
Weight | 80 | 0.236 | (−0.030, 0.473) | 0.085 | 62 | −0.115 | (−0.415, 0.173) | 0.412 |
Lenght | 80 | 0.210 | (−0.118, 1.074) | 0.115 | 62 | −0.185 | (−0.334, 0.070) | 0.195 |
BMI | 80 | 0.097 | (−0.139, 0.317) | 0.438 | 62 | 0.113 | (−0.194, 0.439) | 0.440 |
Head circuference | 80 | 0.075 | (−0.129, 0.252) | 0.522 | 61 | 0.051 | (−0.366, 0.517) | 0.733 |
At 3 years of age | ||||||||
Weight | 79 | 0.026 | (−0.181, 0.227) | 0.824 | 61 | −0.110 | (−0.495, 0.232) | 0.472 |
Height | 79 | 0.024 | (−0.217, 0.262) | 0.852 | 61 | −0.292 | (−0.612, −0.013) | 0.041 |
BMI | 79 | 0.029 | (−0.179, 0.232) | 0.799 | 61 | 0.037 | (−0.316, 0.400) | 0.814 |
Head circuference | 79 | 0.027 | (−0.192, 0.242) | 0.817 | 61 | 0.230 | (−0.071, 0.568) | 0.125 |
Head circumference * | 78 | 0.038 | (−0.197, 0.267) | 0.765 | 61 | 0.281 | (0.004, 0.605) | 0.047 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, T.N.; Nishijo, M.; Pham-The, T.; Tran, N.N.; Vu, H.T.; Tran, A.H.; Tran, T.V.; Nishino, Y.; Nishijo, H. Effect of Perinatal Dioxin Exposure Originating from Agent Orange on Gaze Behavior in 3-Year-Old Children Living in the Most Dioxin-Contaminated Areas in Vietnam. Toxics 2022, 10, 150. https://doi.org/10.3390/toxics10040150
Pham TN, Nishijo M, Pham-The T, Tran NN, Vu HT, Tran AH, Tran TV, Nishino Y, Nishijo H. Effect of Perinatal Dioxin Exposure Originating from Agent Orange on Gaze Behavior in 3-Year-Old Children Living in the Most Dioxin-Contaminated Areas in Vietnam. Toxics. 2022; 10(4):150. https://doi.org/10.3390/toxics10040150
Chicago/Turabian StylePham, Thao Ngoc, Muneko Nishijo, Tai Pham-The, Nghi Ngoc Tran, Hoa Thi Vu, Anh Hai Tran, Tien Viet Tran, Yoshikazu Nishino, and Hisao Nishijo. 2022. "Effect of Perinatal Dioxin Exposure Originating from Agent Orange on Gaze Behavior in 3-Year-Old Children Living in the Most Dioxin-Contaminated Areas in Vietnam" Toxics 10, no. 4: 150. https://doi.org/10.3390/toxics10040150
APA StylePham, T. N., Nishijo, M., Pham-The, T., Tran, N. N., Vu, H. T., Tran, A. H., Tran, T. V., Nishino, Y., & Nishijo, H. (2022). Effect of Perinatal Dioxin Exposure Originating from Agent Orange on Gaze Behavior in 3-Year-Old Children Living in the Most Dioxin-Contaminated Areas in Vietnam. Toxics, 10(4), 150. https://doi.org/10.3390/toxics10040150