A Forensic Diagnostic Algorithm for Drug-Related Deaths: A Case Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Histological Analysis
2.3. Toxicological Analysis
2.3.1. EMIT® Immunoassay Qualitative Screening Test
2.3.2. Alcohol Level Determination: Head Space-Gas Chromatography (HS-GC)
2.3.3. Amphetamines, Cocaine, Methadone and Opioids
2.3.4. Tetra-Hydro-Cannabinol (THC)
2.3.5. Gamma-Hydroxybutyrate Acid (GHB)
2.3.6. GC–MS Instrumentation
2.3.7. LC-MS/MS for 120 New Psychoactive Substances (NPS), Benzodiazepines and Antidepressants
3. Results
3.1. Case 1
3.2. Case 2
3.3. Case 3
3.4. Case 4
3.5. Case 5
3.6. Case 6
3.7. Case 7
3.8. Case 8
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, G.G.; Cadwallader, A.B.; Fligner, C.L.; Gilson, T.P.; Hall, E.R.; Harshbarger, K.E.; Kronstrand, R.; Mallak, C.T.; McLemore, J.L.; Middleberg, R.A.; et al. Position paper: Recommendations for the investigation, diagnosis, and certification of deaths related to opioid and other drugs. Am. J. Forensic Med. Pathol. 2020, 41, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Delcher, C.; Maldonado-Molina, M.M.; Thogmartin, J.R.; Goldberger, B.A. Manners of death in drug-related fatalities in Florida. J. Forensic Sci. 2016, 61, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, K.; Argo, A.; Borroni, C.; Catalano, D.; Dell’Acqua, L.; Farè, F.; Procaccianti, P.; Roda, G.; Gambaro, V. Development and validation of a reliable method for studying the distribution pattern for opiates metabolites in brain. J. Pharm. Biomed. Anal. 2013, 73, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byard, R.W.; Butzbach, D.M. Issues in the interpretation of postmortem toxicology. Forensic Sci. Med. Pathol. 2012, 8, 205–207. [Google Scholar] [CrossRef] [Green Version]
- Walsh, E.E.; Shoff, E.N.; Elizabeth Zaney, M.; Hime, G.W.; Garavan, F.; Boland, D.M. To test or not to test?: The value of toxicology in a delayed overdose death. J. Forensic Sci. 2019, 64, 314–317. [Google Scholar] [CrossRef] [Green Version]
- Gruszecki, A.C.; Booth, J.; Davis, G.G. The predictive value of history and scene investigation for toxicology results in a medical examiner population. Am. J. Forensic Med. Pathol. 2007, 28, 103–106. [Google Scholar] [CrossRef]
- Davis, G.G. National Association of Medical Examiners and American College of Medical Toxicology Expert Panel on Evaluating and Reporting Opioid Deaths. National Association of Medical Examiners position paper: Recommendations for the investigation, diagnosis, and certification of deaths related to opioid drugs. Acad. Forensic Pathol. 2013, 3, 77–83. [Google Scholar]
- European Monitoring Centre for Drugs and Drug Addiction. An Analysis of Post-Mortem Toxicology Practices in Drug-Related Death Cases in Europe; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-9497-408-2. Available online: https://www.emcdda.europa.eu/system/files/attachments/13346/Analysis%20of%20practices%20of%20PM%20toxicology%20of%20DRD%20in%20Europe_EMCDDA%20Technical%20report.pdf (accessed on 11 March 2022). [CrossRef]
- Suspected Drug Deaths in Scotland: April to June 2021. Available online: https://www.gov.scot/publications/suspected-drug-deaths-scotland-april-june-2021 (accessed on 14 September 2021).
- Forensic Toxicology Subcommittee|NIST. Created 27 June 2014, Updated 1 March 2022. Available online: https://www.nist.gov/osac/forensic-toxicology-subcommittee (accessed on 11 March 2022).
- Osborn, M.; Howard, M.; Morley, S.; McCarthy, H. Guidelines on Autopsy Practice: Autopsy When Drugs or Poisoning May Be Involved; The Royal College of Pathologists: London, UK, 2018. [Google Scholar]
- Bertol, E.; Vaiano, F.; Furlanetto, S.; Mari, F. Cross-reactivities and structure–reactivity relationships of six benzodiazepines to EMIT® immunoassay. J. Pharm. Biomed. Anal. 2013, 84, 168–172. [Google Scholar] [CrossRef]
- Bertol, E.; Di Milia, M.G.; Fioravanti, A.; Mari, F.; Palumbo, D.; Pascali, J.P.; Vaiano, F. Proactive drugs in DFSA cases: Toxicological findings in an eight-years study. Forensic Sci. Int. 2018, 291, 207–215. [Google Scholar] [CrossRef]
- Argo, A.; Spatola, G.F.; Zerbo, S.; Sortino, C.; Lanzarone, A.; Uzzo, M.L.; Karch, S.B. A possible biomarker for methadone related deaths. J. Forensic Leg. Med. 2017, 49, 8–14. [Google Scholar] [CrossRef]
- Busardò, F.P.; Bertol, E.; Vaiano, F.; Baglio, G.; Montana, A.; Barbera, N.; Zaami, S.; Romano, G. Post mortem concentrations of endogenous gamma hydroxybutyric acid (GHB) and in vitro formation in stored blood and urine samples. Forensic Sci. Int. 2014, 243, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Vaiano, F.; Bertol, E.; Mineo, M.; Pietrosemoli, L.; Rubicondo, J.; Supuran, C.T.; Carta, F. Development of a New LC-MS/MS Screening Method for Detection of 120 NPS and 43 Drugs in Blood. Separations 2021, 8, 221. [Google Scholar] [CrossRef]
- Ceelen, M.; Dorn, T.; Buster, M.; Stomp, J.; Zweipfenning, P.; Das, K. Post-mortem toxicological urine screening in cause of death determination. Hum. Exp. Toxicol. 2011, 30, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Saukko, P.; Knight, B. Knight’s Forensic Pathology, 4th ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Morgan, D. Opioid drug death investigations. Acad. Forensic Pathol. 2017, 7, 50–59. [Google Scholar] [CrossRef]
- Usui, A.; Kawasumi, Y.; Usui, K.; Ishizuka, Y.; Takahashi, K.; Funayama, M.; Saito, H. Postmortem computed tomographic analysis of death caused by oral drug intoxication. Tohoku J. Exp. Med. 2017, 242, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Winklhofer, S.; Surer, E.; Ampanozi, G.; Ruder, T.; Stolzmann, P.; Elliott, M.; Oestreich, A.; Kraemer, T.; Thali, M.; Hatem, A.; et al. Post-mortem whole body computed tomography of opioid (heroin and methadone) fatalities: Frequent findings and comparison to autopsy. Eur. Radiol. 2014, 24, 1276–1282. [Google Scholar] [CrossRef] [Green Version]
- Burke, M.P.; O’Donnell, C.; Bassed, R. The use of postmortem computed tomography in the diagnosis of intentional medication overdose. Forensic Sci. Med. Pathol. 2012, 8, 218–236. [Google Scholar] [CrossRef]
- Thomas, S.A.; Perekopskiy, D.; Kiyatkin, E.A. Cocaine added to heroin fails to affect heroin-induced brain hypoxia. Brain. Res. 2020, 1746, 147008. [Google Scholar] [CrossRef]
- Dettmeyer, R.B. Forensic Histopathology: Fundamentals and Perspectives, 2nd ed.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Karch, S.B. Drug Abuse Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Dinis-Oliveira, R.J.; Carvalho, F.; Duarte, J.A.; Remião, F.; Marques, A.; Santos, A.; Magalhães, T. Collection of biological samples in forensic toxicology. Toxicol. Mech. Methods 2010, 20, 363–414. [Google Scholar] [CrossRef]
- Skopp, G. Preanalytic aspects in postmortem toxicology. Forensic Sci. Int. 2004, 142, 75–100. [Google Scholar] [CrossRef]
- Cook, D.S.; Braithwaite, R.A.; Hale, K.A. Estimating antemortem drug concentrations from postmortem blood samples: The influence of postmortem redistribution. J. Clin. Pathol. 2000, 53, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Cina, S.J.; Collins, K.A.; Goldberger, B.A. Toxicology: What is routine for medicolegal death investigation purposes? Acad. Forensic Pathol. 2011, 1, 28–31. [Google Scholar] [CrossRef]
- Yarema, M.C.; Becker, C.E. Key concepts in postmortem drug redistribution. Clin. Toxicol. 2005, 43, 235–241. [Google Scholar] [CrossRef]
- Gill, J.R. From death to death certificate: What do the dead say? J. Med. Toxicol. 2017, 13, 111–116. [Google Scholar] [CrossRef] [Green Version]
- Skopp, G. Postmortem toxicology. Forensic Sci. Med. Pathol. 2010, 6, 314–325. [Google Scholar] [CrossRef]
- Drummer, O.H. Postmortem toxicology of drugs of abuse. Forensic Sci. Int. 2004, 142, 101–113. [Google Scholar] [CrossRef]
- de Campos, E.G.; da Costa, B.R.B.; dos Santos, F.S.; Monedeiro, F.; Alves, M.N.R.; Santos Junior, W.J.R.; De Martinis, B.S. Alternative matrices in forensic toxicology: A critical review. Forensic Toxicol. 2021, 40, 1–18. [Google Scholar] [CrossRef]
- Jones, J.D.; Mogali, S.; Comer, S.D. Polydrug abuse: A review of opioid and benzodiazepine combination use. Drug Alcohol. Depend. 2012, 125, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Afzal, A.; Kiyatkin, E.A. Interactions of benzodiazepines with heroin: Respiratory depression, temperature effects, and behavior. Neuropharmacology 2019, 158, 107677. [Google Scholar] [CrossRef]
- Darke, S.; Duflou, J. The toxicology of heroin-related death: Estimating survival times. Addiction 2016, 111, 1607–1613. [Google Scholar] [CrossRef]
- Polettini, A.; Poloni, V.; Groppi, A.; Stramesi, C.; Vignali, C.; Politi, L.; Montagna, M. The role of cocaine in heroin-related deaths: Hypothesis on the interaction between heroin and cocaine. Forensic Sci. Int. 2005, 153, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Coffin, P.O.; Galea, S.; Ahern, J.; Leon, A.C.; Vlahov, D.; Tardiff, K. Opiates, cocaine and alcohol combinations in accidental drug overdose deaths in New York City, 1990–1998. Addiction 2003, 98, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Di Nunno, N.; Esposito, M.; Argo, A.; Salerno, M.; Sessa, F. Pharmacogenetics and Forensic Toxicology: A New Step towards a Multidisciplinary Approach. Toxics 2021, 9, 292. [Google Scholar] [CrossRef] [PubMed]
Age Gender | History | Death Scene Investigation | External Examination/Imaging | Autopsy | Histopathology | Cause and Manner of Death | |
---|---|---|---|---|---|---|---|
Case 1 | 52 y/o M | Opioid and cocaine abuse | Drugs paraphernalia in bedroom, lormetazepam vials in trash can | Multiple abrasions in the face; postmortem CT negative for trauma | Liquid reddish material in airways | Hemorrhagic pulmonary edema, stasis, acute emphysema | Central respiratory failure due to benzodiazepines and opioids assumption Accidental |
Case 2 | 41 y/o M | Illicit drugs assumption; recently discharged from recovery | Two empty syringes under the car seat | Two injection marks in upper arm | Petachial hemorrhages in pleura | Hemorrhagic pulmonary edema, chronic and acute emphysema, recent injection marks | Respiratory failure due to co-assumption of cocaine and opioids Accidental |
Case 3 | 66 y/o F | Previous suicide attempts; alcohol and antidepressants misuse | A plastic bag covering decedent face; alcohol and benzodiazepines nearby her bed; no signs of intrusion | No signs of trauma and or aggression | Liquid reddish material in airways | Hemorrhagic pulmonary edema, stasis, acute emphysema | Suffocation asphyxiaafterassumptionofalcoholandbenzodiazepines Suicide |
Case 4 | 21 M | Nothing relevant | Injection marks, white foam in the mouth | No evidence of trauma | Stasis | Pulmonary and brain edema | Respiratory failure due to acute opioid intoxication with cocaine co-assumption |
Case 5 | 16 y/o F | Illicit drugs assummpiton,followed by local social services | Methadone vials in the house | Injection marks | No evidence of trauma, diffuse stasis | Pulmonary edema, acute emphysema, myocardial fibrosis | Respiratory failure due to a methadone overdose powered by acute heroin intoxication |
Case 6 | 54 y/o M | Inmatefollowed by local social services.Previous suicide attempts and heroin, cocaine, and methadone assumption | Found in his cell with no life signs | Cyanosis | No evidence of trauma, diffuse stasis, hemorrhagic petechiae | Pulmonary edema | Respiratory failure due to a methadone overdose Accidental |
Case 7 | 53 y/o M | Illicit drugs and alcohol abuse | Drug paraphernalia (syringes, drug vials) | Injection marks | Stasis, pulmonary amd cardiac petechiae | Pulmonary and brain edema | Cardiorespiratory arrest due to acute cocaine intoxication (endovenous use) and recent assumption of opioids |
Case 8 | 25 y/o M | Heroin and anxiolytics occasional use | Found in his bed with vomit on the pillow | Hand nails cyanosis, injection marks in the forearm | Foam and blood after lung compression, petechiae | Stasis, pulmonary and brain edema, blood in injection marks | Respiratory failure due to acute opioid intoxication (endovenous use) |
Urine Screening | Blood Alcohol g/L | Blood ng/mL | Urine (GS-MS) ng/mL | Liver (GS-MS) ng/g | Brain (GC-MS) ng/g | Other (Hair, Bile, Gastric Content) | |
---|---|---|---|---|---|---|---|
Case 1 | Opioids Cocaine Benzodiazepines | 0.44 | GS-MS Eme 57.41 Coca 48.73 CE 7.91 BE 1321.48 COD 1321.48 MF 126.83 6-AM 0.44 LC-MS/MS Lormetazepam 59.60 | GS-MS Eme 106.01 Coca 6931.43 CE 372.48 BE 17,231.58 COD 66.99 MF 1606.14 6-AM 2.54 LC-MS/MS Lormetazepam 12,424.60 | N.D. | N.D | N.D |
Case 2 | Opioids Cocaine THC | Negative | GS-MS EME 63.18 Coca 78.92 CE 0.91 BE 4457.18 | GS-MS EME 129.68 Coca 9417.27 CE N.D BE 40,385.31 COD 130.79 MF 3490.51 6-AM 17.10 THC COOH 203.23 | N.D. | N.D. | N.D. |
Case 3 | Benzodiazepines | 1.01 | LC-MS/MS Lormetazepam 56.73 Lorazepam 5.80 Alprazolam 85.94 | LC-MS/MS Lormetazepam 1309.28 Lorazepam 157.81 Alprazolam 300.65 | N.D. | N.D. | Gastric content(ng/mL) LC-MS/MS Lormetazepam 280.85 Lorazepam 6.08 Alprazolam 117.06 |
Case 4 | Opioids Cocaine Cannabis | Negative | GS-MS Coca n.d. BE 489 COD 7 MF 25 6-AM 3 | GS-MS Coca 3304 BE 14,227 COD 427 MF 9860 6-AM 3 THC 35 | GS-MS Coca 24 BE 609 COD 14 MF 144 6-AM 2 | GS-MS Coca 40 BE 154 COD 16 MF 54 6-AM 5 | Bile (ng/mL) GS-MS Coca 3961 BE 594 COD 146 MF 6147 6-AM 21 |
Case 5 | Opioids Methadone Cocaine Cannabis | Negative | GS-MS EDDP 81.46 MT 79.5 Coca Neg CE Neg BE 314 COD Neg MF 18 6-AM Neg | GS-MS EDDP 1412 MT 1550 Coca 3611 CE Neg BE 34 778 COD 279 MF 9928 6-AM 968 | GS-MS EDDP 108.56 MT 117.56 Coca Neg CE Neg BE 532 COD Neg MF 103 6-AM Neg | GS-MS EDD 71.2 MT 57.1 Coca Neg CE Neg BE 216 COD Neg MF 55 6-AM Neg | N.D. |
Case 6 | Methadone | Negative | GS-MS EDDP 94 MT 1015 | GS-MS EDDP 3778 MT 3415 | GS-MS EDDP 122 MT 231 | GS-MS EDDP 30 MT 630 | Bile (ng/mL) GS-MS MDDP 1168 MT 614 Hair (ng/mg) GS-MS EDDP 0.133 MET 1.711 COD 0.093 MF 1.337 6-AM 0.605 |
Case 7 | Opioids Cocaine | Negative | GS-MS Coca 18 BE 378 MF 230 | GS-MS Coca 1319 BE 35513 MF2500 | GS-MS Coca 25 BE 485 MF 800 | GS-MS Coca 69 BE 71 MF 220 | Bile (ng/mL) GS-MS Coca 3192 BE 1320 MF 12,000 Hair (ng/mg) GS-MS Coca 11.18 BE 2.48 MF 0.21 |
Case 8 | Opioids Benzodiazepines | 0.44 | GS-MS COD Neg MF 106 6-AM 14 LC-MS/MS Diazepam 0.81 Delorazepam 0.40 | GS-MS COD 146 MF 74.838 6-AM 57 | GS-MS COD Neg MF 195 6-AM Neg | GS-MS COD Neg MF 64 6-AM 42 | Bile (ng/mL) GS-MS COD 25 MF 44.396 6-AM 276 Hair (ng/mg) GS-MS COD 16 MF 219 6-AM 66 |
Matrix | Use | Advantages | Limitations |
---|---|---|---|
Blood | First choice specimen to detect, quantify and interpret substances/drugs concentratios | Best choice for acute intoxication or poisoning and quantitative data | Affected by postmortem redistribution after death, delayed collection after drug intake, putrefaction, patient diseases. No always easy to be collected (invasive). Short detection window |
Urine | Standard method for screening qualitative test and general analysis | Information regarding antemortem assumption. Free of proteins and lipids, helpful for immunoassys tests. Not affected by postmortem redistribution | Wide detection window.No strong correlation between concentration and pharmacological consequences |
Body organs (liver, brain, kidney) | Helpful to interpret blood concentration of the drug | Useful in case of lipophilic drugs and extended post-mortem interval. Kidney specimen could be helpful in case of heavy metal poisoning | Part of the liver (left lobe) may be more affected by post–mortem redistribution from the stomach. Brain concentration may change based on the region |
Bile | Screening, to study drugs undergoing hepatic matabolism | Depot for substances and metabolites with biliary excretion | Influenced by hepatic metabolism and hepatic diseases |
Gastric Content | Suspicious or autopsy evidence of oral drug assumption | An estimation of the amount of drug or poison present in the gastric volume is helpful to decide whether an analytical finding is rather more consistent with an overdose or a therapeutic dosage taken just prior to death | Small detection window, not useful in case of alternative route of administration |
Hair | Chronic and previous use of substances evaluation (drug testing in workplace, crimes facilitated by drugs, abstinence monitoring, child custody) | Easy and non invasive collection of the sample, easy transportation and storage (no need of refrigeration), no time dependent (useful also in decomposed bodies), no risk of infection during collection, tolerance | No information regarding recent use and acute intoxication. Quantitative confirmatory techniques needed (GC-MS or LC-MS) |
Oral fluid | Useful for drug intake monitoring and recent drug exposure (drivers) | Simple, safe, easy and non invasive collection, drug levels correspond to plasma levels. Helpful for recent assumption of psychoactive drugs | Influenced by age, gender, smoking or oral substance assumption, oral cavity environment. Small volume, very sensitive methods needed |
Sweat | Used to test drug assumption in recovery centers, drug-addicted in rehab, in workplace | Non invasive collection, cumulative registration of substances, easy storage. | Not sensitive for many substances (such as THC), much lower sensitivity and specificity than urine for EMIT |
Vitreous humor | Similar to blood and urine testing | Useful if traditional matrices are not available or inappropriate (burned or decomposed bodies). Less interference with environment and microbial activity (alcohol detection) | Less sensitive and specific for lipophilic substances. Drugs can reach vitreous humor only in free form, not if are bound to proteins |
Breast milk | Used to investigate mother’s drug exposure and infant exposure to damaging substances | Short detection window | The detection rate of the substances depends on the characteristics (pKa, lipid solubility, pH, bound to protein) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Argo, A.; Zerbo, S.; Buscemi, R.; Trignano, C.; Bertol, E.; Albano, G.D.; Vaiano, F. A Forensic Diagnostic Algorithm for Drug-Related Deaths: A Case Series. Toxics 2022, 10, 152. https://doi.org/10.3390/toxics10040152
Argo A, Zerbo S, Buscemi R, Trignano C, Bertol E, Albano GD, Vaiano F. A Forensic Diagnostic Algorithm for Drug-Related Deaths: A Case Series. Toxics. 2022; 10(4):152. https://doi.org/10.3390/toxics10040152
Chicago/Turabian StyleArgo, Antonina, Stefania Zerbo, Roberto Buscemi, Claudia Trignano, Elisabetta Bertol, Giuseppe Davide Albano, and Fabio Vaiano. 2022. "A Forensic Diagnostic Algorithm for Drug-Related Deaths: A Case Series" Toxics 10, no. 4: 152. https://doi.org/10.3390/toxics10040152
APA StyleArgo, A., Zerbo, S., Buscemi, R., Trignano, C., Bertol, E., Albano, G. D., & Vaiano, F. (2022). A Forensic Diagnostic Algorithm for Drug-Related Deaths: A Case Series. Toxics, 10(4), 152. https://doi.org/10.3390/toxics10040152