Impact of Car Traffic on Metal Accumulation in Soils and Plants Growing Close to a Motorway (Eastern Slovakia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Characteristics
2.3. Soil Analyses
2.4. Plant Analyses
2.5. Data Analysis
3. Results
3.1. Profile Distribution of Trace Elements in Soils
3.2. Level of Soil Contamination
3.3. Concentration of Trace Elements in Tested Plant Species
3.4. Transfer of Trace Elements in the Soil-Plant System
4. Discussion
4.1. Concentration of Trace Elements in Soils
4.2. Concentration of Trace Elements in Tested Plant Species
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasnaoui, S.E.; Fahr, M.; Keller, C.; Levard, C.; Angeletti, B.; Chaurand, P.; Triqui, Z.E.A.; Guedira, A.; Rhazi, L.; Colin, F.; et al. Screening of Native Plants Growing on a Pb/Zn Mining Area in Eastern Morocco: Perspectives for Phytoremediation. Plants 2020, 9, 1458. [Google Scholar] [CrossRef] [PubMed]
- Fröhlichová, A.; Száková, J.; Najmanová, J.; Tlustoš, P. An assessment of the risk of element contamination of urban and industrial areas using Taraxacum sect. Ruderalia as a bioindicator. Environ. Monit. Assess. 2018, 190, 150. [Google Scholar] [CrossRef] [PubMed]
- Nabulo, G.; Oryem-Origa, H.; Diamond, M. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environ. Res. 2006, 101, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xia, X.; Zhao, Y.; Zhang, P. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard. Mater. 2010, 181, 640–646. [Google Scholar] [CrossRef]
- Bignal, K.L.; Ashmore, M.R.; Headley, A.D.; Stewart, K.; Weigert, K. Ecological impacts of air pollution from road transport on local vegetation. Appl. Geochem. 2007, 22, 1265–1271. [Google Scholar] [CrossRef]
- Jankowski, K.; Ciepiela, G.A.; Jankowska, J.; Szulc, W.; Kolczarek, R.; Sosnowski, J.; Wiśniewska-Kadżajan, B.; Malinowska, E.; Radzka, E.; Czeluściński, W.; et al. Content of lead and cadmium in aboveground plant organs of grasses growing on the areas adjacent to route of big traffic. Environ. Sci. Pollut. Res. 2015, 22, 978–987. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Erum, S. Integrated assessment of heavy metals pollution along motorway M-2. Soil Environ. 2010, 29, 110–116. [Google Scholar]
- Radziemska, M.; Fronczyk, J. Level and Contamination Assessment of Soil along an Expressway in an Ecologically Valuable Area in Central Poland. Int. J. Environ. Res. Public Health 2015, 12, 13372–13387. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Chen, Z.; Xu, S.; Zhang, J.; Wang, L.; Bi, C.; Teng, J. Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ. Pollut. 2008, 156, 251–260. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Lei, K.; Huang, J.; Zhai, Y. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J. Hazard. Mater. 2009, 161, 1058–1062. [Google Scholar] [CrossRef]
- Rodriguez-Flores, M.; Rodriguez-Castellon, E. Lead and cadmium levels in soil and plants near highways and their correlation with traffic density. Environ. Pollut. 1982, 4, 281–290. [Google Scholar] [CrossRef]
- Mazur, Z.; Radziemska, M.; Maczuga, O.; Makuch, A. Heavy metal concentrations in soil and moss surroundings railroad. Fresen. Environ. Bull. 2013, 22, 955–961. [Google Scholar]
- Cortufo, M.F.; De Santo, A.V.; Alfani, A.; Bartoli, G.; De Cristofaro, A. Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. Woods. Environ. Pollut. 1995, 89, 81–87. [Google Scholar]
- Kváčová, M.; Ash, C.; Borůvka, L.; Pavlů, L.; Nikodem, A.; Němeček, K.; Tejnecký, V.; Drábek, O. Contents of Potentially Toxic Elements in Forest Soils of the Jizera Mountains Region. Environ. Model. Assess. 2015, 20, 183–195. [Google Scholar] [CrossRef]
- Feng, W.; Guo, Z.; Xiao, X.; Peng, C.; Shi, L.; Ran, H.; Xu, W. Atmospheric Deposition as a Source of Cadmium and Lead to Soil-Rice System and Associated Risk Assessment. Ecotoxicol. Environ. Saf. 2019, 180, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Ma, J.; Zhang, R.; Li, P.; Gao, M.; Sun, C.; Weng, L.; Chen, Y.; Yan, S.; Li, Y. Uptake of atmospherically deposited cadmium by leaves of vegetables: Subcellular localization by NanoSIMS and potential risks. J. Hazard. Mater. 2022, 431, 128624. [Google Scholar] [CrossRef]
- Rolka, E.; Żołnowski, A.C.; Kozłowska, K.A. Assessment of the content of trace elements in soils and roadside vegetation in the vicinity of some gasoline stations in Olsztyn (Poland). J. Elem. 2020, 25, 549–563. [Google Scholar]
- Rolka, E.; Żołnowski, A.C.; Sadowska, M.M. Assessment of heavy metal content in soils adjacent to the DK16-route in Olsztyn (North-Eastern Poland). Pol. J. Environ. Stud. 2020, 29, 4303–4311. [Google Scholar] [CrossRef]
- Lin, C.C.; Chen, S.J.; Huang, K.L.; Hwang, W.I.; Chang-Chien, G.P.; Lin, W.Y. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ. Sci. Technol. 2005, 39, 8113–8122. [Google Scholar] [CrossRef]
- Adachi, K.; Tainosho, Y. Characterization of heavy metal particles embedded in tire dust. Environ. Int. 2004, 30, 1009–1017. [Google Scholar] [CrossRef]
- Banerjee, A.D.K. Heavy Metal Levels and Solid Phase Speciation in Street Dusts of Delhi, India. Environ. Pollut. 2003, 123, 95–105. [Google Scholar] [CrossRef]
- Kummer, U.; Pacyna, J.; Pacyna, E.; Friedrich, R. Assessment of heavy metal releases from the use phase of road transport in Europe. Atmos. Environ. 2009, 43, 640–647. [Google Scholar] [CrossRef]
- 362/2010 Coll. Decree of the Ministry of Agriculture, Environment and Regional Development of the Slovak Republic, Which Lays Down Requirements for Fuel Quality and Keeping Operational Records on Fuels. Available online: https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2010/362/vyhlasene_znenie.html (accessed on 29 March 2021).
- Toselli, M.; Schiatti, P.; Ara, D.; Bertacchini, A.; Quartieri, M. The accumulation of copper in soils of the Italian region Emilia-Romagna. Plant Soil Environ. 2009, 55, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Żołnowski, A.; Busse, M.; Zając, P. Response of maize (Zea mays L.) to soil contamination with copper depending on applied contamination neutralizing substances. J. Elem. 2013, 18, 507–520. [Google Scholar] [CrossRef]
- Szczodrowska, A.; Kulbat, K.; Smolińska, B.; Leszczyńska, J. Accumulation of metal ions in selected plants from Brassicaceae and Lamiaceae families. Biotechnol. Food. Sci. 2016, 80, 29–42. [Google Scholar]
- Ma, J.; Chen, Y.; Weng, L.; Peng, H.; Liao, Z.; Li, Y. Source Identification of Heavy Metals in Surface Paddy Soils Using Accumulated Elemental Ratios Coupled with MLR. Int. J. Environ. Res. Public Health 2021, 18, 2295. [Google Scholar] [CrossRef]
- Liang, Z.; Ding, Q.; Wei, D.; Li, J.; Chen, S.; Ma, Y. Major controlling factors and predictions for cadmium transfer from the soil into spinach plants. Ecotoxicol. Environ. Saf. 2013, 93, 180–185. [Google Scholar] [CrossRef]
- Haiyan, W.; Stuanes, A.O. Heavy metal pollution in air-water-soil-plant system of Zhuzhou city, Hunan province, China. Water Air Soil Pollut. 2003, 147, 79–107. [Google Scholar] [CrossRef]
- Vaverková, M.; Adamcová, D. Heavy Metals Uptake by Select Plant Species in the Landfill Area of Štěpánovice, Czech Republic. Pol. J. Environ. Stud. 2014, 23, 2265–2269. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Sperdouli, I.; Adamakis, I.-D.S.; Dobrikova, A.; Apostolova, E.; Han´c, A.; Moustakas, M. Excess Zinc Supply Reduces Cadmium Uptake and Mitigates Cadmium Toxicity Effects on Chloroplast Structure, Oxidative Stress, and Photosystem II Photochemical Efficiency in Salvia sclarea Plants. Toxics 2022, 10, 36. [Google Scholar] [CrossRef]
- Fu, S.; We, C.; Xia, Y.; Li, L.; Wu, D. Heavy metals uptake and transport by native wild plants: Implications for phytoremediation and restoration. Environ. Earth Sci. 2019, 78, 103. [Google Scholar] [CrossRef]
- Malinowska, E.; Jankowski, K.; Wiśniewska-Kadżajan, B.; Sosnowski, J.; Kolczarek, R.; Jankowska, J.; Ciepiela, G.A. Content of Zinc and Copper in Selected Plants Growing Along a Motorway. Bull. Environ. Contam. Toxicol. 2015, 95, 638–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihál, I.; Marušák, R.; Barna, M. Dynamics of Fagus sylvatica L. Necrotization under Different Pollutant Load Conditions. Pol. J. Environ. Stud. 2019, 28, 2755–2763. [Google Scholar] [CrossRef]
- Fazekašová, D.; Boguská, Z.; Fazekaš, J.; Škvareninová, J.; Chovancová, J. Contamination of vegetation growing on soils and substrates in the unhygienic region of Central Spiš (Slovakia) polluted by heavy metals. J. Environ. Biol. 2016, 37, 1335–1340. [Google Scholar] [PubMed]
- Sezgin, N.; Ozcan, H.K.; Demir, G.; Nemlioglu, S.; Bayat, C. Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environ. Int. 2004, 29, 979–985. [Google Scholar] [CrossRef]
- Tabande, L.; Taheri, M. Evaluation of Exposure to Heavy Metals Cu, Zn, Cd and Pb in Vegetables Grown in the Olericultures of Zanjan Province’s Fields. Iran. J. Health Environ. 2016, 9, 41–56. [Google Scholar]
- Uhrinová, K.; Flórián, K.; Matherny, M. Statistical Evaluation and the Nature of the Deposited Dust of the Residential Agglomerations of the City Košice. Chem. Pap. 2005, 59, 230–234. [Google Scholar]
- Dzubaj, A.; Bačkor, M.; Tomko, J.; Peli, E.; Tuba, Z. Tolerance of the lichen Xanthoria parietina (L.) Th. Fr. to metal stress. Ecotoxicol. Environ. Saf. 2008, 70, 319–326. [Google Scholar] [CrossRef]
- Zlatník, A. Přehled skupin typů geobiocenů původne lesních a křovinných v ČSSR. Zprávy Geogr. Ust. ČSAV 1976, 13, 55–64. (In Czech) [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Re-Sources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports no. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Čurlík, J.; Šefčík, P. Geochemical Atlas of the Slovak Republic, Part V: Soils; State Geological Institute of Dionýz Štúr: Bratislava, Slovakia, 2012; Available online: http://apl.geology.sk/atlaspody (accessed on 10 May 2021).
- Hakanson, L. An ecological risk index for aquatic pollution control. A Sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Javed, T.; Ahmad, N.; Mashiatullah, A. Heavy metals contamination and ecological risk assessment in surface sediments of Namal Lake. Pakistan. Pol. J. Environ. Stud. 2018, 27, 675–688. [Google Scholar] [CrossRef]
- Rastmanesh, F.; Moore, F.; Kopaei, M.K.; Keshavarzi, B.; Behrouz, M. Heavy metal enrichment of soil in Sarcheshmeh copper complex, Kerman, Iran. Environ. Earth Sci. 2011, 62, 329–336. [Google Scholar] [CrossRef]
- Oliva, S.R.; Espinosa, A.J.F. Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchem, J. 2007, 86, 131–139. [Google Scholar] [CrossRef]
- Baker, A.J.M. Accumulators and excluders: Strategies in the response of plants to heavy metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Markert, B. Instrumental Multielement Analysis in Plant Materials—A Modern Method in Environmental Chemistry and Tropical Systems Research; (Série 8); CETEM/CNPq: Rio de Janeiro, Brazil, 1995. [Google Scholar]
- Lindsay, W.L. Chemical Equilibria in Soils; John Wiley and Sons Ltd.: New York, NY, USA, 1979. [Google Scholar]
- Mertens, J.; Smolders, E. Zinc. In Heavy Metals in Soils; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 465–493. [Google Scholar]
- Cleven, R.F.M.J.; Janus, J.A.; Annema, J.A.; Slooff, W. Integrated Criteria Document Zinc; Report no. 710401028; National Institute of Public Health and Environmental Protection: Bilthoven, The Netherlands, 1993. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin, Germany, 2007. [Google Scholar]
- Violante, A.; Cozzolino, V.; Perelomov, L.; Caporale, A.G.; Pigna, M. Mobility and bioavailability of heavy metals and metalloids in soil environments. J. Soil Sci. Plant. Nutr. 2010, 10, 268–292. [Google Scholar] [CrossRef] [Green Version]
- Żołnowski, A.C.; Wyszkowski, M.; Rolka, E.; Sawicka, M. Mineral materials as a neutralizing agent used on soil contaminated with copper. Materials 2021, 14, 6830. [Google Scholar] [CrossRef]
- Rodriguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. Evaluation of Cu and Zn Content in Soils and their Interaction with Some Physicochemical Soil Properties. IOP Conf. Ser. Earth Environ. Sci. 2019, 221, 012048. [Google Scholar] [CrossRef]
- Bohn, H.L.; McNeal, B.L.; O’Connor, G.A. Soil Chemistry; John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
- Naidu, R.; Smith, E.; Owens, G.; Bhattacharya, P. Managing Arsenic in the Environment: From Soil to Human Health; CSIRO Publishing: Clayton, Australia, 2006. [Google Scholar]
- Oorts, K. Copper. In Heavy Metals in Soils; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 367–394. [Google Scholar]
- Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.H.; Orgiazzi, A.; Jones, A.; Fernández-Ugalde, O.; Borrelli, P.; Montanarella, L. Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Sci. Total Environ. 2018, 636, 282–298. [Google Scholar] [CrossRef]
- Grigalavičienė, I.; Rutkovienė, V.; Marozas, V. The Accumulation of Heavy Metals Pb, Cu and Cd at Roadside Forest Soil. Pol. J. Environ. Stud. 2005, 14, 109–115. [Google Scholar]
- Kluge, B.; Wessolek, G. Heavy metal pattern and solute concentration in soils along the oldest highway of the world—The AVUS Autobahn. Environ. Monit. Assess. 2012, 184, 6469–6481. [Google Scholar] [CrossRef]
- Wieczorek, J.; Wieczorek, Z.; Bieniaszewski, T. Cadmium and lead content in cereal grains and soil from cropland adjacent to roadways. Pol. J. Environ. Stud. 2005, 14, 535–540. [Google Scholar]
- Elnazer, A.A.; Salman, S.A.; Seleem, E.M.; El Ella, E.M.A. Assessment of some heavy metals pollution and bioavailability in roadside soil of Alexandria-Marsa Matruh Highway, Egypt. Int. J. Ecol. 2015, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Golia, E.E.; Papadimou, S.G.; Cavalaris, C.; Tsiropoulos, N.G. Level of Contamination Assessment of Potentially Toxic Elements in the Urban Soils of Volos City (Central Greece). Sustainability 2021, 13, 2029. [Google Scholar] [CrossRef]
- Souffit, G.D.; Mohamadou, L.L.; Guembou Shouop, C.J.; Beyala Ateba, J.F. Saïdou-. Assessment of trace elements pollution and their potential health risks in the cobalt-nickel bearing areas of Lomié, East Cameroon. Environ. Monit. Assess. 2022, 194, 127. [Google Scholar] [CrossRef] [PubMed]
- Bowen, H.J.M. Environmental Chemistry of the Elements; Academic Press: London, UK, 1979. [Google Scholar]
- Maňkovská, B. Geochemical Atlas of the Slovakia, Part II: Forest Biomass; Geological Service of the Slovak Republic: Bratislava, Slovakia, 1996. Available online: https://www.geology.sk/geoinfoportal/mapovy-portal/atlasy/geochemicky-atlas-slovenska/ (accessed on 18 May 2021).
- Eisler, R. Zinc hazards to plants and animals with emphasis on fishery and wildlife resources. In Ecological Issues and Environmental Impact Assessment; Cheremisinoff, P.N., Ed.; Gulf Publishing Company: Houston, TX, USA, 1977; pp. 443–537. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: London, UK, 1995. [Google Scholar]
- Kloke, A.; Sauerbeck, D.R.; Vetter, H. The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In Changing Metal Cycles and Human Health: Report of the Dahlem Workshop on Changing Metal Cycles and Human Health; Nriagu, J.O., Ed.; Springer: Berlin, Germany, 1984; pp. 113–141. [Google Scholar]
- Macnicol, R.D.; Beckett, P.H.T. Critical tissue concentrations of potentially toxic elements. Plant Soil 1985, 85, 107–129. [Google Scholar] [CrossRef]
- Baker, D.E.; Senef, J.P. Copper. In Heavy Metals in Soils; Alloway, B.J., Ed.; Blackie Academic and Professional: London, UK, 1995; pp. 179–205. [Google Scholar]
- Brooks, R.R. Serpentine and Its Vegetation: A Multi-Disciplinary Approach; Dioscorides Press: Portland, OR, USA, 1987. [Google Scholar]
- Dalenberg, J.W.; van Driel, W. Contribution of atmospheric deposition to heavy-metal concentrations in field crops. Neth. J. Agric. Sci. 1990, 38, 369–379. [Google Scholar] [CrossRef]
- Nadgórska-Socha, A.; Ptasiński, B.; Kita, A. Heavy metal bioaccumulation and antioxidative responses in Cardaminopsis arenosa and Plantago lanceolata leaves from metalliferous and non-metalliferous sites: A field study. Ecotoxicology 2013, 22, 1422–1434. [Google Scholar] [CrossRef] [Green Version]
- Davies, B.E.; White, H.M. Trace elements in vegetables grown on soils contaminated by base metal mining. J. Plant. Nutr. 1981, 3, 387–396. [Google Scholar] [CrossRef]
- Kuklová, M.; Hniličková, H.; Hnilička, F.; Pivková, I.; Kukla, J. Toxic elements and energy accumulation in topsoil and plants of spruce ecosystems. Plant Soil Environ. 2017, 63, 402–408. [Google Scholar]
Forest Ecosystem | A Querci-Fageta Typica | B Querci-Fageta Typica |
---|---|---|
Forest vegetation grade | 3rd, oak-beech | |
Edaphic-hydric order | leading | wetted (semi-permeable) |
Edaphic-trophic order | mesotrophic | |
Soil unit | Eutric Kato-skeletic Cambisol | Eutric Kato-stagnic Luvisol |
Parent rock | sandy-loam gravels of slope sediments | loess loam deposited on the fluvial sandy-gravels |
Altitude (m) | 203 | 201 |
Exposure | NE | – |
Slope | 10–15° | 0° |
Geographical coordinates | 48°34′18.39″ N 21°14′45.20” E | 48°33′22.98″ N 21°13′53.83″ E |
Forest Ecosystem | Soil Unit | Motorway Distance (m) | Samples of | Number of Sampled | |||
---|---|---|---|---|---|---|---|
Surface Humus | Mineral Layers | Plant Species | Plots (100 m2) | Plant Leaves | |||
A Querci-Fageta Typica | Katoskeletic Cambisol | 30 | 3 | 9 | 5 | 3 | 15 × 50 |
B Querci-Fageta Typica | Katostagnic Luvisol | 30 | 3 | 9 | 5 | 3 | 15 × 50 |
Forest Ecosystem | Soil | Soil Layer | Humus | Skeleton | Fine Earth Fraction [mm] | pH | C/N | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
<0.002 | <0.01 | 0.01– 0.063 | 0.063– 0.1 | 0.1–2 | ||||||||
[cm] | [%] | H2O | KCl | |||||||||
A Querci-Fageta Typica | Eutric Kato-skeletic Cambisol | 0–5 | 5.97 | 10–20 | 11.60 | 39.23 | 38.41 | 2.36 | 19.91 | 6.68 | 6.35 | 11.5 |
10–20 | 3.85 | 11.97 | 38.46 | 38.50 | 3.70 | 19.28 | 5.71 | 5.21 | 12.8 | |||
25–35 | 3.84 | 30–40 | 11.64 | 37.40 | 37.45 | 4.56 | 20.53 | 5.13 | 4.41 | 10.1 | ||
B Querci-Fageta Typica | Eutric Kato-stagnic Luvisol | 0–5 | 5.60 | − a | 9.32 | 39.91 | 51.14 | 5.47 | 3.42 | 5.90 | 5.71 | 11.1 |
10–20 | 2.31 | − a | 12.79 | 43.16 | 51.54 | 2.04 | 3.20 | 5.63 | 4.85 | 11.6 | ||
25–35 | 1.18 | + b | 12.49 | 41.64 | 51.29 | 4.96 | 1.97 | 5.53 | 4.54 | 11.7 |
Forest Ecosystem | Soil Unit | Plant Species | Zn | Cu | Pb | Cd |
---|---|---|---|---|---|---|
(mg kg−1 ± SD) | ||||||
A Querci-Fageta Typica | Eutric Kato-skeletic Cambisol | Anthriscus sylvestris | 29.69 ± 8.3 b | 7.18 ± 1.01 b | 1.38 ± 0.24 b | 0.136 ± 0.04 b |
Fraxinus excelsior | 13.33 ± 3.7 b | 6.40 ± 0.90 b | 2.32 ± 0.41 a | 0.041 ± 0.01 a | ||
Quercus cerris | 41.53 ± 11.7 a | 8.86 ± 1.24 a | 3.50 ± 0.61 a | 0.041 ± 0.01 a | ||
Quercus rubra | 39.68 ± 11.2 a | 6.23 ± 0.87 a | 3.58 ± 0.63 a | 0.044 ± 0.01 a | ||
Negundo aceroides | 26.65 ± 7.5 a | 4.38 ± 0.61 b | 3.70 ± 0.65 a | 0.036 ± 0.02 b | ||
Average | 30.18 ± 8.48 a | 6.61 ± 1.62 a | 2.90 ± 1.01 a | 0.059 ± 0.04 a | ||
B Querci-Fageta Typica | Eutric Kato-stagnic Luvisol | Anthriscus sylvestris | 57.19 ± 16.1 a | 16.50 ± 2.29 a | 2.41 ± 0.42 a | 0.297 ± 0.10 a |
Fraxinus excelsior | 29.41 ± 8.3 a | 9.67 ± 1.35 a | 1.80 ± 0.32 a | 0.041 ± 0.01 a | ||
Quercus cerris | 31.67 ± 8.9 a | 9.27 ± 1.30 a | 3.53 ± 0.63 a | 0.061 ± 0.02 a | ||
Quercus rubra | 40.13 ± 11.3 a | 5.39 ± 0.75 a | 3.06 ± 0.54 a | 0.083 ± 0.03 a | ||
Negundo aceroides | 27.21 ± 7.6 a | 6.19 ± 0.87 a | 3.55 ± 0.60 a | 0.106 ± 0.04 a | ||
Average | 37.12 ± 10.44a | 9.49 ± 4.38a | 2.87 ± 0.76a | 0.117 ± 0.10a | ||
Reference values according to Markert [49] | 50 | 10 | 1 | 0.05 |
Forest Ecosystem | Soil Unit | Risk Element | Anthriscus sylvestris | Fraxinus excelsior | Quercus cerris | Quercus rubra | Negundo aceroides |
---|---|---|---|---|---|---|---|
A Querci-Fageta Typica | Eutric Kato-skeletic Cambisol | Zn | 0.33 ± 0.06 | 0.15 ± 0.02 | 0.46 ± 0.08 | 0.44 ± 0.08 | 0.30 ± 0.05 |
Cu | 0.35 ± 0.02 | 0.32 ± 0.02 | 0.44 ± 0.08 | 0.31 ± 0.02 | 0.22 ± 0.01 | ||
Pb | 0.05 ± 0.01 | 0.08 ± 0.02 | 0.08 ± 0.01 | 0.12 ± 0.01 | 0.12 ± 0.01 | ||
Cd | 0.35 ± 0.01 | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.12 ± 0.01 | 0.09 ± 0.03 | ||
B Querci-Fageta Typica | Eutric Kato-stagnic Luvisol | Zn | 1.07 ± 0.13 | 0.55 ± 0.07 | 0.59 ± 0.07 | 0.75 ± 0.09 | 0.51 ± 0.06 |
Cu | 1.60 ± 0.07 | 0.94 ± 0.02 | 0.90 ± 0.04 | 0.52 ± 0.02 | 0.60 ± 0.02 | ||
Pb | 0.08 ± 0.01 | 0.06 ± 0.01 | 0.11 ± 0.01 | 0.10 ± 0.01 | 0.11 ± 0.01 | ||
Cd | 0.69 ± 0.01 | 0.10 ± 0.01 | 0.14 ± 0.01 | 0.19 ± 0.01 | 0.24 ± 0.01 |
Soil Unit | Cambisol | Luvisol | ||||||
---|---|---|---|---|---|---|---|---|
Plant/Element | Zn | Cu | Pb | Cd | Zn | Cu | Pb | Cd |
Anthriscus sylvestris | 0.807 ** | 0.335 | 0.107 | 0.135 | 0.208 | 0.544 ** | 0.131 | 0.208 |
Fraxinus excelsior | 0.891 ** | 0.299 | 0.137 | 0.078 | 0.199 | 0.599 ** | 0.096 | 0.161 |
Quercus cerris | 0.854 ** | 0.369 | 0.173 | 0.127 | 0.195 | 0.457 * | 0.089 | 0.112 |
Quercus rubra | 0.831 ** | 0.352 | 0.120 | 0.193 | 0.201 | 0.442 * | 0.136 | 0.183 |
Negundo aceroides | 0.835 ** | 0.336 | 0.146 | 0.166 | 0.198 | 0.460 * | 0.170 | 0.156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuklová, M.; Kukla, J.; Hniličková, H.; Hnilička, F.; Pivková, I. Impact of Car Traffic on Metal Accumulation in Soils and Plants Growing Close to a Motorway (Eastern Slovakia). Toxics 2022, 10, 183. https://doi.org/10.3390/toxics10040183
Kuklová M, Kukla J, Hniličková H, Hnilička F, Pivková I. Impact of Car Traffic on Metal Accumulation in Soils and Plants Growing Close to a Motorway (Eastern Slovakia). Toxics. 2022; 10(4):183. https://doi.org/10.3390/toxics10040183
Chicago/Turabian StyleKuklová, Margita, Ján Kukla, Helena Hniličková, František Hnilička, and Ivica Pivková. 2022. "Impact of Car Traffic on Metal Accumulation in Soils and Plants Growing Close to a Motorway (Eastern Slovakia)" Toxics 10, no. 4: 183. https://doi.org/10.3390/toxics10040183
APA StyleKuklová, M., Kukla, J., Hniličková, H., Hnilička, F., & Pivková, I. (2022). Impact of Car Traffic on Metal Accumulation in Soils and Plants Growing Close to a Motorway (Eastern Slovakia). Toxics, 10(4), 183. https://doi.org/10.3390/toxics10040183