Impact of Soil Pollution on Melliferous Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis of Melliferous Plants and Soil
2.3. Elemental Analysis
2.4. Statistical Analyses
2.5. Quantification of Soil Pollution Level
2.6. Efficiency of Metal Accumulation in Plants
3. Results
3.1. Results of the Statistical Analysis
3.2. Ecological Risk for Analyzed Soils
3.3. Accumulation Factors of Metallic Species in Plants
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pohl, P.; Szymczycha-Madeja, A.; Welna, M.; Jedryczko, D.; Jamroz, P. Elemental composition of sugar and honey. In Handbook of Mineral Elements in Food; de la Guardia, M., Garrigues, S., Eds.; Wiley Blackwell: Oxford, UK, 2015; pp. 587–598. Available online: https://doi-org.am.e-nformation.ro/10.1002/9781118654316.ch25 (accessed on 20 March 2022).
- Vázquez, M.; Vélez, D. Other foods of plant origin. In Handbook of Mineral Elements in Food; de la Guardia, M., Garrigues, S., Eds.; Wiley Blackwell: Oxford, UK, 2015; pp. 699–708. [Google Scholar]
- Sarker, S.D.; Nahar, L. Modern methods of analysis applied to honey. In Honey in Traditional and Modern Medicine; Boudraa, L., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2013; pp. 333–358. [Google Scholar]
- Cimpoiu, C.; Hosu, A.; Miclaus, V.; Puscas, A. Determination of the floral origin of some Romanian honeys on the basis of physical and biochemical properties. Spectrochim. Acta A 2013, 100, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Nolan, V.C.; Harrison, J.; Cox, J.A.G. Dissecting the antimicrobial composition of honey. Antibiotics 2019, 8, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isopescu, R.D.; Josceanu, A.M.; Colta, T.; Spulber, R. Romanian honey: Characterization and classification. In Honey Analysis; de Alencar Arnaut de Toledo, V., Ed.; IntechOpen: London, UK, 2017; Available online: https://www.intechopen.com/chapters/53203 (accessed on 20 March 2022).
- Lazarevic, K.B.; Jovetic, M.S.; Tesic, Z.L. Physicochemical parameters as a tool for the assessment of origin of honey. J. AOAC Int. 2017, 100, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S.; Haldimann, M.; Luginbuhl, W.; Gallmann, P. Minerals in honey: Environmental, geographical and botanical aspects. J. Apicult. Res. 2007, 46, 269–275. [Google Scholar] [CrossRef]
- Barbeş, L.; Bărbulescu, A.; Stanciu, G.; Rotariu, R. Mineral analysis of different bee products by Flame Atomic Absorption spectrometry. Rom. J. Phys. 2021, 66, 802. [Google Scholar]
- Barbeş, L.; Bărbulescu, A.; Stanciu, G. Statistical analysis of mineral elements content in different melliferous plants from Dobrogea region, Romania. Rom. Rep. Phys. 2020, 72, 705. [Google Scholar]
- Wang, W.; Li, H.; Guénon, R.; Yang, Y.; Shu, X.; Cheng, X.; Zhang, Q. Geographical variability of mineral elements and stability of restrictive mineral elements in terrestrial cyanobacteria across gradients of climate, soil, and atmospheric wet deposition mineral concentration. Front. Microbiol. 2021, 11, 582655. [Google Scholar] [CrossRef]
- Xie, P.; Liu, T.; Chen, H.; Su, Z. Community structure and soil mineral concentration in relation to plant invasion in a subtropical urban and rural ecotone. Forests 2021, 12, 185. [Google Scholar] [CrossRef]
- Steliga, T.; Kluk, D. Assessment of the suitability of Melilotus officinalis for phytoremediation of soil contaminated with petroleum hydrocarbons (TPH and PAH), Zn, Pb and Cd based on toxicological tests. Toxics 2021, 9, 148. [Google Scholar] [CrossRef]
- Liu, A.; Li, S.; Cen, N.; Mao, F.; Yang, F.; Li, L.; Sui, H.; Zhao, Y. Concentration of fifteen elements in herbaceous stems of Ephedra intermedia and influence of its growing soil. Sci. Rep. 2020, 10, 15077. [Google Scholar] [CrossRef]
- Nworie, O.E.; Qin, J.; Lin, C. Trace element uptake by herbaceous plants from the soils at a multiple trace element-contaminated site. Toxics 2019, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pehoiu, G.; Murarescu, O.; Radulescu, C.; Dulama, I.D.; Teodorescu, S.; Stirbescu, R.M.; Bucurica, I.A.; Stanescu, S.G. Heavy metals accumulation and translocation in native plants grown on tailing dumps and human health risk. Plant Soil 2020, 456, 405–424. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, Y.; Xu, D.; Li, L.; Zhu, Y. Interactions between heavy metals and other mineral elements from soil to medicinal plant Fengdan (Paeonia ostii) in a copper mining area, China. Environ. Sci. Pollut. Res. Int. 2020, 27, 33743–33752. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.J.; Jiang, R.F.; Dunham, S.J.; McGrath, S.P. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol. 2006, 172, 646–654. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, N.; Hermans, C.; Schat, H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 2009, 181, 759–776. [Google Scholar] [CrossRef]
- Stein, R.J.; Höreth, S.; de Melo, J.R.F.; Syllwasschy, L.; Lee, G.; Garbin, M.L.; Clemens, S.; Krämer, U. Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytol. 2017, 213, 1274–1286. [Google Scholar] [CrossRef] [Green Version]
- De Souza Braz, A.M.; da Costa, M.L.; Ramos, S.J.; Dall’Agnol, R.; Fernandes, A.R. Environmental impact of potentially toxic elements on tropical soils used for large-scale crop commodities in the Eastern Amazon, Brazil. Minerals 2021, 11, 990. [Google Scholar] [CrossRef]
- Brković, D.L.; Bošković Rakočević, L.S.; Mladenović, J.D.; Simić, Z.B.; Glišićt, R.M.; Grbović, F.J.; Branković, S.R. Metal bioaccumulation, translocation and phytoremediation potential of some woody species at mine tailings. Not. Bot. Horti Agrobot. 2021, 49, 12487. [Google Scholar] [CrossRef]
- Salmani-Ghabeshi, S.; Fadic-Ruiz, X.; Miró-Rodríguez, C.; Pinilla-Gil, E.; Cereceda-Balic, F. Trace element levels in native plant species around the industrial site of Puchuncaví-Ventanas (Central Chile): Evaluation of the phytoremediation potential. Appl. Sci. 2021, 11, 713. [Google Scholar] [CrossRef]
- Tahar, K.; Keltoum, B. Effects of heavy metals pollution in soil and plant in the industrial area, West Algeria. J. Korean Chem. Soc. 2011, 55, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Filimon, M.N.; Caraba, I.V.; Popescu, R.; Dumitrescu, G.; Verdes, D.; Petculescu Ciochina, L.; Sinitean, A. Potential ecological and human health risks of heavy metals in soils in selected copper mining areas—A case study: The Bor area. Int. J. Environ. Res. Public Health 2021, 18, 1516. [Google Scholar] [CrossRef] [PubMed]
- Barbeş, L.; Bărbulescu, A.; Rădulescu, C.; Stihi, C. Determination of heavy metals in leaves and bark of Populus nigra L. Rom. Rep. Phys. 2014, 66, 877–886. [Google Scholar]
- Yang, P.; Yang, M.; Mao, R.; Shao, H. Multivariate-statistical assessment of heavy metals for agricultural soils in northern China. Sci. World J. 2014, 2014, 517020. [Google Scholar] [CrossRef] [PubMed]
- Rădulescu, C.; Stihi, C.; Barbeş, L.; Chilian, A.; Chelărescu, D.E. Studies concerning heavy metals accumulation of Carduus nutans L. and Taraxacum officinale as potential soil bioindicator species. Rev. Chim. Bucharest. 2013, 64, 754–760. [Google Scholar]
- Barbeş, L.; Bărbulescu, A. Monitoring and statistical assessement of heavy metals in soil and leaves of Populus nigra L. Environ. Eng. Manag. J. 2017, 16, 187–196. [Google Scholar]
- Nazzal, Y.; Bărbulescu, A.; Howari, F.; Al-Taani, A.A.; Iqbal, J.; Xavier, C.M.; Sharma, M.; Dumitriu, C.Ș. Assessment of metals concentrations in soils of Abu Dhabi Emirate using pollution indices and multivariate statistics. Toxics 2021, 9, 95. [Google Scholar] [CrossRef]
- Al-Taani, A.; Nazzal, Y.; Howari, F.; Iqbal, J.; Bou-Orm, N.; Xavier, C.M.; Bărbulescu, A.; Sharma, M.; Dumitriu, C.S. Contamination assessment of heavy metals in soil, Liwa area, UAE. Toxics 2021, 9, 53. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Ravisankar, R.; Harikrishnan, N.; Satapathy, K.K.; Prasad, M.V.R.; Kanagasabapathy, K.V. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India—Spectroscopical approach. Spectrochim. Acta A 2015, 137, 589–600. [Google Scholar] [CrossRef]
- Parveen, R.; Abbasi, A.M.; Shaheen, N.; Shah, M.H. Accumulation of selected metals in the fruits of medicinal plants grown in urban environment of Islamabad, Pakistan. Arab. J. Chem. 2020, 13, 308–317. [Google Scholar] [CrossRef]
- Cuzic, M. Research on the honey potential of the forest massif in the Ciucurova area, Tulcea county. Danube Delta II Tulcea 2004, II, 81–92. Available online: https://www.icemtl.ro/wp-content/uploads/Revista-Delta-Dunarii-02-2004.pdf (accessed on 15 March 2022). (In Romanian).
- Njokuocha, R.C.; Dim, K.I.; Onyejekwe, O.K.; Nwokorie, V.U. Determination of the concentration of some mineral elements and pollen spectra of Apis mellifera L. honeys from different locations in Nigeria. Anim. Res. Int. 2019, 16, 3186–3197. [Google Scholar]
- Radulescu, C.; Stihi, C.; Popescu, I.V.; Ionita, I.; Dulama, I.D.; Chilian, A.; Bancuta, O.R.; Chelarescu, E.D.; Let, D. Assessment of heavy metals level in some perennial medicinal plants by flame atomic absorption spectrometry. Rom. Rep. Phys. 2013, 65, 246–260. [Google Scholar]
- Da Silva Medeiros, D.C.C.; Piechontcoski, F.; da Rocha Watanabe, E.R.L.; Chaves, E.S.; Inglez, S.D. Fast and effective simultaneous determination of metals in soil samples by ultrasound-assisted extraction and flame atomic absorption spectrometry: Assessment of trace elements contamination in agricultural and native forest soils from Paraná—Brazil. Environ. Monit. Assess. 2020, 192, 111. [Google Scholar] [CrossRef] [PubMed]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Turekian, K.K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. GSA Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Taylor, S.R. Abundance of Chemical Elements in the Continental Crust: A New Table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Bowen, H.J.M. Trace Elements in Biochemistry; Academic Press: London, UK; New York, NY, USA, 1966. [Google Scholar]
- Müller, G. Heavy Metals in the Sediments of the Rhine: Changes since 1971. A look around. Sci. Technol. 1979, 778–783. [Google Scholar]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
- Salminen, R.; Batista, M.J.; Bidovec, M.; Demetriades, A.; De Vivo, B.; De Vos, W.; Duris, M.; Gilucis, A.; Gregorauskiene, V.; Halamic, J.; et al. FOREGS Geochemical Atlas of Europe, Part 1: Background Information, Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 2005. [Google Scholar]
- ANMP. Available online: http://www.anpm.ro/web/apm-tulcea/rapoarte-lunare1 (accessed on 12 February 2022).
- Ministry Order No. 756/1997 for Approval of Regulation Concerning Environmental Pollution Assessment, Published in Official Monitor No 303/6 November 1997. Available online: https://legislatie.just.ro/Public/DetaliiDocument/13572 (accessed on 12 February 2022). (In Romanian).
- Sur, I.M.; Micle, V.; Polyak, E.T.; Gabor, T. Assessment of Soil Quality Status and the Ecological Risk in the Baia Mare, Romania Area. Sustainability 2022, 14, 3739. [Google Scholar] [CrossRef]
- Massa, N.; Andreucci, F.; Poli, M.; Aceto, M.; Barbato, R.; Berta, G. Screening for heavy metal accumulators amongst autochtonous plants in a polluted site in Italy. Ecotoxicol. Environ. Saf. 2010, 73, 1988–1997. [Google Scholar] [CrossRef]
- Mihaly Cozmuta, A.; Bretan, L.; Mihaly Cozmuta, L.; Nicula, C.; Peter, A. Lead traceability along soil-melliferous flora-bee family-apiary products chain. J. Environ. Monit. 2012, 14, 1622–1630. [Google Scholar] [CrossRef]
- Tomczyk, M.; Zaguła, G.; Puchalski, C.; Dżugan, M. Transfer of some toxic metals from soil to honey depending on bee habitat conditions. Acta Univ. Cibiniensis Ser. E: Food Technol. 2020, XXIV, 49–57. [Google Scholar] [CrossRef]
- Uršulin-Trstenjak, N.; Puntarić, D.; Levanić, D.; Gvozdić, V.; Pavlek, Ž.; Puntarić, A.; Puntarić, E.; Puntarić, I.; Domagoj, V.; Lasić, D.; et al. Pollen, Physicochemical, and Mineral Analysis of Croatian Acacia Honey Samples: Applicability for Identification of Botanical and Geographical Origin. J. Food Qual. 2017, 2017, 8538693. [Google Scholar] [CrossRef]
Characteristics | |
---|---|
Light source | Xe short-arc lamp in hot-spot mode |
Optical system | High-resolution double Echelle monochromator |
Detector | UV-sensitive CCD (charge-coupled device) linear array |
Spectral resolution | 0.002–200 nm |
Sensitivity | Flame: 0.015 mg/L 1% (Abs Cu-224) |
Wavelength range | 185–900 nm |
Site Triplets | SnL | Hp | Tt | |
---|---|---|---|---|
Flowers | PH—DS—ST | 0.9722 | 0.927 | 0.9709 |
Leaves | PH—DS—ST | 0.967 | 0.7165 | 0.8669 |
Stems | PH—DS—ST | 0.9335 | 0.9843 | 0.8339 |
Average | PH—DS—ST | 0.967 | 0.9468 | 0.7826 |
PH | DS | ST | PH | |
---|---|---|---|---|
Flowers SnL—Hp—Tt | 0.8428 | 0.8383 | 0.8131 | 0.8428 |
Leaves SnL—Hp—Tt | 0.8383 | 0.5578 | 0.7396 | 0.8383 |
Stems SnL—Hp—Tt | 0.6928 | 0.3252 | 0.5385 | 0.6928 |
Average SnL—Hp—Tt | 0.9518 | 0.7909 | 0.9636 | 0.9518 |
Site | Ca | K | Mg | Na | Fe | Mn | Cu | Zn | Cd |
---|---|---|---|---|---|---|---|---|---|
DS | 20.54 ± 1.01 | 3.12 ± 0.02 | 14.86 ± 0.34 | 0.201 ± 0.01 | 625.8 ± 4.02 | 275.6 ± 3.15 | 35.86 ± 0.14 | 286.7 ± 1.35 | 1.92 ± 0.01 |
PH | 71.37 ± 2.01 | 4.05 ± 0.15 | 15.71 ± 0.58 | 0.196 ± 0.01 | 489.9 ± 2.03 | 454.1 ± 2.31 | 2.85 ± 0.01 | 156.5 ± 1.48 | 1.55 ± 0.02 |
ST | 90.23 ± 3.22 | 5.12 ± 0.26 | 16.78 ± 0.47 | 0.184 ± 0.01 | 550.6 ± 3.65 | 620.5 ± 3.86 | 10.64 ± 0.10 | 140.3 ± 1.04 | 2.01 ± 0.02 |
Elements | Ca | K | Mg | Na | Fe | Mn | Cu | Zn | Cd | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Concentration | Earth’s crust [39,40,41] | 13,700 | 14,000 | 500 | 6300 | 3800 | 850 | 20 | 50 | 0.5 | |
European mean value [44] | - | - | - | - | 35,100 | 650 | 13 | 52 | 0.145 | ||
Regional value [45] | Min Max | 177.4 356 | 5 111.471 | 6 60 | 13.29 48.36 | 3000 4500 | 462.335 3046.66 | 14.393 109.783 | 57.434 423 | 0.02 0.24 |
Elements | Cd | Cu | Fe | Mn | Zn |
---|---|---|---|---|---|
Normal value | 1.00 | 20.00 | 3000.00 | 900.00 | 100.00 |
Maximum threshold | 5.00 | 250.00 | 4500.00 | 2000.00 | 700.00 |
Intervention threshold | 10.00 | 500.00 | 7000.00 | 4000.00 | 1500.00 |
Reference | Site | Igeo | |||
---|---|---|---|---|---|
Cd | Cu | Mn | Zn | ||
Global [41] | PH | 1.0473 | −3.3934 | −1.4894 | 1.0612 |
DS | 1.3561 | 0.2574 | −2.2098 | 1.9346 | |
ST | 1.4222 | −1.4955 | −1.0390 | 0.9036 | |
European [43] | PH | 2.8332 | −2.7719 | −1.1024 | 1.0046 |
DS | 3.1420 | 0.8789 | −1.8228 | 1.8780 | |
ST | 3.2081 | −0.8740 | −0.6520 | 0.8470 | |
Regional [44] | PH | 2.9907 | −5.0277 | −2.5349 | −1.2031 |
DS | 3.2996 | −1.3769 | −3.2554 | −0.3298 | |
ST | 3.3656 | −3.1298 | −2.0845 | −1.3608 |
Location | CF | DC | PLI | |||
---|---|---|---|---|---|---|
Cd | Cu | Mn | Zn | |||
PH | 3.1000 | 0.1428 | 0.5342 | 3.1300 | 6.9070 | 0.9275 |
DS | 3.8400 | 1.7930 | 0.3242 | 5.7340 | 11.6912 | 1.8915 |
ST | 4.0200 | 0.5320 | 0.7300 | 2.8060 | 8.0880 | 1.4467 |
EF | Element | Location | ||
---|---|---|---|---|
PH | DS | ST | ||
Ca | Cd | 7.7055 | 33.1653 | 7.9037 |
Cu | 0.3548 | 15.4858 | 1.0460 | |
Mn | 1.3279 | 2.8004 | 1.4352 | |
Zn | 7.7800 | 49.5234 | 5.5168 | |
Fe | Cd | 18.9835 | 18.4084 | 21.9034 |
Cu | 0.8742 | 8.5954 | 2.8987 | |
Mn | 3.2715 | 1.5543 | 3.9775 | |
Zn | 19.1672 | 27.4880 | 15.2888 | |
Mn | Cd | 3.1562 | 6.4418 | 2.9953 |
Cu | 0.1453 | 3.0079 | 0.3964 | |
Mn | 0.5439 | 0.5439 | 0.5439 | |
Zn | 3.1868 | 9.6191 | 2.0908 |
Location | NIPI | PERI |
---|---|---|
PH | 1.79 | 109.36 |
DS | 3.22 | 152.84 |
ST | 2.25 | 137.29 |
Site | Species | Elements | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca | K | Mg | Na | Fe | Mn | Cu | Zn | Cd | ||
PH | SnL | 0.10 | 17.15 | 0.74 | 0.56 | 0.34 | 0.12 | 0.06 | 0.24 | 0.04 |
Hp | 0.04 | 0.19 | 0.02 | 0.87 | 0.19 | 0.20 | 5.01 | 0.14 | 1.05 | |
Tt | 0.09 | 0.57 | 0.21 | 1.04 | 0.23 | 0.09 | 5.82 | 0.20 | 0.19 | |
DS | SnL | 0.26 | 16.80 | 0.61 | 0.45 | 0.29 | 0.36 | 0.21 | 0.09 | 0.02 |
Hp | 0.09 | 0.21 | 0.01 | 0.69 | 0.25 | 0.28 | 0.62 | 0.15 | 0.34 | |
Tt | 0.27 | 1.15 | 0.34 | 1.88 | 0.22 | 0.16 | 0.43 | 0.16 | 1.95 | |
ST | SnL | 0.10 | 14.52 | 0.76 | 0.45 | 0.32 | 0.10 | 0.06 | 0.21 | 0.06 |
Hp | 0.04 | 0.17 | 0.02 | 0.91 | 0.22 | 0.16 | 1.57 | 0.14 | 0.93 | |
Tt | 0.08 | 0.55 | 0.26 | 1.11 | 0.22 | 0.07 | 1.48 | 0.22 | 0.17 |
Site | Species | Elements | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca | K | Mg | Na | Fe | Mn | Cu | Zn | Cd | ||
DS | SnL | 0.78 | 0.75 | 0.78 | 0.82 | 1.09 | 1.84 | 41.10 | 0.71 | 0.65 |
Hp | 0.74 | 0.85 | 0.81 | 0.82 | 1.72 | 0.84 | 1.56 | 1.96 | 0.40 | |
Tt | 0.89 | 1.54 | 1.50 | 1.85 | 1.26 | 1.14 | 0.93 | 1.41 | 12.85 | |
ST | SnL | 1.31 | 1.07 | 1.10 | 0.76 | 1.04 | 1.17 | 3.47 | 0.78 | 1.95 |
Hp | 1.58 | 1.16 | 1.53 | 0.99 | 1.32 | 1.11 | 1.17 | 0.89 | 1.15 | |
Tt | 1.20 | 1.22 | 1.31 | 1.00 | 1.11 | 1.06 | 0.95 | 0.96 | 1.17 |
Elements | Fe | Mn | Cu | Zn | Cd | |
---|---|---|---|---|---|---|
Concentration | Non-toxic | 5–250 | 30–300 | 5–30 | 27–150 | 0.05–0.2 |
Toxic | - | 400–1000 | 20–100 | 100–400 | 5–30 | |
Hyperaccumulation limits | 10,000 | 10,000 | 1000 | 10,000 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bărbulescu, A.; Barbeș, L.; Dumitriu, C.Ş. Impact of Soil Pollution on Melliferous Plants. Toxics 2022, 10, 239. https://doi.org/10.3390/toxics10050239
Bărbulescu A, Barbeș L, Dumitriu CŞ. Impact of Soil Pollution on Melliferous Plants. Toxics. 2022; 10(5):239. https://doi.org/10.3390/toxics10050239
Chicago/Turabian StyleBărbulescu, Alina, Lucica Barbeș, and Cristian Ştefan Dumitriu. 2022. "Impact of Soil Pollution on Melliferous Plants" Toxics 10, no. 5: 239. https://doi.org/10.3390/toxics10050239
APA StyleBărbulescu, A., Barbeș, L., & Dumitriu, C. Ş. (2022). Impact of Soil Pollution on Melliferous Plants. Toxics, 10(5), 239. https://doi.org/10.3390/toxics10050239