Toxic Metals in a Paddy Field System: A Review
Abstract
:1. Introduction
2. Effects of TMs on Rice
2.1. Effects of TMs on Apparent Indexes and Body Composition of Rice
2.2. Effects of TMs on the Gene Expression of Rice
2.3. Effects of TMs with Types and Forms on Rice
3. TM Sources in Paddy Fields
4. TM Monitoring Methods
5. TM Measuring Instruments
6. Remediation of TMs from Paddy Fields
6.1. Remediation of TMs with Soil Amendments
6.1.1. Metal Soil Amendments
6.1.2. Non-Metallic Soil Amendments
6.1.3. Nanoscale Soil Amendments
6.1.4. Composite Soil Amendments
6.2. Bioremediation of TMs
6.3. Field Management
6.4. Planting Methods and Varieties
7. Recent Trends and Challenges
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sfakianakis, D.; Renieri, E.; Kentouri, M.; Tsatsakis, A. Effect of heavy metals on fish larvae deformities: A review. Environ. Res. 2015, 137, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Guevara-García, Á.A.; Juárez, K.; Herrera-Estrella, L.R. Heavy metal adaptation. In eLS Encyclopedia of Life Sciences; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 1–9. [Google Scholar]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Duffus, J.H. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807, Erratum in Pure Appl. Chem. 2002, 75, 1357. [Google Scholar] [CrossRef] [Green Version]
- Pourret, O.; Bollinger, J.C. ‘Heavy metals’-what to do now: To use or not to use? (Letter to the Editor). Sci. Total Environ. 2018, 610, 419–420. [Google Scholar] [CrossRef] [PubMed]
- Dickman, M.; Leung, K.; Koo, L. Mercury in Human Hair and Fish: Is there a Hong Kong Male Subfertility Connection? Mar. Pollut. Bull. 1999, 39, 352–356. [Google Scholar] [CrossRef]
- Bandara, J.M.R.S.; Wijewardena, H.V.P.; Liyanege, J.; Upul, M.A.; Bandara, J.M.U.A. Chronic renal failure in Sri Lanka caused by elevated dietary cadmium: Trojan horse of the green revolution. Toxicol. Lett. 2010, 198, 33–39. [Google Scholar] [CrossRef]
- Yu, X.-D.; Yan, C.-H.; Shen, X.-M.; Tian, Y.; Cao, L.-L.; Zhao, L.; Liu, J.-X. Prenatal exposure to multiple toxic heavy metals and neonatal neurobehavioral development in Shanghai, China. Neurotoxicol. Teratol. 2011, 33, 437–443. [Google Scholar] [CrossRef]
- Jin, X. How many lands have been filled with poison—Investigation on soil heavy metal pollution in China. Environ. Educ. 2015, 6, 4–9. (In Chinese) [Google Scholar]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.-H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Barium; U.S. Department of Health and Human Services, Public Health Service: Atlanta, GA, USA, 2007. [Google Scholar]
- Liu, S. A brief analysis of the rice production Status in the world and China. Xin Nongye 2020, 20, 14–16. (In Chinese) [Google Scholar]
- CGIAR. The Global Staple. 2021. Available online: http://ricepedia.org/rice-as-food/the-global-staple-rice-consumers. (accessed on 3 March 2021).
- Hibberd, J.M.; Sheehy, J.E.; Langdale, J.A. Using C4 photosynthesis to increase the yield of rice—rationale and feasibility. Curr. Opin. Plant Biol. 2008, 11, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Bhunia, R.K.; Rajam, M.V. MicroRNAs as potential targets for improving rice yield via plant architecture modulation: Recent studies and future perspectives. J. Biosci. 2020, 45, 116. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Choi, H.-Y.; Huy, N.-X.; Park, H.; Kim, H.H.; Yang, M.-S.; Kang, S.-H.; Kim, D.-I.; Kim, N.-S. Production of recombinant human acid β-glucosidase with high mannose-type N-glycans in rice gnt1 mutant for potential treatment of Gaucher disease. Protein Expr. Purif. 2019, 158, 81–88. [Google Scholar] [CrossRef]
- Verma, D.K.; Srivastav, P.P. Bioactive compounds of rice (Oryza sativa L.): Review on paradigm and its potential benefit in human health. Trends Food Sci. Technol. 2020, 97, 355–365. [Google Scholar] [CrossRef]
- Wang, Z.G.; Feng, J.N.; Tong, Z. Human toxicosis caused by moldy rice contaminated with fusarium and T-2 toxin. Biomed. Environ. Sci. 1993, 6, 65. [Google Scholar] [PubMed]
- FAO. The State of Food Security and Nutrition in the World. 2021. Available online: https://www.fao.org/publications/sofi/en. (accessed on 5 April 2022).
- Mahmood, T.; Islam, K.R.; Muhammad, S. Toxic effects of heavy metals on early growth and tolerance of cereal crops. Pak. J. Bot. 2007, 39, 451. [Google Scholar]
- Mishra, A.; Choudhuri, M.A. Amelioration of lead and mercury effects on germination and rice seedling growth by antioxidants. Biol. Plant. 1998, 41, 469–473. [Google Scholar] [CrossRef]
- Mishra, A.; Choudhuri, M.A. Monitoring of Phytotoxicity of Lead and Mercury from Germination and Early Seedling Growth Indices in Two Rice Cultivars. Water Air Soil Pollut. 1999, 114, 339–346. [Google Scholar] [CrossRef]
- Hassan, M.J.; Shao, G.; Zhang, G. Influence of Cadmium Toxicity on Growth and Antioxidant Enzyme Activity in Rice Cultivars with Different Grain Cadmium Accumulation. J. Plant Nutr. 2005, 28, 1259–1270. [Google Scholar] [CrossRef]
- He, J.; Ren, Y. Effect of Cadmium on Seed Germination, Seedling Growth and Amylolytic Activity of Rice. Acta Agri-Cult. Boreali-Sin. 2008, 23, 131–134. [Google Scholar]
- Ashraf, U.; Hussain, S.; Anjum, S.A.; Abbas, F.; Tanveer, M.; Noor, M.A.; Tang, X. Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity. Plant Physiol. Biochem. 2017, 115, 461–471. [Google Scholar] [CrossRef]
- Ahsan, N.; Lee, D.-G.; Lee, S.-H.; Kang, K.Y.; Lee, J.J.; Kim, P.J.; Yoon, H.-S.; Kim, J.-S.; Lee, B.-H. Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 2007, 67, 1182–1193. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, U.; Kanu, A.S.; Deng, Q.; Mo, Z.; Pan, S.; Tian, H.; Tang, X. Lead (Pb) Toxicity; Physio-Biochemical Mechanisms, Grain Yield, Quality, and Pb Distribution Proportions in Scented Rice. Front. Plant Sci. 2017, 8, 259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.L.D.S.; Vitti, G.C.; Trevizam, A.R. Heavy metal toxicity in rice and soybean plants cultivated in contaminated soil. Rev. Ceres 2014, 61, 248–254. [Google Scholar] [CrossRef] [Green Version]
- He, J.-Y.; Ren, Y.-F.; Zhu, C.; Jiang, D. Effects of Cadmium Stress on Seed Germination, Seedling Growth and Seed Amylase Activities in Rice (Oryza sativa). Rice Sci. 2008, 15, 319–325. [Google Scholar] [CrossRef]
- Rascio, N.; Vecchia, F.D.; La Rocca, N.; Barbato, R.; Pagliano, C.; Raviolo, M.; Gonnelli, C.; Gabbrielli, R. Metal accumulation and damage in rice (cv. Vialone nano) seedlings exposed to cadmium. Environ. Exp. Bot. 2008, 62, 267–278. [Google Scholar] [CrossRef]
- Gautam, M.; Sengar, R.S.; Chaudhary, R.; Sengar, K.; Garg, S. Possible cause of inhibition of seed germination in two rice cultivars by heavy metals Pb2+ and Hg2+. Toxicol. Environ. Chem. 2010, 92, 1111–1119. [Google Scholar] [CrossRef]
- Ros, R.; Cook, D.T.; Martinez-Cortina, C.; Picazo, I. Nickel and Cadmium-related Changes in Growth, Plasma Membrane Lipid Composition, ATPase Hydrolytic Activity and Proton-pumping of Rice (Oryza sativa L. cv. Bahia) Shoots. J. Exp. Bot. 1992, 43, 1475–1481. [Google Scholar] [CrossRef]
- Jamil, M.; Zeb, S.; Anees, M.; Roohi, A.; Ahmed, I.; Rehman, S.U.; Rha, E.S. Role of Bacillus licheniformis in Phytoremediation of Nickel Contaminated Soil Cultivated with Rice. Int. J. Phytoremediat. 2014, 16, 554–571. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhu, J.G.; Cheng, H.L.; Xie, Z.B.; Chu, H.Y. Phytotoxicity of lanthanum in rice in haplic acrisols and cambisols. Ecotoxicol. Environ. Safe 2006, 64, 226–233. [Google Scholar] [CrossRef]
- Liu, D.; Lin, Y.; Wang, X. Effects of lanthanum on growth, element uptake, and oxidative stress in rice seedlings. J. Plant Nutr. Soil. Sc. 2012, 175, 907–911. [Google Scholar] [CrossRef]
- Liu, D.; Wang, X.; Zhang, X.; Gao, Z. Effects of lanthanum on growth and accumulation in roots of rice seedlings. Plant Soil Environ. 2013, 59, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Zheng, S.; Wang, X. Lanthanum regulates the reactive oxygen species in the roots of rice seedlings. Sci. Rep. 2016, 6, 31860. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Yang, J. Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue. Sci. Total Environ. 1999, 243–244, 149–155. [Google Scholar] [CrossRef]
- Abedin, J.; Cresser, M.S.; Meharg, A.A.; Feldmann, J.; Cotter-Howells, J. Arsenic Accumulation and Metabolism in Rice (Oryza sativa L.). Environ. Sci. Technol. 2002, 36, 962–968. [Google Scholar] [CrossRef]
- Nautiyal, N.; Chatterjee, C.; Sharma, C. Copper stress affects grain filling in rice. Commun. Soil Sci. Plant Anal. 1999, 30, 1625–1632. [Google Scholar] [CrossRef]
- Marin, A.R.; Pezeshki, S.R.; Masschelen, P.H.; Choi, H.S. Effect of dimethylarsenic acid (DMAA) on growth, tissue arsenic, and photosynthesis of rice plants. J. Plant Nutr. 1993, 16, 865–880. [Google Scholar] [CrossRef]
- Wang, L.; Liu, B.; Wang, Y.; Qin, Y.; Zhou, Y.; Qian, H. Influence and interaction of iron and lead on seed germination in upland rice. Plant Soil 2020, 455, 187–202. [Google Scholar] [CrossRef]
- Mishra, A.; Choudhuri, M. Effects of Salicylic Acid on Heavy Metal-Induced Membrane Deterioration Mediated by Lipoxygenase in Rice. Biol. Plant. 1999, 42, 409–415. [Google Scholar] [CrossRef]
- Ashraf, U.; Tang, X. Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere 2017, 176, 141–155. [Google Scholar] [CrossRef]
- Huang, F.; Wen, X.-H.; Cai, Y.-X.; Cai, K.-Z. Silicon-Mediated Enhancement of Heavy Metal Tolerance in Rice at Different Growth Stages. Int. J. Environ. Res. Public Health 2018, 15, 2193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanu, A.S.; Ashraf, U.; Mo, Z.; Sabir, S.-U.; Baggie, I.; Charley, C.S.; Tang, X. Calcium amendment improved the performance of fragrant rice and reduced metal uptake under cadmium toxicity. Environ. Sci. Pollut. Res. 2019, 26, 24748–24757. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.-F.; Xi, L.-L.; Yang, L.-N.; Wang, Z.-Q.; Yang, J.-C. Comparison of Agronomic and Physiological Traits of Rice Genotypes Differing in Cadmium-Tolerance. Acta Agron. Sin. 2008, 34, 809–817. [Google Scholar] [CrossRef]
- Fan, X.; Wen, X.; Huang, F.; Cai, Y.; Cai, K. Effects of silicon on morphology, ultrastructure and exudates of rice root under heavy metal stress. Acta Physiol. Plant. 2016, 38, 197. [Google Scholar] [CrossRef]
- Begum, M.; Mondal, S. Relative Toxicity of Arsenite and Arsenate on Early Seedling Growth and Photosynthetic Pigments of Rice. Curr. J. Appl. Sci. Technol. 2019, 33, 1–5. [Google Scholar] [CrossRef]
- Farooq, H.; Asghar, H.N.; Khan, M.Y.; Saleem-Mand, Z.A. Auxin-mediated growth of rice in cadmium-contaminated soil. Turk. J. Agric. For. 2015, 39, 272–276. [Google Scholar] [CrossRef]
- Rehman, M.Z.U.; Rizwan, M.; Rauf, A.; Ayub, M.A.; Ali, S.; Qayyum, M.F.; Waris, A.A.; Naeem, A.; Sanaullah, M. Split application of silicon in cadmium (Cd) spiked alkaline soil plays a vital role in decreasing Cd accumulation in rice (Oryza sativa L.) grains. Chemosphere 2019, 226, 454–462. [Google Scholar] [CrossRef]
- Moya, J.L.; Ros, R.; Picazo, I. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynth. Res. 1993, 36, 75–80. [Google Scholar] [CrossRef]
- Cao, F.; Cai, Y.; Liu, L.; Zhang, M.; He, X.; Zhang, G.; Wu, F. Differences in photosynthesis, yield and grain cadmium accumulation as affected by exogenous cadmium and glutathione in the two rice genotypes. Plant Growth Regul. 2015, 75, 715–723. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y.; Jiang, Z.; Wang, F.; Jiang, Q.; Sun, J.; Chen, Z.; Zhu, C. MicroRNA268 Overexpression Affects Rice Seedling Growth under Cadmium Stress. J. Agric. Food Chem. 2017, 65, 5860–5867. [Google Scholar] [CrossRef]
- Takahashi, R.; Bashir, K.; Ishimaru, Y.; Nishizawa, N.K.; Nakanishi, H. The role of heavy-metal ATPases, HMAs, in zinc and cadmium transport in rice. Plant Signal. Behave 2012, 7, 1605–1607. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.-S.; Huang, J.; Zeng, D.-L.; Peng, J.-S.; Zhang, G.-B.; Ma, H.-L.; Guan, Y.; Yi, H.-Y.; Fu, Y.-L.; Han, B.; et al. A defensin-like protein drives cadmium efflux and allocation in rice. Nat. Commun. 2018, 9, 645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, S.; Liang, S.; Qiao, K.; Wang, F.; Zhang, Y.; Chai, T. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). J. Hazard. Mater. 2019, 380, 120853. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Yamaji, N.; Xia, J.; Ma, J.F. A Member of the Heavy Metal P-Type ATPase OsHMA5 Is Involved in Xylem Loading of Copper in Rice. Plant Physiol. 2013, 163, 1353–1362. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Deng, F.; Yamaji, N.; Pinson, S.R.; Fujii-Kashino, M.; Danku, J.; Douglas, A.; Guerinot, M.L.; Salt, D.E.; Ma, J.F. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat. Commun. 2016, 7, 12138. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Asif, M.H.; Chakrabarty, D.; Tripathi, R.D.; Dubey, R.S.; Trivedi, P.K. Expression of a rice Lambda class of glutathione S-transferase, OsGSTL2, in Arabidopsis provides tolerance to heavy metal and other abiotic stresses. J. Hazard. Mater. 2013, 248–249, 228–237. [Google Scholar] [CrossRef]
- Hu, T.; Zhu, S.; Tan, L.; Qi, W.; He, S.; Wang, G. Overexpression of OsLEA4 enhances drought, high salt and heavy metal stress tolerance in transgenic rice (Oryza sativa L.). Environ. Exp. Bot. 2016, 123, 68–77. [Google Scholar] [CrossRef]
- Tsunemitsu, Y.; Genga, M.; Okada, T.; Yamaji, N.; Ma, J.F.; Miyazaki, A.; Kato, S.-I.; Iwasaki, K.; Ueno, D. A member of cation diffusion facilitator family, MTP11, is required for manganese tolerance and high fertility in rice. Planta 2018, 248, 231–241. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Zhao, F.-J.; Sun, C.; Jin, C.; Shi, Y.; Sun, Y.; Li, Y.; Yang, M.; Jing, X.; et al. OsATX1 Interacts with Heavy Metal P1B-Type ATPases and Affects Copper Transport and Distribution. Plant Physiol. 2018, 178, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-O.; Kang, H. Comparative expression analysis of genes encoding metallothioneins in response to heavy metals and abiotic stresses in rice (Oryza sativa) and Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 2018, 82, 1656–1665. [Google Scholar] [CrossRef]
- Verma, S.; Verma, P.; Meher, A.K.; Bansiwal, A.K.; Tripathi, R.D.; Chakrabarty, D. A novel fungal arsenic methyltransferase, WaarsM reduces grain arsenic accumulation in transgenic rice (Oryza sativa L.). J. Hazard. Mater. 2018, 344, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.-Q.; Shalmani, A.; Zhou, M.-R.; Shi, P.-T.; Muhammad, I.; Shi, Y.; Sharif, R.; Li, W.-Q.; Liu, W.-T.; Chen, K.-M. Genome-Wide Identification of Malectin/Malectin-Like Domain Containing Protein Family Genes in Rice and Their Expression Regulation Under Various Hormones, Abiotic Stresses, and Heavy Metal Treatments. J. Plant Growth Regul. 2019, 39, 492–506. [Google Scholar] [CrossRef]
- Che, J.; Yokosho, K.; Yamaji, N.; Ma, J.F. A Vacuolar Phytosiderophore Transporter Alters Iron and Zinc Accumulation in Polished Rice Grains. Plant Physiol. 2019, 181, 276–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Li, Y.; Fu, Y.; Xie, H.; Song, S.; Qiu, M.; Wen, J.; Chen, M.; Chen, G.; Tian, Y.; et al. Mutation at Different Sites of Metal Transporter Gene OsNramp5 Affects Cd Accumulation and Related Agronomic Traits in Rice (Oryza sativa L.). Front. Plant Sci. 2019, 10, 1081. [Google Scholar] [CrossRef]
- Chang, J.; Huang, S.; Yamaji, N.; Zhang, W.; Ma, J.F.; Zhao, F. OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice. Plant Cell Environ. 2020, 43, 2476–2491. [Google Scholar] [CrossRef]
- Moulick, D.; Ghosh, D.; Santra, S.C. Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Plant Physiol. Biochem. 2016, 109, 571–578. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, L.; Li, S.; Guo, Y.; Cai, X. Effects of Compound Pollution of Pb and Cd on Soil and Physiological and Bio-chemistrical Characteristics of Rice Leaves. Chin. Agr. Sci. Bull. 2010, 26, 369–373. [Google Scholar]
- Barzegar, R.; Moghaddam, A.A.; Soltani, S.; Fijani, E.; Tziritis, E.; Kazemian, N. Heavy Metal(loid)s in the Groundwater of Shabestar Area (NW Iran): Source Identification and Health Risk Assessment. Expo. Health 2019, 11, 251–265. [Google Scholar] [CrossRef]
- Mariyanto, M.; Amir, M.F.; Utama, W.; Hamdan, A.M.; Bijaksana, S.; Pratama, A.; Yunginger, R.; Sudarningsih, S. Heavy metal contents and magnetic properties of surface sediments in volcanic and tropical environment from Brantas River, Jawa Timur Province, Indonesia. Sci. Total Environ. 2019, 675, 632–641. [Google Scholar] [CrossRef]
- Zhou, J.; Du, B.; Liu, H.; Cui, H.; Zhang, W.; Fan, X.; Cui, J.; Zhou, J. The bioavailability and contribution of the newly deposited heavy metals (copper and lead) from atmosphere to rice (Oryza sativa L.). J. Hazard. Mater. 2020, 384, 121285. [Google Scholar] [CrossRef]
- Luo, L.; Mei, K.; Qu, L.; Zhang, C.; Chen, H.; Wang, S.; Di, D.; Huang, H.; Wang, Z.; Xia, F.; et al. Assessment of the Geographical Detector Method for investigating heavy metal source apportionment in an urban watershed of Eastern China. Sci. Total Environ. 2019, 653, 714–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal concentration. Environ. Monit. Assess. 2010, 160, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Gassama, U.M.; Bin Puteh, A.; Abd-Halim, M.R.; Kargbo, B. Influence of municipal wastewater on rice seed germination, seedling performance, nutrient uptake, and chlorophyll content. J. Crop Sci. Biotechnol. 2015, 18, 9–19. [Google Scholar] [CrossRef]
- Bussan, D.; Harris, A.; Douvris, C. Monitoring of selected trace elements in sediments of heavily industrialized areas in Calcasieu Parish, Louisiana, United States by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Microchem. J. 2019, 144, 51–55. [Google Scholar] [CrossRef]
- Ning, L.; Liyuan, Y.; Jirui, D.; Xugui, P. Heavy metal pollution in surface water of Linglong gold mining area, China. Procedia Environ. Sci. 2011, 10, 914–917. [Google Scholar] [CrossRef] [Green Version]
- Ignatavičius, G.; Valskys, V.; Bulskaya, I.; Paliulis, D.; Zigmontienė, A.; Satkūnas, J. Heavy metal contamination in surface runoff sediments of the urban area of Vilnius, Lithuania. Estonian J. Earth Sci. 2017, 66, 13. [Google Scholar] [CrossRef]
- Liu, A.; Ma, Y.; Gunawardena, J.M.; Egodawatta, P.; Ayoko, G.A.; Goonetilleke, A. Heavy metals transport pathways: The importance of atmospheric pollution contributing to stormwater pollution. Ecotoxicol. Environ. Safe 2018, 164, 696–703. [Google Scholar] [CrossRef]
- Birch, G.; Taylor, S.; Matthai, C. Small-scale spatial and temporal variance in the concentration of heavy metals in aquatic sediments: A review and some new concepts. Environ. Pollut. 2001, 113, 357–372. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Li, M.; Fang, M.; Chi, W. Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosyst. Eng. 2010, 106, 223–233. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Zhang, B.; Ding, C. Regional heavy metal pollution in crops by integrating physiological function variability with spatio-temporal stability using multi-temporal thermal remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 91–102. [Google Scholar] [CrossRef]
- Zhao, S.; Qian, X.; Liu, X.; Xu, Z. Finding the Key Periods for Assimilating HJ-1A/B CCD Data and the WOFOST Model to Evaluate Heavy Metal Stress in Rice. Sensors 2018, 18, 1230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brus, D.J.; Li, Z.; Song, J.; Koopmans, G.F.; Temminghoff, E.J.M.; Yin, X.; Yao, C.; Zhang, H.; Luo, Y.; Japenga, J. Predictions of Spatially Averaged Cadmium Contents in Rice Grains in the Fuyang Valley, PR China. J. Environ. Qual. 2009, 38, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, X.; Wu, M.; Li, L.; Xiu, L. Integrating spectral indices with environmental parameters for estimating heavy metal concentrations in rice using a dynamic fuzzy neural-network model. Comput. Geosci.-UK 2011, 37, 1642–1652. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Li, J.; Li, T. Estimating regional heavy metal concentrations in rice by scaling up a field-scale heavy metal assessment model. Int. J. Appl. Earth Obs. 2012, 19, 12–23. [Google Scholar] [CrossRef]
- Chen, Q.; Peng, P.-Q.; Long, J.; Li, X.-Y.; Ding, X.; Hou, H.-B.; Liao, B.-H. Cadmium phytoavailability evaluation in rice-soil system using a field capacity-derived soil solution extraction: An entire growth period study in subtropical China. Soil Tillage Res. 2019, 194, 104315. [Google Scholar] [CrossRef]
- Shi, T.; Liu, H.; Wang, J.; Chen, Y.; Fei, T.; Wu, G. Monitoring Arsenic Contamination in Agricultural Soils with Reflectance Spectroscopy of Rice Plants. Environ. Sci. Technol. 2014, 48, 6264–6272. [Google Scholar] [CrossRef]
- Shi, T.; Wang, J.; Chen, Y.; Wu, G. Improving the prediction of arsenic contents in agricultural soils by combining the reflectance spectroscopy of soils and rice plants. Int. J. Appl. Earth Obs. 2016, 52, 95–103. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Liu, X. Collaborative inversion heavy metal stress in rice by using two-dimensional spectral feature space based on HJ-1 A HSI and radarsat-2 SAR remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 39–52. [Google Scholar] [CrossRef]
- Abrham, F.; Gholap, A.V. Analysis of heavy metal concentration in some vegetables using atomic absorption spectroscopy. Pollution 2021, 7, 205–216. [Google Scholar] [CrossRef]
- Ay, E.; Tekin, Z.; Özdoğan, N.; Bakırdere, S. Zirconium Nanoparticles Based Vortex Assisted Ligandless Dispersive Solid Phase Extraction for Trace Determination of Lead in Domestic Wastewater using Flame Atomic Absorption Spectrophotometry. Bull. Environ. Contam. Toxicol. 2022, 108, 324–330. [Google Scholar] [CrossRef]
- Goodarzi, L.; Bayatloo, M.R.; Chalavi, S.; Nojavan, S.; Rahmani, T.; Azimi, S.B. Selective extraction and determination of Cr(VI) in food samples based on tandem electromembrane extraction followed by electrothermal atomic absorption spectrometry. Food Chem. 2022, 373, 131442. [Google Scholar] [CrossRef] [PubMed]
- Castiñeira, M.D.M.; Brandt, R.; Jakubowski, N.; Andersson, J.T. Changes of the Metal Composition in German White Wines through the Winemaking Process. A Study of 63 Elements by Inductively Coupled Plasma−Mass Spectrometry. J. Agric. Food Chem. 2004, 52, 2953–2961. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Xie, H.; Huang, J.; Chen, L. Determination of the Non-metallic Elements in Herbal Tea by Inductively Coupled Plasma Tandem Mass Spectrometry. Biol. Trace Element Res. 2021, 199, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Bloom, N.; Fitzgerald, W.F. Determination of volatile mercury species at the picogram level by low-temperature gas chromatography with cold-vapour atomic fluorescence detection. Anal. Chim. Acta 1988, 208, 151–161. [Google Scholar] [CrossRef]
- Gómez-Ariza, J.L.; Lorenzo, F.; García-Barrera, T. Comparative study of atomic fluorescence spectroscopy and inductively coupled plasma mass spectrometry for mercury and arsenic multispeciation. Anal. Bioanal. Chem. 2005, 382, 485–492. [Google Scholar] [CrossRef]
- Musil, S.; Matoušek, T.; Currier, J.M.; Stýblo, M.; Dědina, J. Speciation Analysis of Arsenic by Selective Hydride Generation-Cryotrapping-Atomic Fluorescence Spectrometry with Flame-in-Gas-Shield Atomizer: Achieving Extremely Low Detection Limits with Inexpensive Instrumentation. Anal. Chem. 2014, 86, 10422–10428. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Qian, Y.; Guo, Y.; Wei, N.; Li, Y.; Yao, J.; Wang, G.; Ma, J.; Liu, W. Analysis of atmospheric pollutant metals by laser ablation inductively coupled plasma mass spectrometry with a radial line-scan dried-droplet approach. Spectrochim. Acta Part B At. Spectrosc. 2017, 138, 18–22. [Google Scholar] [CrossRef]
- Peyneau, P.-E. Poisson process modelling of spike occurrence in single particle inductively coupled plasma mass spectrometry time scans for very dilute nanoparticle dispersions. Spectrochim. Acta Part B At. Spectrosc. 2021, 178, 106126. [Google Scholar] [CrossRef]
- Valenta, P.; Sipos, L.; Kramer, I.; Krumpen, P.; Rützel, H. An automatic voltammetric analyzer for the simultaneous determination of toxic trace metals in water. Z. Anal. Bioanal. Chem. 1982, 312, 101–108. [Google Scholar] [CrossRef]
- Clark, B.R.; DePaoli, D.W.; McTaggart, D.R.; Patton, B.D. An on-line voltammetric analyzer for trace metals in wastewater. Anal. Chim. Acta 1988, 215, 13–20. [Google Scholar] [CrossRef]
- Hseu, Z.-Y.; Su, S.-W.; Lai, H.-Y.; Guo, H.-Y.; Chen, T.-C.; Chen, Z.-S. Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: New aspects for food safety regulation and sustainable agriculture. Soil Sci. Plant Nutr. 2010, 56, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Liu, Y.; Luo, Z.; Zhou, Y.; Hou, D.; Mao, Q.; Zhi, D.; Zhang, J.; Yang, Y.; Luo, L. Effect of RM-based-passivator for the remediation of two kinds of Cd polluted paddy soils and mechanism of Cd(II) adsorption. Environ. Technol. 2019, 42, 1623–1633. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, W.; Qin, J.; Zhang, X.; Li, H. Role of passivators for Cd alleviation in rice-water spinach intercropping system. Ecotoxicol. Environ. Safe 2020, 205, 111321. [Google Scholar] [CrossRef] [PubMed]
- Daulta, R.; Sridevi, T.; Garg, V.K. Spatial distribution of heavy metals in rice grains, rice husk, and arable soil, their bioaccumulation and associated health risks in Haryana, India. Toxin Rev. 2020, 40, 859–871. [Google Scholar] [CrossRef]
- Yildirim, A.; Baran, M.F.; Acay, H. Kinetic and isotherm investigation into the removal of heavy metals using a fungal-extract-based bio-nanosorbent. Environ. Technol. Innov. 2020, 20, 101076. [Google Scholar] [CrossRef]
- Fan, M.; Luo, L.; Liao, Y.; Tian, J.; Hu, B. Effect of Application on Different Amount of Red Mud on Rice Yield and Soil Bio-logical Properties in Cd-contaminated Paddy Soil. J. Soil. Water Conserv. 2011, 6, 39. [Google Scholar] [CrossRef]
- Trijatmiko, K.; Dueñas, C.; Tsakirpaloglou, N.; Torrizo, L.; Arines, F.M.; Adeva, C.; Balindong, J.; Oliva, N.; Sapasap, M.V.; Borrero, J.; et al. Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci. Rep. 2016, 6, 19792. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.; Chen, M.; Wang, D.; Xu, C.; Mou, R.; Cao, Z.; Zhang, X. Using iron fertilizer to control Cd accumulation in rice plants: A new promising technology. Sci. China Ser. C Life Sci. 2008, 51, 245–253. [Google Scholar] [CrossRef]
- Makino, T.; Nakamura, K.; Katou, H.; Ishikawa, S.; Ito, M.; Honma, T.; Miyazaki, N.; Takehisa, K.; Sano, S.; Matsumoto, S.; et al. Simultaneous decrease of arsenic and cadmium in rice (Oryza sativa L.) plants cultivated under submerged field conditions by the application of iron-bearing materials. Soil Sci. Plant Nutr. 2016, 62, 340–348. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-Y.; Wang, X.; Li, F.; Li, B.; Liu, C.; Wang, Q.; Lei, J. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice. Environ. Pollut. 2017, 224, 136–147. [Google Scholar] [CrossRef]
- Chen, C.C.; Dixon, J.B.; Turner, F.T. Iron Coatings on Rice Roots: Mineralogy and Quantity Influencing Factors. Soil Sci. Soc. Am. J. 1980, 44, 635–639. [Google Scholar] [CrossRef]
- Rajendran, M.; Shi, L.; Wu, C.; Li, W.C.; An, W.; Liu, Z.; Xue, S. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil–rice system. Chemosphere 2019, 222, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Cuong, T.X.; Ullah, H.; Datta, A.; Hanh, T.C. Effects of Silicon-Based Fertilizer on Growth, Yield and Nutrient Uptake of Rice in Tropical Zone of Vietnam. Rice Sci. 2017, 24, 283–290. [Google Scholar] [CrossRef]
- Lu, K.; Yang, X.; Gielen, G.; Bolan, N.; Ok, Y.S.; Niazi, N.K.; Xu, S.; Yuan, G.; Chen, X.; Zhang, X.; et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag. 2017, 186, 285–292. [Google Scholar] [CrossRef]
- Yin, D.; Wang, X.; Peng, B.; Tan, C.; Ma, L.Q. Effect of biochar and Fe-biochar on Cd and As mobility and transfer in soil-rice system. Chemosphere 2017, 186, 928–937. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, J.; Shaheen, S.M.; Feng, X.; Chen, Z.; Zhang, H.; Rinklebe, J. Mitigation of mercury accumulation in rice using rice hull-derived biochar as soil amendment: A field investigation. J. Hazard. Mater. 2020, 388, 121747. [Google Scholar] [CrossRef]
- Huang, D.; Liu, L.; Zeng, G.; Xu, P.; Huang, C.; Deng, L.; Wang, R.; Wan, J. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment. Chemosphere 2017, 174, 545–553. [Google Scholar] [CrossRef]
- Yue, L.; Lian, F.; Han, Y.; Bao, Q.; Wang, Z.; Xing, B. The effect of biochar nanoparticles on rice plant growth and the uptake of heavy metals: Implications for agronomic benefits and potential risk. Sci. Total Environ. 2019, 656, 9–18. [Google Scholar] [CrossRef]
- Farooq, M.U.; Tang, Z.; Zheng, T.; Asghar, M.A.; Zeng, R.; Su, Y.; Ei, H.H.; Liang, Y.; Zhang, Y.; Ye, X.; et al. Cross-Talk between Cadmium and Selenium at Elevated Cadmium Stress Determines the Fate of Selenium Uptake in Rice. Biomolecules 2019, 9, 247. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wang, F.; Gao, S.; Wang, X. Heavy Metal Accumulation in Different Rice Cultivars as Influenced by Foliar Application of Nano-silicon. Water Air Soil Pollut. 2016, 227, 228. [Google Scholar] [CrossRef]
- Liu, J.; Simms, M.; Song, S.; King, R.S.; Cobb, G.P. Physiological Effects of Copper Oxide Nanoparticles and Arsenic on the Growth and Life Cycle of Rice (Oryza sativa japonica ‘Koshihikari’). Environ. Sci. Technol. 2018, 52, 13728–13737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, C.; Xu, C.; Liu, Q.; Sun, L.; Luo, Y.; Shi, J. Fate and Transformation of CuO Nanoparticles in the Soil-Rice System during the Life Cycle of Rice Plants. Environ. Sci. Technol. 2017, 51, 4907–4917. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Long, J.; Li, J.; Zhang, M.; Xiao, G.; Ye, X.; Chang, W.; Zeng, H. Impact of ZnO nanoparticles on Cd toxicity and bioaccumulation in rice (Oryza sativa L.). Environ. Sci. Pollut. Res. 2019, 26, 23119–23128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, X.; Ji, X.; Liu, Y.; Lin, Z.; Lin, Z.; Xiao, S.; Peng, B.; Tan, C.; Zhang, X. Effect of a novel Ca-Si composite mineral on Cd bioavailability, transport and accumulation in paddy soil-rice system. J. Environ. Manag. 2019, 233, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Xu, H.; Zhou, S.; Yu, Y.; Li, H.; Zhou, C.; Chen, Y.; Li, Y.; Wang, M.; Wang, G. Distribution and transformation of lead in rice plants grown in contaminated soil amended with biochar and lime. Ecotoxicol. Environ. Safe 2018, 165, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Zhao, W.; Yuan, H.; Guo, T.; Hashmi, M.Z.; Liu, X.; Tang, X. Reduced Cd, Pb, and As accumulation in rice (Oryza sativa L.) by a combined amendment of calcium sulfate and ferric oxide. Environ. Sci. Pollut. Res. 2020, 27, 1348–1358. [Google Scholar] [CrossRef]
- Honma, T.; Ohba, H.; Kaneko, A.; Nakamura, K.; Makino, T.; Katou, H. Effects of soil amendments on arsenic and cadmium uptake by rice plants (Oryza sativa L. cv. Koshihikari) under different water management practices. Soil Sci. Plant Nutr. 2016, 62, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Jia, Z.; Wang, J.; Chen, L.; Zou, M.; Li, Y.; Zhou, S. Heavy metal distribution, relationship and prediction in a wheat-rice rotation system. Geoderma 2019, 354, 113886. [Google Scholar] [CrossRef]
- Huang, S.; Rao, G.; Ashraf, U.; He, L.; Zhang, Z.; Zhang, H.; Mo, Z.; Pan, S.; Tang, X. Application of inorganic passivators reduced Cd contents in brown rice in oilseed rape-rice rotation under Cd contaminated soil. Chemosphere 2020, 259, 127404. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.; Meng, D.; Gu, Y.; Zheng, Z.; Yin, H.; Zhou, Q.; Li, J. Isolation, characterization and inoculation of Cd tolerant rice endophytes and their impacts on rice under Cd contaminated environment. Environ. Pollut. 2020, 260, 113990. [Google Scholar] [CrossRef]
- Lin, X.; Mou, R.; Cao, Z.; Xu, P.; Wu, X.; Zhu, Z.; Chen, M. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains. Sci. Total Environ. 2016, 569-570, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Ni, Y. Review of Remediation Technologies for Cadmium in soil. E3S Web Conf. 2021, 233, 01037. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, H.; Huang, D.; Xu, C.; Zhu, H.; Zhu, Q. Water managements limit heavy metal accumulation in rice: Dual effects of iron-plaque formation and microbial communities. Sci. Total Environ. 2019, 687, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, H.; Ogawa, I.; Ishimaru, Y.; Mori, S.; Nishizawa, N.K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci. Plant Nutr. 2006, 52, 464–469. [Google Scholar] [CrossRef]
- Arao, T.; Kawasaki, A.; Baba, K.; Mori, S.; Matsumoto, S. Effects of Water Management on Cadmium and Arsenic Accumulation and Dimethylarsinic Acid Concentrations in Japanese Rice. Environ. Sci. Technol. 2009, 43, 9361–9367. [Google Scholar] [CrossRef]
- Pan, Y.; Koopmans, G.F.; Bonten, L.T.C.; Song, J.; Luo, Y.; Temminghoff, E.J.M.; Comans, R.N.J. Temporal variability in trace metal solubility in a paddy soil not reflected in uptake by rice (Oryza sativa L.). Environ. Geochem. Health 2016, 38, 1355–1372. [Google Scholar] [CrossRef]
- Honma, T.; Ohba, H.; Kaneko-Kadokura, A.; Makino, T.; Nakamura, K.; Katou, H. Optimal Soil Eh, pH, and Water Management for Simultaneously Minimizing Arsenic and Cadmium Concentrations in Rice Grains. Environ. Sci. Technol. 2016, 50, 4178–4185. [Google Scholar] [CrossRef]
- Ishfaq, M.; Farooq, M.; Zulfiqar, U.; Hussain, S.; Akbar, N.; Nawaz, A.; Anjum, S.A. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 2020, 241, 106363. [Google Scholar] [CrossRef]
- Deng, X.; Yang, Y.; Zeng, H.; Chen, Y.; Zeng, Q. Variations in iron plaque, root morphology and metal bioavailability response to seedling establishment methods and their impacts on Cd and Pb accumulation and translocation in rice (Oryza sativa L.). J. Hazard. Mater. 2020, 384, 121343. [Google Scholar] [CrossRef]
- Farooq, M.U.; Zhu, J. The paradox in accumulation behavior of cadmium and selenium at different planting times in rice. Environ. Sci. Pollut. Res. 2019, 26, 22421–22430. [Google Scholar] [CrossRef]
- Yi, Y.K.; Zhou, Z.B.; Chen, G.H. Effects of soil pH on growth and grain cadmium content in rice. J. Agro-Environ. Sci. 2017, 36, 428–436. [Google Scholar]
- Chen, H.; Yang, Y.; Ye, Y.; Tao, L.; Fu, X.; Liu, B.; Wu, Y. Differences in cadmium accumulation between indica and japonica rice cultivars in the reproductive stage. Ecotoxicol. Environ. Safe 2019, 186, 109795. [Google Scholar] [CrossRef] [PubMed]
- Abedin, M.J.; Meharg, A.A. Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant Soil 2002, 243, 57–66. [Google Scholar] [CrossRef]
- Songmei, L.; Jie, J.; Yang, L.; Jun, M.; Shouling, X.; Yuanyuan, T.; Youfa, L.; Qingyao, S.; Jianzhong, H. Characterization and Evaluation of OsLCT1 and OsNramp5 Mutants Generated Through CRISPR/Cas9-Mediated Mutagenesis for Breeding Low Cd Rice. Rice Sci. 2019, 26, 88–97. [Google Scholar] [CrossRef]
- Du, Z.; Su, D. Bibliometric analysis of the effects of heavy metal pollution remediation technologies on paddy fields. J. Agro-Environ. Sci. 2018, 37, 2409–2417. [Google Scholar]
Gene/Protein | Function | References |
---|---|---|
OsHMA1, OsHMA2, OsHMA3, OsHMA4, OsHMA5 | involves the transfer of toxic metals and reduces toxic metals concentrations in rice grains | [55,57,58,59] |
OsGSTL2 | provides tolerance for toxic metals and other abiotic stresses | [60] |
OsLEA4 | contributes to toxic metal, drought and salt tolerance in rice plants | [61] |
CAL1 | reduces cytosolic Cd concentration by promoting the secretion of Cd into the extracellular space and chelating Cd in the cytosol | [56] |
MTP11 | Mn tolerance via intracellular Mn compartmentalization | [62] |
OsATX1 | promotes the redistribution of Cu from old leaves to developing tissues and seeds, as well as the root-to-shoot Cu translocation in rice | [63] |
OsMTs | promotes rice multiple stress tolerance | [64] |
WaarsM | induces As volatilization and methylation, thus reducing As content in grains | [65] |
OsMRLK | promotes rice development and multiple stress tolerance | [66] |
OsLCT1, OsHMA2, OsZIP3 | alleviates the oxidative stress of Cd and Zn, decrease the translocation and accumulation of Cd to grains | [57] |
OsVMT | enhances the content of Zn and Fe in polished rice | [67] |
OsNRAMP1, OsNRAMP5 | contributes to the uptake of Cd and Mn in rice | [68,69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Li, Q.; Zhang, L.; Huang, Z.; Zhao, Z.; Zhao, H.; Du, J.; Zhou, J. Toxic Metals in a Paddy Field System: A Review. Toxics 2022, 10, 249. https://doi.org/10.3390/toxics10050249
Duan Y, Li Q, Zhang L, Huang Z, Zhao Z, Zhao H, Du J, Zhou J. Toxic Metals in a Paddy Field System: A Review. Toxics. 2022; 10(5):249. https://doi.org/10.3390/toxics10050249
Chicago/Turabian StyleDuan, Yuanliang, Qiang Li, Lu Zhang, Zhipeng Huang, Zhongmeng Zhao, Han Zhao, Jun Du, and Jian Zhou. 2022. "Toxic Metals in a Paddy Field System: A Review" Toxics 10, no. 5: 249. https://doi.org/10.3390/toxics10050249
APA StyleDuan, Y., Li, Q., Zhang, L., Huang, Z., Zhao, Z., Zhao, H., Du, J., & Zhou, J. (2022). Toxic Metals in a Paddy Field System: A Review. Toxics, 10(5), 249. https://doi.org/10.3390/toxics10050249