Urinary Levels of Sirtuin-1, π-Glutathione S-Transferase, and Mitochondrial DNA in Maize Farmer Occupationally Exposed to Herbicide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Location and Population
2.3. Urine Sample Collections
2.4. Cumulative Herbicide Exposure Index Intensity (Cumulative EII)
- Mixing status: never mixing (score = 0), and mixed (score = 9)
- Application method: does not apply (score = 0), aerial aircraft (score = 1), distribute tablets (score = 1), application in furrow (score = 2), boom tractor (score = 3), backpack (score = 8), and hand spray (score = 9)
- Repair status: dose not repair (score = 0), and repair (score = 2)
- EII = the exposure intensity index
- Duration = the duration of exposure for the number of days applied
- Frequency = the frequency of exposure in the number of hours of applications per day
2.5. Quantification of Urinary Creatinine
2.6. Quantification of Urinary Microalbumin
2.7. Quantification of Urinary π-GST
2.8. Quantification of Urinary Sirtuin-1
2.9. Quantification of Mitochondrial DNA (mtDNA)
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, N.P.; Gupta, A.K.; Kaur, G.; Khanna, T. Chronic Kidney Disease of Unknown Origin—What do we know? J. Assoc. Physicians India 2020, 68, 76–79. [Google Scholar]
- Johnson, R.J.; Wesseling, C.; Newman, L.S. Chronic Kidney Disease of Unknown Cause in Agricultural Communities. N. Engl. J. Med. 2019, 380, 1843–1852. [Google Scholar] [CrossRef]
- Jayasumana, C.; Paranagama, P.; Agampodi, S.; Wijewardane, C.; Gunatilake, S.; Siribaddana, S. Drinking well water and occupational exposure to Herbicides is associated with chronic kidney disease, in Padavi-Sripura, Sri Lanka. Environ. Health 2015, 14, 6. [Google Scholar] [CrossRef] [Green Version]
- Gunarathna, S.; Gunawardana, B.; Jayaweera, M.; Manatunge, J.; Zoysa, K. Glyphosate and AMPA of agricultural soil, surface water, groundwater and sediments in areas prevalent with chronic kidney disease of unknown etiology, Sri Lanka. J. Environ. Sci. Health Part B 2018, 53, 729–737. [Google Scholar] [CrossRef]
- Dedeke, G.A.; Owagboriaye, F.O.; Ademolu, K.O.; Olujimi, O.O.; Aladesida, A.A. Comparative Assessment on Mechanism Underlying Renal Toxicity of Commercial Formulation of Roundup Herbicide and Glyphosate Alone in Male Albino Rat. Int. J. Toxicol. 2018, 37, 285–295. [Google Scholar] [CrossRef]
- Kimura, T.; Yokoyama, T.; Tanemoto, M. Renal tubular injury by glyphosate-based herbicide. Clin. Exp. Nephrol. 2020, 24, 1186. [Google Scholar] [CrossRef]
- Sato, Y.; Takahashi, M.; Yanagita, M. Pathophysiology of AKI to CKD progression. Semin. Nephrol. 2020, 40, 206–215. [Google Scholar] [CrossRef]
- Galvan, D.L.; Green, N.H.; Danesh, F.R. The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 2017, 92, 1051–1057. [Google Scholar] [CrossRef]
- Kongtip, P.; Nankongnab, N.; Mahaboonpeeti, R.; Bootsikeaw, S.; Batsungnoen, K.; Hanchenlaksh, C.; Tipayamongkholgul, M.; Woskie, S. Differences among Thai Agricultural Workers’ Health, Working Conditions, and Pesticide Use by Farm Type. Ann. Work Expo. Health 2018, 62, 167–181. [Google Scholar] [CrossRef]
- Praditpornsilpa, K.; Lekhyananda, S.; Premasathian, N.; Kingwatanakul, P.; Lumpaopong, A.; Gojaseni, P.; Sakulsaengprapha, A.; Prasithsirikul, W.; Phakdeekitcharoen, B.; Lelamali, K.; et al. Prevalence trend of renal replacement therapy in Thailand: Impact of health economics policy. J. Med. Assoc. Thail. 2011, 94, S1–S6. [Google Scholar]
- Aekplakorn, W.; Chariyalertsak, S.; Kessomboon, P.; Assanangkornchai, S.; Taneepanichskul, S.; Neelapaichit, N.; Chittamma, A.; Kitiyakara, C. Women and other risk factors for chronic kidney disease of unknown etiology in Thailand: National Health Examination V Survey. Sci. Rep. 2021, 11, 21366. [Google Scholar] [CrossRef]
- Valcke, M.; Levasseur, M.-E.; Soares da Silva, A.; Wesseling, C. Pesticide exposures and chronic kidney disease of unknown etiology: An epidemiologic review. Environ. Health 2017, 16, 49. [Google Scholar] [CrossRef] [Green Version]
- Mesnage, R.; Arno, M.; Costanzo, M.; Malatesta, M.; Séralini, G.-E.; Antoniou, M.N. Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure. Environ. Health 2015, 14, 70. [Google Scholar] [CrossRef] [Green Version]
- Gunasekara, T.D.K.S.C.; De Silva, P.M.C.S.; Herath, C.; Siribaddana, S.; Siribaddana, N.; Jayasumana, C.; Jayasinghe, S.; Cardenas-Gonzalez, M.; Jayasundara, N. The Utility of Novel Renal Biomarkers in Assessment of Chronic Kidney Disease of Unknown Etiology (CKDu): A Review. Int. J. Environ. Res. Public Health 2020, 17, 9522. [Google Scholar] [CrossRef]
- Strilbyska, O.M.; Tsiumpala, S.A.; Kozachyshyn, I.I.; Strutynska, T.; Burdyliuk, N.; Lushchak, V.I.; Lushchak, O. The effects of low-toxic herbicide Roundup and glyphosate on mitochondria. EXCLI J. 2022, 21, 183–196. [Google Scholar] [CrossRef]
- Oh, D.-J. A long journey for acute kidney injury biomarkers. Ren. Fail. 2020, 42, 154–165. [Google Scholar] [CrossRef]
- Sidthilaw, S.; Sapbamrer, R.; Pothirat, C.; Wunnapuk, K.; Khacha-Ananda, S. Factors associated with respiratory symptoms among herbicide applicators and assistant applicators in maize field. Arch. Environ. Occup. Health 2022, 77, 320–327. [Google Scholar] [CrossRef]
- Dosemeci, M.; Alavanja, M.C.; Rowland, A.S.; Mage, D.; Zahm, S.H.; Rothman, N.; Lubin, J.H.; Hoppin, J.A.; Sandler, D.P.; Blair, A. A quantitative approach for estimating exposure to pesticides in the Agricultural Health Study. Ann. Occup. Hyg. 2002, 46, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.A.; Medeiros, Z.; Soares, C.R.; Silva, E.D.; Miranda-Filho, D.B.; Melo, F.L. A comparison of four DNA extraction protocols for the analysis of urine from patients with visceral leishmaniasis. Rev. Soc. Bras. Med. Trop. 2014, 47, 193–197. [Google Scholar] [CrossRef]
- Ho, P.W.-L.; Pang, W.-F.; Luk, C.C.-W.; Ng, J.K.-C.; Chow, K.-M.; Kwan, B.C.-H.; Li, P.K.-T.; Szeto, C.-C. Urinary Mitochondrial DNA Level as a Biomarker of Acute Kidney Injury Severity. Kidney Dis. 2017, 3, 78–83. [Google Scholar] [CrossRef]
- Hu, Q.; Ren, J.; Wu, J.; Li, G.; Wu, X.; Liu, S.; Wang, G.; Gu, G.; Ren, H.; Hong, Z.; et al. Urinary Mitochondrial DNA Levels Identify Acute Kidney Injury in Surgical Critical Illness Patients. Shock 2017, 48, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, F.; Endre, Z.H.; Buckley, N.A. Role of biomarkers of nephrotoxic acute kidney injury in deliberate poisoning and envenomation in less developed countries. Br. J. Clin. Pharmacol. 2015, 80, 3–19. [Google Scholar] [CrossRef]
- Gawarammana, I.B.; Buckley, N.A. Medical management of paraquat ingestion. Br. J. Clin. Pharmacol. 2011, 72, 745–757. [Google Scholar] [CrossRef] [Green Version]
- Guilherme, S.; Gaivão, I.; Santos, M.A.; Pacheco, M. DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide—Elucidation of organ-specificity and the role of oxidative stress. Mutat. Res./Genet. Toxicol. Environ. Mutagenesis 2012, 743, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, J.L.; Billings IV, F.T.; Bojanowski, M.T.; Gilliam, L.A.; Yu, C.; Roshanravan, B.; Roberts II, L.J.; Himmelfarb, J.; Ikizler, T.A.; Brown, N.J. Mitochondrial dysfunction and oxidative stress in patients with chronic kidney disease. Physiol. Rep. 2016, 4, e12780. [Google Scholar] [CrossRef] [PubMed]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Negatu, B.; Vermeulen, R.; Mekonnen, Y.; Kromhout, H. A Method for Semi-quantitative Assessment of Exposure to Pesticides of Applicators and Re-entry Workers: An Application in Three Farming Systems in Ethiopia. Ann. Occup. Hyg. 2016, 60, 669–683. [Google Scholar] [CrossRef]
- Carles, C.; Bouvier, G.; Lebailly, P.; Baldi, I. Use of job-exposure matrices to estimate occupational exposure to pesticides: A review. J. Expo. Sci. Environ. Epidemiol. 2017, 27, 125–140. [Google Scholar] [CrossRef]
- Li, J.; Hao, Y.; Tian, D.; He, S.; Sun, X.; Yang, H. Relationship between cumulative exposure to pesticides and sleep disorders among greenhouse vegetable farmers. BMC Public Health 2019, 19, 373. [Google Scholar] [CrossRef] [Green Version]
- Thomas, K.W.; Dosemeci, M.; Coble, J.B.; Hoppin, J.A.; Sheldon, L.S.; Chapa, G.; Croghan, C.W.; Jones, P.A.; Knott, C.E.; Lynch, C.F.; et al. Assessment of a pesticide exposure intensity algorithm in the agricultural health study. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 559–569. [Google Scholar] [CrossRef]
- Acquavella, J.F.; Alexander, B.H.; Mandel, J.S.; Burns, C.J.; Gustin, C. Exposure misclassification in studies of agricultural pesticides: Insights from biomonitoring. Epidemiology 2006, 17, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Coble, J.; Arbuckle, T.; Lee, W.; Alavanja, M.; Dosemeci, M. The validation of a pesticide exposure algorithm using biological monitoring results. J. Occup. Environ. Hyg. 2005, 2, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Fuhrimann, S.; Staudacher, P.; Lindh, C.; van Wendel de Joode, B.; Mora, A.M.; Winkler, M.S.; Kromhout, H. Variability and predictors of weekly pesticide exposure in applicators from organic, sustainable and conventional smallholder farms in Costa Rica. Occup. Environ. Med. 2020, 77, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Dong, L.; Tian, D.; Zhao, Y.; Yang, H.; Zhi, X.; Zhu, L. Association between pesticide exposure intensity and self-rated health among greenhouse vegetable farmers in Ningxia, China. PLoS ONE 2018, 13, e0209566. [Google Scholar] [CrossRef]
- Lebov, J.F.; Engel, L.S.; Richardson, D.; Hogan, S.L.; Hoppin, J.A.; Sandler, D.P. Pesticide use and risk of end-stage renal disease among licensed pesticide applicators in the Agricultural Health Study. Occup. Environ. Med. 2016, 73, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Zulu, M.; Kaile, T.; Kantenga, T.; Chileshe, C.; Nkhoma, P.; Sinkala, M. Kidney injury molecule-1 and microalbuminuria levels in Zambian population: Biomarkers of kidney injury. Pan Afr. Med. J. 2016, 24, 54. [Google Scholar] [CrossRef]
- Yadav, B.; Shashidhar, K.N.; Raveesha, A.; Muninarayana, C. Assessment of Cystatin C and Microalbumin as Biomarkers for Nephropathy in Patients with Type 2 Diabetes Mellitus. J. Evol. Med. Dent. Sci. 2021, 10, 1866–1870. [Google Scholar] [CrossRef]
- El-Ashmawy, N.; El-Zamarany, E.; Khedr, N.; El-Fattah, A.; Eltoukhy, S. Kidney injury molecule-1 (Kim-1): An early biomarker for nephropathy in type II diabetic patients. Int. J. Diabetes Dev. Ctries. 2015, 35, 431–438. [Google Scholar] [CrossRef]
- Ji, T.-T.; Tan, N.; Lu, H.-Y.; Xu, X.-Y.; Yu, Y.-Y. Early renal injury indicators can help evaluate renal injury in patients with chronic hepatitis B with long-term nucleos(t)ide therapy. World J. Clin. Cases 2020, 8, 6306–6314. [Google Scholar] [CrossRef]
- Hasegawa, K.; Wakino, S.; Yoshioka, K.; Tatematsu, S.; Hara, Y.; Minakuchi, H.; Sueyasu, K.; Washida, N.; Tokuyama, H.; Tzukerman, M.; et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J. Biol. Chem. 2010, 285, 13045–13056. [Google Scholar] [CrossRef] [Green Version]
- Morigi, M.; Perico, L.; Benigni, A. Sirtuins in Renal Health and Disease. J. Am. Soc. Nephrol. 2018, 29, 1799–1809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, S.; Cruz, P.; Kone, B.C. Sirtuin 1 Functionally and Physically Interacts with Disruptor of Telomeric Silencing-1 to Regulate α-ENaC Transcription in Collecting Duct. J. Biol. Chem. 2009, 284, 20917–20926. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.-W.; Zhao, G.-J.; Li, X.-L.; Hong, G.-L.; Li, M.-F.; Qiu, Q.-M.; Wu, B.; Lu, Z.-Q. SIRT1 exerts protective effects against paraquat-induced injury in mouse type II alveolar epithelial cells by deacetylating NRF2 in vitro. Int. J. Mol. Med. 2016, 37, 1049–1058. [Google Scholar] [CrossRef] [PubMed]
- Lisowska-Myjak, B. Serum and urinary biomarkers of acute kidney injury. Blood Purif. 2010, 29, 357–365. [Google Scholar] [CrossRef]
- Shaw, M. The use of histologically defined specific biomarkers in drug development with special reference to the glutathione S-transferases. Cancer Biomark. 2005, 1, 69–74. [Google Scholar] [CrossRef]
- McMahon, B.A.; Koyner, J.L.; Murray, P.T. Urinary glutathione S-transferases in the pathogenesis and diagnostic evaluation of acute kidney injury following cardiac surgery: A critical review. Curr. Opin. Crit. Care 2010, 16, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Tesauro, M.; Nisticò, S.; Noce, A.; Tarantino, A.; Marrone, G.; Costa, A.; Rovella, V.; Di Cola, G.; Campia, U.; Lauro, D.; et al. The possible role of glutathione-S-transferase activity in diabetic nephropathy. Int. J. Immunopathol. Pharmacol. 2015, 28, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Ralib, A.M.; Pickering, J.W.; Shaw, G.M.; Than, M.P.; George, P.M.; Endre, Z.H. The clinical utility window for acute kidney injury biomarkers in the critically ill. Crit. Care 2014, 18, 601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branten, A.J.W.; Mulder, T.P.J.; Peters, W.H.M.; Assmann, K.J.M.; Wetzels, J.F.M. Urinary Excretion of Glutathione S Transferases Alpha and Pi in Patients with Proteinuria: Reflection of the Site of Tubular Injury. Nephron 2000, 85, 120–126. [Google Scholar] [CrossRef]
- Ozkan Kurtgoz, P.; Karakose, S.; Cetinkaya, C.D.; Erkus, E.; Guney, I. Evaluation of sirtuin 1 (SIRT1) levels in autosomal dominant polycystic kidney disease. Int. Urol. Nephrol. 2022, 54, 131–135. [Google Scholar] [CrossRef]
- Brüning, T.; Sundberg, A.G.; Birner, G.; Lammert, M.; Bolt, H.M.; Appelkvist, E.L.; Nilsson, R.; Dallner, G. Glutathione transferase alpha as a marker for tubular damage after trichloroethylene exposure. Arch Toxicol. 1999, 73, 246–254. [Google Scholar] [CrossRef]
- Szymańska, B.; Marchewka, Z.; Knysz, B.; Piwowar, A. A panel of urinary biochemical markers for the noninvasive detection of kidney dysfunction in HIV-infected patients. Pol. Arch. Intern. Med. 2019, 129, 490–498. [Google Scholar] [CrossRef] [Green Version]
- von Scholten, B.J.; Theilade, S.; Lajer, M.; Rossing, P. Urinary Alpha- and Pi-Glutathione S-Transferases in Adult Patients with Type 1 Diabetes. Nephron Extra 2014, 4, 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eirin, A.; Saad, A.; Tang, H.; Herrmann, S.M.; Woollard, J.R.; Lerman, A.; Textor, S.C.; Lerman, L.O. Urinary Mitochondrial DNA Copy Number Identifies Chronic Renal Injury in Hypertensive Patients. Hypertension 2016, 68, 401–410. [Google Scholar] [CrossRef] [Green Version]
- Emma, F.; Montini, G.; Parikh, S.M.; Salviati, L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat. Rev. Nephrol. 2016, 12, 267–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Raoof, M.; Chen, Y.; Sumi, Y.; Sursal, T.; Junger, W.; Brohi, K.; Itagaki, K.; Hauser, C.J. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010, 464, 104–107. [Google Scholar] [CrossRef] [Green Version]
- Abassi, Z.; Shalabi, A.; Sohotnik, R.; Nativ, O.; Awad, H.; Bishara, B.; Frajewicki, V.; Sukhotnik, I.; Abbasi, A.; Nativ, O. Urinary NGAL and KIM-1: Biomarkers for assessment of acute ischemic kidney injury following nephron sparing surgery. J. Urol. 2013, 189, 1559–1566. [Google Scholar] [CrossRef] [PubMed]
- Wongwichit, D.; Siriwong, W.; Robson, M.G.; Fogarty, T. Herbicide Exposure to Maize Farmers in Northern Thailand: Knowledge, Attitude, and Practices. J. Med. Med. Sci. 2012, 3, 034–038. [Google Scholar]
- Ji, K.; Kim, B.; Park, S.; Kim, P.-G. Changes in Urinary MDA and 8-OHdG Concentrations due to Wearing Personal Protective Equipment and Performing Protective Behaviors among Agricultural Workers in Korea. J. Environ. Health Sci. 2017, 43, 467–477. [Google Scholar] [CrossRef]
- Konthonbut, P.; Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, M.; Yoosook, W.; Woskie, S. Paraquat exposure of backpack sprayers in agricultural area in Thailand. Hum. Ecol. Risk Assess. 2020, 26, 2798–2811. [Google Scholar] [CrossRef]
- Mahaboonpeeti, R.; Kongtip, P.; Nankongnab, N.; Tipayamongkholgul, M.; Bunngamchairat, A.; Yoosook, W.; Woskie, S. Evaluation of Dermal Exposure to the Herbicide Alachlor Among Vegetable Farmers in Thailand. Ann. Work Expo. Health 2018, 62, 1147–1158. [Google Scholar] [CrossRef] [PubMed]
- Knudsen, L.E.; Hansen, P.W.; Mizrak, S.; Hansen, H.K.; Mørck, T.A.; Nielsen, F.; Siersma, V.; Mathiesen, L. Biomonitoring of Danish school children and mothers including biomarkers of PBDE and glyphosate. Rev. Environ. Health 2017, 32, 279–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acquavella, J.F.; Alexander, B.H.; Mandel, J.S.; Gustin, C.; Baker, B.; Chapman, P.; Bleeke, M. Glyphosate biomonitoring for farmers and their families: Results from the Farm Family Exposure Study. Environ. Health Perspect. 2004, 112, 321–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Peng, X.; Yang, H.; Wang, H.; Shu, Y. Deficiency of multidrug and toxin extrusion 1 enhances renal accumulation of paraquat and deteriorates kidney injury in mice. Mol. Pharm. 2011, 8, 2476–2483. [Google Scholar] [CrossRef]
- Carvalho, W.; de Arcaute, C.R.; Torres, L.; Silva, D.D.M.; Soloneski, S.; Larramendy, M. Genotoxicity of mixtures of glyphosate with 2,4-dichlorophenoxyacetic acid chemical forms towards Cnesterodon decemmaculatus (Pisces, Poeciliidae). Environ. Sci. Pollut. Res. 2020, 27, 6515–6525. [Google Scholar] [CrossRef]
Parameters | Score |
---|---|
Never used PPE (PPE-0) | 1.0 |
Face shields or goggles, fabric/leather gloves, other protective clothing (PPE-1) | 0.8 |
Cartridge respirator or gas mask, Disposable outer clothing (PPE-2) | 0.7 |
Chemically resistant rubber gloves (PPE-3) | 0.6 |
PPE-1 & PPE-2 | 0.5 |
PPE-1 & PPE-3 | 0.4 |
PPE-2 & PPE-3 | 0.3 |
PPE-1 & PPE-2 & PPE-3 | 0.1 |
Variable | Characteristics | Frequencies (n) | Percentage |
---|---|---|---|
Gender: | Male | 40 | 62.5 |
Female | 24 | 37.5 | |
Age: | ≤45 | 15 | 23.44 |
46–55 | 28 | 43.75 | |
56–65 | 16 | 25 | |
≥66 | 5 | 7.81 | |
Year of farming experience | <30 | 23 | 35.94 |
≥30 | 41 | 64.06 | |
Alcohol use | Yes | 28 | 43.75 |
No | 36 | 56.25 | |
Tobacco use | Yes | 13 | 20.31 |
No | 51 | 79.69 | |
Personal protective equipment (PPE) use | Yes | 63 | 98.44 |
No | 1 | 1.56 | |
Type of PPE (multiple responses) | Glove | 54 | 84.37 |
Boots | 63 | 98.46 | |
Facial mask | 58 | 90.62 | |
Activity in farm (multiple responses) | Mixing herbicide | 47 | 73.44 |
Spraying herbicide | 64 | 100 | |
Repair herbicide applicator | 0 | 0 | |
Type of herbicide equipment | High-pressure lance sprayer | 62 | 96.87 |
Backpack sprayer | 2 | 3.13 | |
Volume of herbicide (tank/day) | 0–5 | 8 | 12.5 |
6–10 | 22 | 34.38 | |
11–15 | 21 | 32.81 | |
16–20 | 10 | 15.63 | |
21–25 | 3 | 4.68 | |
Type of herbicide use | GBH | 28 | 43.75 |
GBH + paraquat + 2,4-D | 36 | 56.25 | |
Average time spraying (hour/day) | 0–5 | 26 | 40.63 |
6–10 | 36 | 56.25 | |
11–15 | 2 | 3.12 | |
Day 1 time spraying (hour) | 0–5 | 25 | 39.06 |
6–10 | 37 | 57.81 | |
11–15 | 2 | 3.13 | |
Day 2 time spraying (hour) | 0–5 | 30 | 46.88 |
6–10 | 31 | 48.44 | |
11–15 | 3 | 4.68 |
Spearman Correlation | Sirtuin-1 | π-GST | ND-1 | COX-3 | Microalbumin |
---|---|---|---|---|---|
Sirtuin-1 | 1.000 | ||||
π-GST | 0.017 | 1.000 | |||
ND-1 | 0.212 | 0.102 | 1.000 | ||
COX-3 | 0.308 * | 0.056 | 0.604 *** | 1.000 | |
microalbumin | 0.137 | −0.007 | 0.453 *** | 0.257 * | 1.000 |
(A) Urine sample from all subjects (n = 64) | ||||||||
Independent variable | Sirtuin-1 | π-GST | ND-1 | COX-3 | ||||
B | SE | B | SE | B | SE | B | SE | |
Single or cocktail use of herbicide | −41.817 | 24.028 | −0.383 | 0.597 | 29.157 | 33.570 | −4.841 | 15.019 |
Year of farming experience (year) | −0.031 | 0.946 | 0.013 | 0.023 | 0.787 | 1.321 | 1.177 * | 0.591 |
Cumulative EII | −0.488 | 0.205 | 0.006 | 0.005 | 0.619 * | 0.286 | 0.287 * | 0.128 |
Volume of herbicide (tank) | 7.336 | 5.305 | −0.058 | 0.132 | −7.114 | 7.412 | −0.418 | 3.316 |
(B) Urine sample from farmers who sprayed single use of herbicide (n = 28) | ||||||||
Independent variable | Sirtuin-1 | π-GST | ND-1 | COX-3 | ||||
B | SE | B | SE | B | SE | B | SE | |
Year of farming experience (year) | 0.036 | 1.348 | 0.031 | 0.040 | −0.014 | 0.008 | −0.011 | 0.007 |
Cumulative EII | −0.385 | 0.305 | 0.017 | 0.009 | 0.003 | 0.002 | 0.001 | 0.002 |
Volume of herbicide (tank) | −0.944 | 11.286 | −0.090 | 0.332 | −0.153 | 0.069 | −0.082 | 0.061 |
(C) Urine sample from farmers who sprayed cocktail use of herbicide (n = 36) | ||||||||
Independent variable | Sirtuin-1 | π-GST | ND-1 | COX-3 | ||||
B | SE | B | SE | B | SE | B | SE | |
Year of farming experience | −0.323 | 1.431 | 0.011 | 0.028 | 0.89 | 2.528 | 2.078 | 1.106 |
Cumulative EII | −0.524 | 0.295 | −0.004 | 0.006 | 1.183 * | 0.521 | 0.524 * | 0.228 |
Volume of herbicide (tank) | 9.609 | 6.356 | 0.02 | 0.123 | −12.637 | 11.229 | −2.129 | 4.913 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khacha-ananda, S.; Intayoung, U.; Wunnapuk, K.; Kohsuwan, K.; Srisai, P.; Sapbamrer, R. Urinary Levels of Sirtuin-1, π-Glutathione S-Transferase, and Mitochondrial DNA in Maize Farmer Occupationally Exposed to Herbicide. Toxics 2022, 10, 252. https://doi.org/10.3390/toxics10050252
Khacha-ananda S, Intayoung U, Wunnapuk K, Kohsuwan K, Srisai P, Sapbamrer R. Urinary Levels of Sirtuin-1, π-Glutathione S-Transferase, and Mitochondrial DNA in Maize Farmer Occupationally Exposed to Herbicide. Toxics. 2022; 10(5):252. https://doi.org/10.3390/toxics10050252
Chicago/Turabian StyleKhacha-ananda, Supakit, Unchisa Intayoung, Klintean Wunnapuk, Kanyapak Kohsuwan, Pitchayuth Srisai, and Ratana Sapbamrer. 2022. "Urinary Levels of Sirtuin-1, π-Glutathione S-Transferase, and Mitochondrial DNA in Maize Farmer Occupationally Exposed to Herbicide" Toxics 10, no. 5: 252. https://doi.org/10.3390/toxics10050252
APA StyleKhacha-ananda, S., Intayoung, U., Wunnapuk, K., Kohsuwan, K., Srisai, P., & Sapbamrer, R. (2022). Urinary Levels of Sirtuin-1, π-Glutathione S-Transferase, and Mitochondrial DNA in Maize Farmer Occupationally Exposed to Herbicide. Toxics, 10(5), 252. https://doi.org/10.3390/toxics10050252