Multi-Component Passivators Regulate Heavy Metal Accumulation in Paddy Soil and Rice: A Three-Site Field Experiment in South China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Site and Soil Characteristics
2.2. Passivator Treatments, Sampling, and Measurements
2.3. Statistical Analysis
3. Results and Discussion
3.1. Grain Heavy Metals (Cd, Cr, and Pb)
3.2. Soil pH
3.3. DTPA-Extractable Heavy Metals (Cd, Cr, and Pb)
3.4. Microbial Carbon and Soil Enzymes
3.5. Physicochemical Characteristics of Soil
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, N.; Kang, Y.; Pan, W.; Zeng, L.; Zhang, Q.; Luo, J. Concentration and transportation of heavy metals in vegetables and risk assessment of human exposure to bioaccessible heavy metals in soil near a waste-incinerator site, South China. Sci. Total Environ. 2015, 521–522, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Xiao, W.; Zhang, Y.; Zhao, S.; Wang, G.; Zhang, Q.; Wang, Q. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China. Environ. Monit. Assess. 2015, 187, 378. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chen, L.; Tsang, D.C.; Li, J.S.; Baek, K.; Hou, D.; Ding, S.; Poon, C.S. Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. J. Clean. Prod. 2018, 199, 69–76. [Google Scholar] [CrossRef]
- Rolka, E.; Żołnowski, A.C.; Kozłowska, K.A. Assessment of the content of trace elements in soils and roadside vegetation in the vicinity of some gasoline stations in Olsztyn (Poland). J. Elem. 2020, 25, 549–563. [Google Scholar]
- Rolka, E.; Żołnowski, A.C.; Sadowska, M.M. Assessment of Heavy Metal Content in Soils Adjacent to the DK16-Route in Olsztyn (North-Eastern Poland). Pol. J. Environ. Stud. 2020, 29, 4303–4311. [Google Scholar] [CrossRef]
- Hou, D.; Li, F. Complexities surrounding China’s soil action plan. Land Degrad. Dev. 2017, 28, 2315–2320. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Som, A.M.; Wang, F.; Jin, F.; McMillan, O.; Al-Tabbaa, A. Long-term impact of biochar on the immobilisation of nickel (II) and zinc (II) and the revegetation of a contaminated site. Sci. Total Environ. 2016, 542, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Lahori, A.H.; Mierzwa-Hersztek, M.; Rashid, M.; Shahmir, A.K.; Mehrunisa, M.; Zobia, N.; Muneer, A.; Zengqiang, Z. Residual effects of tobacco biochar along with different fixing agents on stabilization of trace elements in multi-metal contaminated soils. J. Environ. Sci. 2020, 87, 299–309. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Akakuru, O.U.; Xu, X.; Wu, A. Research progress and mechanism of nanomaterials-mediated in-situ remediation of cadmium-contaminated soil: A critical review. J. Environ. Sci. 2021, 104, 351–364. [Google Scholar] [CrossRef]
- Holland, J.; Bennett, A.; Newton, A.; White, P.; McKenzie, B.; George, T.; Pakeman, R.; Bailey, J.; Fornara, D.; Hayes, R. Liming impacts on soils, crops and biodiversityin the UK: A review. Sci. Total Environ. 2018, 610, 316–332. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Wang, M.; Chen, W.; Dai, Y. Limestone dosage response of cadmium phytoavailability minimization in rice: A trade-off relationship between soil pH and amorphous manganese content. J. Hazard. Mater. 2021, 403, 123664. [Google Scholar] [CrossRef] [PubMed]
- Żołnowski, A.C.; Wyszkowski, M.; Rolka, E.; Sawicka, M. Mineral Materials as a Neutralizing Agent Used on Soil Contaminated with Copper. Materials 2021, 14, 6830. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.H.; Chen, C.; Xu, C.; Zhu, Q.H.; Huang, D.Y. Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environ. Pollut. 2016, 219, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chen, H.; Kopittke, P.M.; Zhao, F.J. Cadmium contamination in agricultural soils of China and the impact on food safety. Environ. Pollut. 2019, 249, 1038–1048. [Google Scholar] [CrossRef]
- Żołnowski, A.C.; Busse, M.K.; Zając, P.K. Response of maize (Zea mays L.) to soil contamination with copper depending on applied contamination neutralizing substances. J. Elem. 2013, 18, 507–520. [Google Scholar] [CrossRef]
- O’Connor, D.; Peng, T.; Zhang, J.; Tsang, D.C.; Alessi, D.S.; Shen, Z.; Bolan, N.S.; Hou, D. Biochar application for the remediation of heavy metal polluted land: A reviewof in situ field trials. Sci. Total Environ. 2018, 619, 815–826. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Lu, M.; Bilal, H.; Afsheen, Z.; Muhammad, B.K.; He, Z.; Hanumanth, K.G.; Yang, X. Assessing the immobilization efficiency of organic and inorganic amendments for cadmium phytoavailability to wheat. J. Soils Sediment. 2019, 19, 3078–3717. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biocharamendedsoils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Żołnowski, A.C.; Ciećko, Z.; Najmowicz, T. Arsenic content in and uptake by plants from arsenic-contaminated soil. In Application of Phytotechnologies for Cleanup of Industrial, Agricultural, and Wastewater Contamination; Kulakow, P.A., Pidlisnyuk, V.V., Eds.; NATO Science for Peace and Security Series C: Environmental Security; Springer: Dordrecht, The Netherlands, 2010; pp. 135–145. [Google Scholar] [CrossRef]
- Lahori, A.H.; Zhang, Z.; Shaheen, S.M.; Rinklebe, J.; Guo, Z.; Li, R.; Mahar, A.; Wang, Z.; Ren, C.; Mi, S. Mono-and co-applications of Ca-bentonite with zeolite, Cahydroxide, and tobacco biochar affect phytoavailability and uptake of copper andlead in a gold mine-polluted soil. J. Hazard. Mater. 2019, 374, 401–411. [Google Scholar] [CrossRef]
- Chen, D.; Ye, X.; Zhang, Q.; Xiao, W.; Ni, Z.; Yang, L.; Zhao, S.; Hu, J.; Gao, N.; Huang, M. The effect of sepiolite application on rice Cd uptake–A two-year field study in Southern China. J. Environ. Manag. 2020, 254, 109788. [Google Scholar] [CrossRef]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.P.; Wang, P.; Chang, J.D.; Kopittke, P.M.; Zhao, F.J. Producing Cd-safe rice grains in moderately and seriously Cd contaminated paddy soils. Chemosphere 2021, 267, 128893. [Google Scholar] [CrossRef] [PubMed]
- Gong, L.; Wang, J.; Abbas, T.; Zhang, Q.; Cai, M.; Tahir, M.; Wu, D.; Di, H. Immobilization of exchangeable Cd in soil using mixed amendment and its effect on soil microbial communities under paddy upland rotation system. Chemosphere 2021, 262, 127828. [Google Scholar] [CrossRef] [PubMed]
- Kumuduni, N.P.; Shaheen, S.M.; Chen, S.S.; Daniel, C.W.T.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Yong, S.O. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar]
- Storer, D.A. A simple high sample volume ashing procedure for determination of soil organic matter. Commun. Soil Sci. Plant Anal. 1984, 15, 759–772. [Google Scholar] [CrossRef]
- Guo, G.; Zhou, Q.; Ma, L.Q. Availabilily and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: A review. Environ. Monit. Assess. 2006, 116, 513–528. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, Y.Q.; Liang, C.H. Evaluation of phosphate fertilizers for the immobilization of Cd in contaminated soils. PLoS ONE 2015, 10, e0124022. [Google Scholar]
- Honma, T.; Ohba, H.; Kaneko-Kadokura, A.; Makino, T.; Nakamura, K.; Katou, H. Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environ. Sci. Technol. 2016, 50, 4178–4185. [Google Scholar] [CrossRef]
- Xiao, W.; Ye, X.; Yang, X.; Li, T.; Zhao, S.; Zhang, Q. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Ecotoxicol. Environ. Saf. 2015, 113, 439–445. [Google Scholar] [CrossRef]
- Xiao, W.; Ye, X.; Zhu, Z.; Zhang, Q.; Zhao, S.; Chen, D.; Gao, N.; Hu, J. Combined effects of rice straw-derived biochar and water management on transformation of chromium and its uptake by rice in contaminated soils. Ecotoxicol. Environ. Saf. 2021, 208, 111506. [Google Scholar] [CrossRef]
- Yu, L.L.; Zhu, J.Y.; Huang, Q.Q.; Su, D.C.; Jiang, R.E.; Li, H.F. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety. Ecotoxicol. Environ. Saf. 2014, 108, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhang, Y.; Jin, F.; McMillan, O.; Al-Tabbaa, A. Qualitative and quantitative characterisation of adsorption mechanisms of lead on four biochars. Sci. Total Environ. 2017, 609, 1401–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zheng, K.; Zhan, W.; Huang, L.; Liu, Y.; Li, T.; Yang, Z.; Liao, Q.; Chen, R.; Zhang, C.; et al. Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar. Ecotoxicol. Environ. Saf. 2021, 207, 111294. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.H.; Huang, D.Y.; Zhu, G.X.; Ge, T.D.; Liu, G.S.; Zhu, H.H.; Liu, S.L.; Zhang, X.N. Sepiolite is recommended for the remediation of cd-contaminated paddy soil. Acta Agric. Scand. Sect. B Soil Plant Sci. 2010, 60, 110–116. [Google Scholar] [CrossRef]
- Vrinceanu, N.O.; Motelică, D.M.; Dumitru, M.; Calciu, I.; Tănase, V.; Preda, M. Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil: The Copșa Mică case study (Romania). Catena 2019, 176, 336–342. [Google Scholar] [CrossRef]
- Zhan, F.; Zeng, W.; Yuan, X.; Li, B.; Li, T.; Zu, Y.; Jiang, M.; Li, Y. Field experimenton the effects of sepiolite and biochar on the remediation of Cd-and Pb-pollutedfarmlands around a Pb–Zn mine in Yunnan Province, China. Environ. Sci. Pollut. Res. 2019, 26, 7743–7751. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jiang, J.; Meng, Y.; Aikelaimu, A.; Xu, Y.; Xiang, H.; Gao, Y.; Chen, X. Preparation, environmental application and prospect of biochar-supported metal nanoparticles: A review. J. Hazard. Mater. 2020, 388, 122026. [Google Scholar] [CrossRef]
- Friesl-Hanl, W.; Platzer, K.; Horak, O.; Gerzabek, M.H. Immobilising of Cd, Pb, and Zn contaminated arable soils close to a former Pb/Zn smelter: A field study in Austria over 5 years. Environ. Geochem. Health 2009, 31, 581–594. [Google Scholar] [CrossRef]
- Li, H.; Xu, H.; Zhou, S.; Yu, Y.; Li, H.; Zhou, C.; Chen, Y.; Li, Y.; Wang, M.; Wang, G. Distribution and transformation of lead in rice plants grown in contaminated soil amended with biochar and lime. Ecotoxicol. Environ. Saf. 2018, 165, 589–596. [Google Scholar] [CrossRef]
- Pei, P.; Sun, Y.; Wang, L.; Liang, X.; Xu, Y. In-situ stabilization of Cd by sepiolite co–applied with organic amendments in contaminated soils. Ecotoxicol. Environ. Saf. 2021, 208, 111600. [Google Scholar] [CrossRef]
- Wei, L.; Huang, Y.; Huang, L.; Huang, Q.; Li, Y.; Li, X.; Yang, S.; Liu, C.; Liu, Z. Combined biochar and soda residues increases maize yields and decreases grain Cd/Pb in a highly Cd/Pb-polluted acid Udults soil. Agric. Ecosyst. Environ. 2021, 306, 107198. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Von, P.N.F.; He, J. Effect of different organic wastes on soil properties and plant growth and yield—A review. Sci. Agric. Bohem. 2017, 48, 224–237. [Google Scholar]
- Liu, Z.; Qinlei, R.; Wei, Z.; Guoqing, L. Effects of inorganic and organic amendment on soil chemical properties, enzyme activities, microbial community and soil quality in yellow clayey soil. PLoS ONE 2017, 12, e0172767. [Google Scholar] [CrossRef] [PubMed]
- Hamid, Y.; Tang, L.; Muhammad, I.S.; Xuerui, C.; Hussain, B.; Aziz, M.A.; Muhammad, U.; He, Z.L.; Yang, X. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ. 2019, 660, 80–96. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Hussain, B.; Usman, M.; Lin, Q.; Saqib Rashid, M.; He, Z.; Yang, X. Organic soil additives for the remediation of cadmium contaminated soils and their impact on the soil-plant system: A review. Sci. Total Environ. 2020, 707, 136121. [Google Scholar] [CrossRef]
- Lin, L.; Li, Z.; Liu, X.; Qiu, W.; Song, Z. Effects of Fe-Mn modified biochar composite treatment on the properties of As-polluted paddy soil. Environ. Pollut. 2019, 244, 600–607. [Google Scholar] [CrossRef]
Parameters | ZJ | YC | FY | Lime (L) | Sepiolite (S) | Biochar (C) |
---|---|---|---|---|---|---|
Organic matter (g kg−1) | 35.4 | 47.5 | 27.4 | / | / | / |
Available nitrogen (mg kg−1) | 169 | 184 | 135 | / | / | / |
Available phosphorus (mg kg−1) | 38.9 | 36.2 | 11.3 | / | / | / |
Cation exchange capacity (cmol (+) kg−1) | 11.8 | 17.5 | 9.9 | / | / | / |
Clay (%) | 29 | 32 | 28 | / | / | / |
Silt (%) | 33 | 58 | 60 | / | / | / |
Sand (%) | 38 | 10 | 12 | / | / | / |
pH | 5.33 | 5.48 | 4.94 | 12.5 | 9.50 | 9.95 |
Cd (mg kg−1) | 0.362 | 0.405 | 0.481 | 0.113 | 0.137 | 0.195 |
Cr (mg kg−1) | 28.2 | 62.1 | 47.5 | 8.51 | 7.85 | 16.1 |
Pb (mg kg−1) | 45.6 | 78.9 | 80.2 | 10.4 | 9.51 | 7.3 |
Parameters | pH | DTPA−Cd | DTPA−Cr | DTPA−Pb | MC | UA | PA | SA | OM | AN | AP | AK | CEC | Rice Cd | Rice Cr | Rice Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | −0.354 | −0.763 * | −0.147 | 0.325 | 0.094 | −0.083 | −0.259 | 0.269 | 0.166 | 0.217 | −0.417 | 0.065 | −0.743 * | −0.626 | −0.532 |
DTPA−Cd | −0.354 | 1 | 0.282 | −0.326 | −0.417 | 0.384 | 0.077 | 0.057 | −0.945 ** | −0.821 ** | −0.721 * | 0.690 * | −0.741 * | 0.689 * | −0.364 | 0.419 |
DTPA−Cr | −0.763 * | 0.282 | 1 | −0.281 | 0.134 | 0.305 | 0.387 | 0.573 | −0.337 | −0.220 | −0.076 | 0.047 | −0.264 | 0.499 | 0.696 * | 0.150 |
DTPA−Pb | −0.147 | −0.326 | −0.281 | 1 | −0.345 | −0.486 | −0.768 * | −0.707 * | 0.588 | 0.674 * | −0.259 | 0.037 | 0.835 ** | −0.058 | 0.095 | 0.496 |
MC | 0.325 | −0.417 | 0.134 | −0.345 | 1 | 0.589 | 0.581 | 0.616 | 0.263 | 0.289 | 0.575 | −0.511 | −0.077 | −0.456 | 0.195 | −0.727 * |
UA | 0.094 | 0.384 | 0.305 | −0.486 | 0.589 | 1 | 0.441 | 0.434 | −0.455 | −0.222 | −0.129 | 0.127 | −0.589 | 0.140 | −0.238 | −0.298 |
PA | −0.083 | 0.077 | 0.387 | −0.768 * | 0.581 | 0.441 | 1 | 0.950 ** | −0.327 | −0.418 | 0.568 | −0.241 | −0.654 | −0.082 | 0.188 | −0.662 |
SA | −0.259 | 0.057 | 0.573 | −0.707 * | 0.616 | 0.434 | 0.950 ** | 1 | −0.273 | −0.334 | 0.529 | −0.183 | −0.561 | 0.064 | 0.418 | −0.545 |
OM | 0.269 | −0.945 ** | −0.337 | 0.588 | 0.263 | −0.455 | −0.327 | −0.273 | 1 | 0.932 ** | 0.502 | −0.538 | 0.893 ** | −0.573 | 0.319 | −0.220 |
AN | 0.166 | −0.821 ** | −0.220 | 0.674 * | 0.289 | −0.222 | −0.418 | −0.334 | 0.932 ** | 1 | 0.312 | −0.383 | 0.880 ** | −0.406 | 0.286 | −0.096 |
AP | 0.217 | −0.721 * | −0.076 | −0.259 | 0.575 | −0.129 | 0.568 | 0.529 | 0.502 | 0.312 | 1 | −0.551 | 0.127 | −0.507 | 0.367 | −0.668 * |
AK | −0.417 | 0.690 * | 0.047 | 0.037 | −0.511 | 0.127 | −0.241 | −0.183 | −0.538 | −0.383 | −0.551 | 1 | −0.343 | 0.879 ** | −0.241 | 0.649 |
CEC | 0.065 | −0.741 * | −0.264 | 0.835 ** | −0.077 | −0.589 | −0.654 | −0.561 | 0.893 ** | 0.880 ** | 0.127 | −0.343 | 1 | −0.356 | 0.335 | 0.202 |
Rice Cd | −0.743 * | 0.689 * | 0.499 | −0.058 | −0.456 | 0.140 | −0.082 | 0.064 | −0.573 | −0.406 | −0.507 | 0.879 ** | −0.356 | 1 | 0.155 | 0.662 |
Rice Cr | −0.626 | −0.364 | 0.696 * | 0.095 | 0.195 | −0.238 | 0.188 | 0.418 | 0.319 | 0.286 | 0.367 | −0.241 | 0.335 | 0.155 | 1 | 0.118 |
Rice Pb | −0.532 | 0.419 | 0.150 | 0.496 | −0.727 * | −0.298 | −0.662 | −0.545 | −0.220 | −0.096 | −0.668 * | 0.649 | 0.202 | 0.662 | 0.118 | 1 |
Experiment plot | Treatments | OM | CEC | ||||
Values, g kg−1 | Increase/ Decrease, % | Values, cmol(+) kg−1 | Increase/ Decrease, % | ||||
ZJ | CK | 38.5 ± 3.0 | / | 12.4 ± 0.9 | / | ||
L + C | 43.6 ± 4.1 | +13.2 | 12.0 ± 1.0 | −3.2 | |||
L + C + S | 45.8 ± 3.5 | +19.0 | 12.8 ± 1.0 | +3.2 | |||
YC | CK | 50.2 ± 4.9 | / | 19.1 ± 1.2 | / | ||
L + C | 49.5 ± 3.8 | −1.4 | 17.7 ± 1.1 | −7.3 | |||
L + C + S | 54.6 ± 5.1 | +8.8 | 17 ± 1.1 | −11.0 | |||
FY | CK | 27.4 ± 2.6 | / | 10.0 ± 0.9 | / | ||
L + C | 29.3 ± 3.0 | +6.9 | 9.7 ± 0.9 | −3.0 | |||
L + C + S | 30.5 ± 3.5 | +11.3 | 9.9 ± 0.8 | −1.0 | |||
Experiment plot | Treatments | AN% | AP% | AK% | |||
Values, mg kg−1 | Increase/ Decrease, % | Values, mg kg−1 | Increase/ Decrease, % | Values, mg kg−1 | Increase/ Decrease, % | ||
ZJ | CK | 172.8 ± 15.1 | / | 25.8 ± 3.2 | / | 73.6 ± 8.2 | / |
L + C | 165.2 ± 10.9 | −4.4 | 46.2 ± 3.6 | +79.1 | 80.0 ± 9.5 | +8.7 | |
L + C + S | 167.1 ± 12.3 | −3.3 | 35.7 ± 3.5 | +38.4 | 75.4 ± 9.3 | +2.4 | |
YC | CK | 198.9 ± 15.9 | / | 20.2 ± 2.8 | / | 86.8 ± 7.9 | / |
L + C | 187.5 ± 16.3 | −5.7 | 21.6 ± 3.7 | +6.9 | 76.5 ± 9.3 | −11.9 | |
L + C + S | 227.9 ± 18.5 | +14.6 | 25.7 ± 3.1 | +27.2 | 85.1 ± 8.6 | −2.0 | |
FY | CK | 135.1 ± 11.9 | / | 11.3 ± 0.8 | / | 131.0 ± 10.5 | / |
L + C | 123.7 ± 13.6 | −8.4 | 14.3 ± 1.3 | +26.5 | 83.6 ± 9.1 | −36.2 | |
L + C + S | 145.1 ± 10.8 | +7.4 | 16.2 ± 1.4 | +43.4 | 90.8 ± 8.7 | −30.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Ye, X.; Chen, D.; Zhang, Q.; Xiao, W.; Wu, S.; Hu, J.; Gao, N.; Huang, M. Multi-Component Passivators Regulate Heavy Metal Accumulation in Paddy Soil and Rice: A Three-Site Field Experiment in South China. Toxics 2022, 10, 259. https://doi.org/10.3390/toxics10050259
Zhao S, Ye X, Chen D, Zhang Q, Xiao W, Wu S, Hu J, Gao N, Huang M. Multi-Component Passivators Regulate Heavy Metal Accumulation in Paddy Soil and Rice: A Three-Site Field Experiment in South China. Toxics. 2022; 10(5):259. https://doi.org/10.3390/toxics10050259
Chicago/Turabian StyleZhao, Shouping, Xuezhu Ye, De Chen, Qi Zhang, Wendan Xiao, Shaofu Wu, Jing Hu, Na Gao, and Miaojie Huang. 2022. "Multi-Component Passivators Regulate Heavy Metal Accumulation in Paddy Soil and Rice: A Three-Site Field Experiment in South China" Toxics 10, no. 5: 259. https://doi.org/10.3390/toxics10050259
APA StyleZhao, S., Ye, X., Chen, D., Zhang, Q., Xiao, W., Wu, S., Hu, J., Gao, N., & Huang, M. (2022). Multi-Component Passivators Regulate Heavy Metal Accumulation in Paddy Soil and Rice: A Three-Site Field Experiment in South China. Toxics, 10(5), 259. https://doi.org/10.3390/toxics10050259