Simulating PM2.5 Concentrations during New Year in Cuenca, Ecuador: Effects of Advancing the Time of Burning Activities
Abstract
:1. Introduction
- Are there reductions in PM2.5 concentrations if the emission activities associated with the arrival of a new year in Cuenca occur some hours before midnight?
- What is the magnitude of these changes?
2. Materials and Methods
2.1. Primary Sources and Past PM2.5 Concentrations in Cuenca
2.2. Estimation of PM2.5 Emissions through Burning Activities Associated with the Arrival of 2022
2.2.1. Emissions Due to the Use of Fireworks
2.2.2. Emissions Due to the Burning of Puppets
2.3. Approach for Modeling the Dispersion of PM2.5
3. Results and Discussion
3.1. PM1 and PM2.5 Records on 31 December 2021 and 1 January 2022
3.2. Modeling PM2.5 Dispersion on 31 December and 1 January
3.2.1. Period from 31 December 2021 to 1 January 2022
3.2.2. Modeling the Effect of Advancing the Time of Burning Activities
3.3. Limitations of This Study and Future Activities
4. Conclusions and Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Greven, F.E.; Vonk, J.M.; Fischer, P.; Duijm, F.; Vink, N.M.; Brunekreef, B. Air Pollution during New Year’s Fireworks and Daily Mortality in the Netherlands. Sci. Rep. 2019, 9, 5735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanda, S.; Ličbinský, R.; Hegrová, J.; Goessler, W. Impact of New Year’s Eve Fireworks on the Size Resolved Element Distributions in Airborne Particles. Environ. Int. 2019, 128, 371–378. [Google Scholar] [CrossRef] [PubMed]
- FlacsoAndes. Los Años Viejos. Available online: https://biblio.flacsoandes.edu.ec/libros/106617-opac (accessed on 13 March 2022).
- Brimblecombe, P.; Lai, Y. Effect of Fireworks, Chinese New Year and the COVID-19 Lockdown on Air Pollution and Public Attitudes. Aerosol Air Qual. Res. 2020, 20, 2318–2331. [Google Scholar] [CrossRef]
- Singh, A.; Pant, P.; Pope, F.D. Air Quality during and after Festivals: Aerosol Concentrations, Composition and Health Effects. Atmos. Res. 2019, 227, 220–232. [Google Scholar] [CrossRef]
- World Health Organization. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide; World Health Organization: Copenhagen, Denmark, 2006. [Google Scholar]
- Song, Y.; Huang, B.; He, Q.; Chen, B.; Wei, J.; Mahmood, R. Dynamic Assessment of PM2.5 Exposure and Health Risk Using Remote Sensing and Geo-Spatial Big Data. Environ. Pollut. 2019, 253, 288–296. [Google Scholar] [CrossRef]
- IARC. Outdoor Air Pollution; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Loomis, D.; Grosse, Y.; Lauby-Secretan, B.; Ghissassi, F.E.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Baan, R.; Mattock, H.; Straif, K. The Carcinogenicity of Outdoor Air Pollution. Lancet Oncol. 2013, 14, 1262–1263. [Google Scholar] [CrossRef]
- Peeples, L. News Feature: How Air Pollution Threatens Brain Health. Proc. Natl. Acad. Sci. USA 2020, 117, 13856–13860. [Google Scholar] [CrossRef]
- Wang, L.; Luo, D.; Liu, X.; Zhu, J.; Wang, F.; Li, B.; Li, L. Effects of PM2.5 Exposure on Reproductive System and Its Mechanisms. Chemosphere 2021, 264, 128436. [Google Scholar] [CrossRef]
- Hickey, C.; Gordon, C.; Galdanes, K.; Blaustein, M.; Horton, L.; Chillrud, S.; Ross, J.; Yinon, L.; Chen, L.C.; Gordon, T. Toxicity of Particles Emitted by Fireworks. Part. Fibre Toxicol. 2020, 17, 28. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Song, H.; Tao, B.; Qiu, B.; Tian, D.; Zhan, M.; Wu, Z.; Wu, J.; Zhang, Q.; et al. Effects of Short-Term Ambient PM2.5 Exposure on the Blood Cell Count and Hemoglobin Concentration among 82,431 People in Eastern China. Sci. Total Environ. 2021, 776, 146046. [Google Scholar] [CrossRef]
- Fu, H.; Yang, Z.; Liu, Y.; Shao, P. Ecological and Human Health Risk Assessment of Heavy Metals in Dust Affected by Fireworks during the Spring Festival in Beijing. Air Qual. Atmos. Health 2021, 14, 139–148. [Google Scholar] [CrossRef]
- Cecconi, A.; Navarrete, G.; Garcia-Guimaraes, M.; Vera, A.; Blanco-Dominguez, R.; Sanz-Garcia, A.; Lozano-Prieto, M.; Lopez-Melgar, B.; Rivero, F.; Martin, P.; et al. Influence of Air Pollutants on Circulating Inflammatory Cells and MicroRNA Expression in Acute Myocardial Infarction. Sci. Rep. 2022, 12, 5350. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lu, F.; Guo, M.; Fan, W.; Ji, W.; Dong, Z. Associations between PM1 Exposure and Daily Emergency Department Visits in 19 Hospitals, Beijing. Sci. Total Environ. 2021, 755, 142507. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Guo, Y.-M.; Bloom, M.S.; Dharmagee, S.C.; Morawska, L.; Heinrich, J.; Jalaludin, B.; Markevychd, I.; Knibbsf, L.D.; Lin, S.; et al. Is PM1 Similar to PM2.5? A New Insight into the Association of PM1 and PM2.5 with Children’s Lung Function. Environ. Int. 2020, 145, 106092. [Google Scholar] [CrossRef]
- Lin, C.-C. A Review of the Impact of Fireworks on Particulate Matter in Ambient Air. J. Air Waste Manag. Assoc. 2016, 66, 1171–1182. [Google Scholar] [CrossRef]
- Sokhi, R.S.; Moussiopoulos, N.; Baklanov, A.; Bartzis, J.; Coll, I.; Finardi, S.; Friedrich, R.; Geels, C.; Grönholm, T.; Halenka, T.; et al. Advances in Air Quality Research—Current and Emerging Challenges. Atmos. Chem. Phys. 2022, 22, 4615–4703. [Google Scholar] [CrossRef]
- Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; et al. Online Coupled Regional Meteorology Chemistry Models in Europe: Current Status and Prospects. Atmos. Chem. Phys. 2014, 14, 317–398. [Google Scholar] [CrossRef] [Green Version]
- Stull, R.B.; Ahrens, C.D. Meteorology for Scientists and Engineers; Brooks/Cole: Salt Lake City, UT, USA, 2000. [Google Scholar]
- Pleim, J.; Ran, L. Surface Flux Modeling for Air Quality Applications. Atmosphere 2011, 2, 271–302. [Google Scholar] [CrossRef] [Green Version]
- Baklanov, A.; Brunner, D.; Carmichael, G.; Flemming, J.; Freitas, S.; Gauss, M.; Hov, Ø.; Mathur, R.; Schlünzen, K.H.; Seigneur, C.; et al. Key Issues for Seamless Integrated Chemistry–Meteorology Modeling. Bull. Am. Meteorol. Soc. 2017, 98, 2285–2292. [Google Scholar] [CrossRef]
- Boucher, O. Atmospheric Aerosols: Properties and Climate Impacts; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Fuzzi, S.; Gilardoni, S.; Kokhanovsky, A.A.; Di Nicolantonio, W.; Mukai, S.; Sano, I.; Nakata, M.; Tomasi, C.; Lanconelli, C. Aerosol and Air Quality. In Atmospheric Aerosols; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 553–596. [Google Scholar]
- Tomasi, C.; Lupi, A. Coagulation, Condensation, Dry and Wet Deposition, and Cloud Droplet Formation in the Atmospheric Aerosol Life Cycle. In Atmospheric Aerosols; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 115–182. [Google Scholar]
- Calidad del Aire. 2018. Available online: https://www.researchgate.net/publication/336266246_CALIDAD_DEL_AIRE_2018 (accessed on 6 May 2022).
- Informe Calidad del Aire. 2019. Available online: https://www.researchgate.net/publication/342601125_Informe_Calidad_del_Aire_2019 (accessed on 6 March 2022).
- Informe de Calidad del Aire Cuenca. 2020. Available online: https://www.researchgate.net/publication/354010604_Informe_de_calidad_del_aire_Cuenca_2020 (accessed on 6 March 2022).
- Zhang, X.; Shen, H.; Li, T.; Zhang, L. The Effects of Fireworks Discharge on Atmospheric PM2.5 Concentration in the Chinese Lunar New Year. Int. J. Environ. Res. Public Health 2020, 17, 9333. [Google Scholar] [CrossRef]
- Fan, S.; Li, Y.; Liu, C. Are Environmentally Friendly Fireworks Really “Green” for Air Quality? A Study from the 2019 National Day Fireworks Display in Shenzhen. Environ. Sci. Technol. 2021, 55, 3520–3529. [Google Scholar] [CrossRef] [PubMed]
- De Visscher, A. Air Dispersion Modeling: Foundations and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Instituto Nacional de Estadíscticas y Censos. Ecuador. Available online: https://www.ecuadorencifras.gob.ec/estadisticas/ (accessed on 23 March 2022).
- Parra, R. Inventario de Emisiones Atmosféricas del Cantón Cuenca 2014; Technical Report; EMOV EP: Cuenca, Ecuador, 2016; p. 88.
- Parra, R. Performance Studies of Planetary Boundary Layer Schemes in WRF-Chem for the Andean Region of Southern Ecuador. Atmos. Pollut. Res. 2018, 9, 411–428. [Google Scholar] [CrossRef]
- Parra, R.; Espinoza, C. Insights for Air Quality Management from Modeling and Record Studies in Cuenca, Ecuador. Atmosphere 2020, 11, 998. [Google Scholar] [CrossRef]
- ECUAPASS. Available online: https://portal.aduana.gob.ec/ (accessed on 19 March 2022).
- Aguinaga Iturralde, D.F. Plan de Negocio para la Creación de una Empresa de Importación, Comercialización y Encendido de Fuegos Artificiales de Venta Libre y Profesionales, en la Ciudad de Quito. Bachelor’s Thesis, Pontificia Universidad Católica del Ecuador, Quito, Ecuador, 2015. [Google Scholar]
- Telégrafo, E. GIR Decomisó 152 Toneladas de Pirotecnia en 13 Años. Available online: https://www.eltelegrafo.com.ec/noticias/judicial/12/gir-decomiso-toneladas-pirotecnia-13-anos (accessed on 19 March 2022).
- Keller, F.; Schragen, C. Determination of Particulate Matter Emission Factors of Common Pyrotechnic Articles. Prop. Explos. Pyrotech. 2021, 46, 825–842. [Google Scholar] [CrossRef]
- Campoverde, J.P. Puntos Autorizados para la Venta de Monigotes en Cuenca. La Voz del Tomebamba. Available online: https://www.lavozdeltomebamba.com/2019/12/27/puntos-autorizados-para-la-venta-de-monigotes-en-cuenca/ (accessed on 19 March 2022).
- EMEP/EEA Air Pollutant Emission Inventory. Available online: http://efdb.apps.eea.europa.eu/?source=%7B%22query%22%3A%7B%22match_all%22%3A%7B%7D%7D%2C%22display_type%22%3A%22tabular%22%7D (accessed on 27 March 2022).
- WRF-Chem. Available online: https://ruc.noaa.gov/wrf/wrf-chem/ (accessed on 2 March 2021).
- NCEP FNL Operational Model Global Tropospheric Analyses, Continuing from July 1999; National Centers for Environmental Prediction/National Weather Service: Boulder, CO, USA, 2000.
- Lin, Y.-L.; Farley, R.D.; Orville, H.D. Bulk Parameterization of the Snow Field in a Cloud Model. J. Clim. Appl. Meteorol. 1983, 22, 1065–1092. [Google Scholar] [CrossRef] [Green Version]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.-D.; Suarez, M.J. A Solar Radiation Parameterization (CLIRAD-SW) for Atmospheric Studies; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1999; p. 48.
- Paulson, C.A. The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer. J. Appl. Meteorol. Climatol. 1970, 9, 857–861. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and Verification of the Unified Noah Land Surface Model in the WRF Model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction; American Meteorological Society: Seattle, WA, USA, 2004; p. 14.2A. [Google Scholar]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather. Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- European Environment Agency. The Application of Models under the European Union’s Air Quality Directive: A Technical Reference Guide; Technical Report; Publications Office: Luxembourg, 2011.
- Majumdar, D.; Gavane, A.G. Perturbation of Background Atmospheric Black Carbon/PM1 Ratio during Firecracker Bursting Episode. Asian J. Atmos. Environ. 2017, 8, 322–329. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://www.who.int/publications-detail-redirect/9789240034228 (accessed on 20 March 2022).
- Simon, H.; Baker, K.R.; Phillips, S. Compilation and Interpretation of Photochemical Model Performance Statistics Published between 2006 and 2012. Atmos. Environ. 2012, 61, 124–139. [Google Scholar] [CrossRef]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Environmental Effects of New Year’s Eve Fireworks. Available online: https://www.umweltbundesamt.at/en/news211217en (accessed on 27 March 2022).
- Molina, M.J.; Molina, L.T. Megacities and Atmospheric Pollution. J. Air Waste Manag. Assoc. 2004, 54, 37. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Wang, D.; Fu, Q.; Qiao, L.; Wang, H.; Li, L.; Sun, W.; Li, Q.; Wang, L.; Yang, X.; et al. The Effects of Firework Regulation on Air Quality and Public Health during the Chinese Spring Festival from 2013 to 2017 in a Chinese Megacity. Environ. Int. 2019, 126, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Unidata. IDV. Available online: https://www.unidata.ucar.edu/software/idv/ (accessed on 25 March 2022).
Component | Option | Scheme/Model and Reference |
---|---|---|
Microphysics (mp_physics) | 2 | Lin et al. [45] |
Longwave Radiation (ra_lw_physics) | 1 | RRTM [46] |
Shortwave Radiation (ra_sw_physics) | 2 | Goddard [47] |
Surface Layer (sf_clay_physics) | 1 | MM5 similarity [48] |
Land Surface (sf_surface_physics) | 2 | Noah Land Surface Model [49] |
Planetary boundary layer (bl_pbl_physics) | 1 | Yonsei University [50] |
Cumulus parameterization (cu_physics) | 0 | Without parameterization |
Parameter | Indicator | Benchmark |
---|---|---|
Hourly surface temperature | GE | <2 °C |
BIAS | <±0.5 °C | |
Hourly wind speed at 10 m above the surface | RMSE | <2 m s−1 |
BIAS | <±0.5 m s−1 |
Station | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | 2021–2022 |
---|---|---|---|---|---|---|
(A) Scenario 1 January at 00:00 LT: Modeled maximum PM2.5 levels (µg m−3) during 24 h | ||||||
MUN | 119.6 | 47.8 | 48.1 | 42.7 | 45.9 | 35.6 |
EIE | 38.2 | 35.5 | 25.0 | 12.2 | 33.2 | 27.5 |
CCA | 58.4 | 43.2 | 74.0 | 46.6 | 26.4 | 30.2 |
CON | 76.4 | 45.1 | 35.0 | 37.3 | 43.5 | 31.6 |
CEB | 21.6 | 34.9 | 32.7 | 23.8 | 23.6 | 40.2 |
TER | 111.0 | 36.2 | 33.1 | 33.7 | 34.8 | 27.3 |
Mean | 70.9 | 40.5 | 41.3 | 32.7 | 34.6 | 32.1 |
(B) Scenario 31 December at 21:00 LT: Modeled maximum PM2.5 concentrations (µg m−3) during 24 h | ||||||
MUN | 55.8 | 37.3 | 37.4 | 23.9 | 38.7 | 22.4 |
EIE | 27.4 | 20.6 | 25.6 | 11.5 | 19.2 | 14.8 |
CCA | 44.5 | 44.0 | 42.6 | 35.5 | 38.1 | 21.7 |
CON | 39.5 | 31.5 | 34.9 | 18.9 | 36.3 | 20.9 |
CEB | 14.8 | 35.3 | 33.6 | 19.6 | 32.8 | 19.0 |
TER | 45.3 | 32.9 | 23.3 | 20.2 | 27.0 | 18.8 |
Mean | 37.9 | 33.6 | 32.9 | 21.6 | 32.0 | 19.6 |
Difference: (B) − (A), (µg m−3) | ||||||
MUN | −63.8 | −10.5 | −10.7 | −18.8 | −7.2 | −13.2 |
EIE | −10.7 | −14.9 | 0.6 | −0.7 | −14.0 | −12.7 |
CCA | −13.8 | 0.8 | −31.4 | −11.1 | 11.6 | −8.6 |
CON | −36.9 | −13.6 | −0.1 | −18.4 | −7.1 | −10.7 |
CEB | −6.8 | 0.4 | 0.8 | −4.2 | 9.2 | −21.1 |
TER | −65.7 | −3.4 | −9.8 | −13.5 | −7.8 | −8.5 |
Mean | −33.0 | −6.9 | −8.5 | −11.1 | −2.6 | −12.5 |
Percentage of difference: ((B) − (A)/(A)) × 100, (%) | ||||||
MUN | −53.3 | −21.9 | −22.3 | −44.1 | −15.7 | −37.1 |
EIE | −28.1 | −42.0 | 2.2 | −5.8 | −42.1 | −46.3 |
CCA | −23.7 | 1.9 | −42.5 | −23.8 | 44.0 | −28.3 |
CON | −48.3 | −30.2 | −0.3 | −49.4 | −16.4 | −33.8 |
CEB | −31.4 | 1.1 | 2.6 | −17.7 | 38.8 | −52.6 |
TER | −59.2 | −9.4 | −29.7 | −40.1 | −22.5 | −31.2 |
Mean | −40.7 | −16.7 | −15.0 | −30.1 | −2.3 | −33.2 |
Station | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | 2021–2022 |
---|---|---|---|---|---|---|
(A) Scenario 1 January at 00:00 LT: Modeled maximum PM2.5 levels (µg m−3) during 24 h | ||||||
MUN | 119.6 | 47.8 | 48.1 | 42.7 | 45.9 | 35.6 |
EIE | 38.2 | 35.5 | 25.0 | 12.2 | 33.2 | 27.5 |
CCA | 58.4 | 43.2 | 74.0 | 46.6 | 26.4 | 30.2 |
CON | 76.4 | 45.1 | 35.0 | 37.3 | 43.5 | 31.6 |
CEB | 21.6 | 34.9 | 32.7 | 23.8 | 23.6 | 40.2 |
TER | 111.0 | 36.2 | 33.1 | 33.7 | 34.8 | 27.3 |
Mean | 70.9 | 40.5 | 41.3 | 32.7 | 34.6 | 32.1 |
(B) Scenario 31 December at 18:00 LT: Modeled maximum PM2.5 concentrations (µg m−3) during 24 h | ||||||
MUN | 22.8 | 36.6 | 20.8 | 21.2 | 22.5 | 15.7 |
EIE | 15.0 | 18.2 | 12.7 | 10.2 | 11.7 | 15.7 |
CCA | 33.1 | 45.1 | 33.3 | 27.5 | 27.9 | 19.6 |
CON | 21.6 | 30.6 | 19.8 | 20.3 | 20.2 | 14.5 |
CEB | 16.5 | 27.0 | 14.6 | 22.2 | 17.0 | 13.4 |
TER | 16.0 | 34.2 | 13.6 | 15.0 | 19.3 | 12.7 |
Mean | 20.8 | 31.9 | 19.1 | 19.4 | 19.8 | 15.3 |
Difference: (B) − (A), (µg m−3) | ||||||
MUN | −96.8 | −11.3 | −27.3 | −21.5 | −23.4 | −19.9 |
EIE | −23.1 | −17.3 | −12.3 | −2.1 | −21.4 | −11.8 |
CCA | −25.3 | 1.9 | −40.7 | −19.1 | 1.5 | −10.7 |
CON | −54.9 | −14.5 | −15.2 | −17.0 | −23.2 | −17.1 |
CEB | −5.1 | −7.9 | −18.1 | −1.6 | −6.6 | −26.7 |
TER | −95.0 | −2.1 | −19.5 | −18.7 | −15.5 | −14.6 |
Mean | −50.0 | −8.5 | −22.2 | −13.3 | −14.8 | −16.8 |
Percentage of difference: ((B) − (A)/(A)) × 100, (%) | ||||||
MUN | −80.9 | −23.6 | −56.8 | −50.3 | −50.9 | −55.9 |
EIE | −60.7 | −48.7 | −49.2 | −17.0 | −64.7 | −42.8 |
CCA | −43.3 | 4.4 | −55.0 | −41.0 | 5.6 | −35.4 |
CON | −71.8 | −32.1 | −43.5 | −45.5 | −53.4 | −54.1 |
CEB | −23.5 | −22.6 | −55.3 | −6.8 | −28.0 | −66.6 |
TER | −85.5 | −5.7 | −59.0 | −55.4 | −44.5 | −53.5 |
Mean | −61.0 | −21.4 | −53.1 | −36.0 | −39.2 | −51.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra, R.; Saud, C.; Espinoza, C. Simulating PM2.5 Concentrations during New Year in Cuenca, Ecuador: Effects of Advancing the Time of Burning Activities. Toxics 2022, 10, 264. https://doi.org/10.3390/toxics10050264
Parra R, Saud C, Espinoza C. Simulating PM2.5 Concentrations during New Year in Cuenca, Ecuador: Effects of Advancing the Time of Burning Activities. Toxics. 2022; 10(5):264. https://doi.org/10.3390/toxics10050264
Chicago/Turabian StyleParra, René, Claudia Saud, and Claudia Espinoza. 2022. "Simulating PM2.5 Concentrations during New Year in Cuenca, Ecuador: Effects of Advancing the Time of Burning Activities" Toxics 10, no. 5: 264. https://doi.org/10.3390/toxics10050264
APA StyleParra, R., Saud, C., & Espinoza, C. (2022). Simulating PM2.5 Concentrations during New Year in Cuenca, Ecuador: Effects of Advancing the Time of Burning Activities. Toxics, 10(5), 264. https://doi.org/10.3390/toxics10050264