Associations between Traffic-Related Air Pollution and Cognitive Function in Australian Urban Settings: The Moderating Role of Diabetes Status
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measures
2.1.1. Exposures: TRAP Measures
2.1.2. Outcomes: Cognitive Function Measures
2.1.3. Confounding Factors and Covariates
2.1.4. Diabetes Status as an Effect Modifier
2.2. Data Analytic Plan
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.; Barber, R.M.; Foreman, K.J.; Abbasoglu Ozgoren, A.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Abraham, J.P.; Abubakar, I.; Abu-Raddad, L.J.; et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: Quantifying the epidemiological transition. Lancet 2015, 386, 2145–2191. [Google Scholar] [CrossRef] [Green Version]
- Delgado-Saborit, J.M.; Guercio, V.; Gowers, A.M.; Shaddick, G.; Fox, N.C.; Love, S. A critical review of the epidemiological evidence of effects of air pollution on dementia, cognitive function and cognitive decline in adult population. Sci. Total Environ. 2021, 757, 143734. [Google Scholar] [CrossRef] [PubMed]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Tham, R.; Schikowski, T. The Role of Traffic-Related Air Pollution on Neurodegenerative Diseases in Older People: An Epidemiological Perspective. J. Alzheimers Dis. 2020. Preprint. [Google Scholar] [CrossRef]
- Oppenheim, H.A.; Lucero, J.; Guyot, A.C.; Herbert, L.M.; McDonald, J.D.; Mabondzo, A.; Lund, A.K. Exposure to vehicle emissions results in altered blood brain barrier permeability and expression of matrix metalloproteinases and tight junction proteins in mice. Part. Fibre Toxicol. 2013, 10, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Block, M.L.; Calderon-Garciduenas, L. Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends Neurosci. 2009, 32, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Jayaraj, R.L.; Rodriguez, E.A.; Wang, Y.; Block, M.L. Outdoor Ambient Air Pollution and Neurodegenerative Diseases: The Neuroinflammation Hypothesis. Curr. Environ. Health Rep. 2017, 4, 166–179. [Google Scholar] [CrossRef]
- Kumari, M.; Marmot, M. Diabetes and cognitive function in a middle-aged cohort. Find. Whitehall II Study 2005, 65, 1597–1603. [Google Scholar] [CrossRef]
- Moheet, A.; Mangia, S.; Seaquist, E.R. Impact of diabetes on cognitive function and brain structure. Ann. N. Y. Acad. Sci. 2015, 1353, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Biessels, G.J.; Reijmer, Y.D. Brain changes underlying cognitive dysfunction in diabetes: What can we learn from MRI? Diabetes 2014, 63, 2244–2252. [Google Scholar] [CrossRef] [Green Version]
- Mansur, R.B.; Lee, Y.; Zhou, A.J.; Carmona, N.E.; Cha, D.S.; Rosenblat, J.D.; Bruins, R.; Kakar, R.; Rasgon, N.L.; Lovshin, J.A.; et al. Determinants of cognitive function in individuals with type 2 diabetes mellitus: A meta-analysis. Ann. Clin. Psychiatry 2018, 30, 38–50. [Google Scholar] [PubMed]
- Biessels, G.J.; Despa, F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat. Rev. Endocrinol. 2018, 14, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Paul, K.C.; Jerrett, M.; Ritz, B. Type 2 Diabetes Mellitus and Alzheimer’s Disease: Overlapping Biologic Mechanisms and Environmental Risk Factors. Curr. Environ. Health Rep. 2018, 5, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Thiering, E.; Heinrich, J. Epidemiology of air pollution and diabetes. Trends Endocrinol. Metab. 2015, 26, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Dimakakou, E.; Johnston, H.J.; Streftaris, G.; Cherrie, J.W. Exposure to Environmental and Occupational Particulate Air Pollution as a Potential Contributor to Neurodegeneration and Diabetes: A Systematic Review of Epidemiological Research. Int. J. Environ. Res. Public Health 2018, 15, 1704. [Google Scholar] [CrossRef] [Green Version]
- Tamayo, T.; Rathmann, W.; Kramer, U.; Sugiri, D.; Grabert, M.; Holl, R.W. Is particle pollution in outdoor air associated with metabolic control in type 2 diabetes? PLoS ONE 2014, 9, e91639. [Google Scholar] [CrossRef] [Green Version]
- Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 2017, 128, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Cerin, E.; Barnett, A.; Shaw, J.E.; Martino, E.; Knibbs, L.D.; Tham, R.; Wheeler, A.J.; Anstey, K.J. Urban Neighbourhood Environments, Cardiometabolic Health and Cognitive Function: A National Cross-Sectional Study of Middle-Aged and Older Adults in Australia. Toxics 2022, 10, 23. [Google Scholar] [CrossRef]
- Clifford, A.; Lang, L.; Chen, R.; Anstey, K.J.; Seaton, A. Exposure to air pollution and cognitive functioning across the life course—A systematic literature review. Environ. Res. 2016, 147, 383–398. [Google Scholar] [CrossRef]
- Cullen, B.; Newby, D.; Lee, D.; Lyall, D.M.; Nevado-Holgado, A.J.; Evans, J.J.; Pell, J.P.; Lovestone, S.; Cavanagh, J. Cross-sectional and longitudinal analyses of outdoor air pollution exposure and cognitive function in UK Biobank. Sci. Rep. 2018, 8, 12089. [Google Scholar] [CrossRef]
- Anstey, K.J.; Sargent-Cox, K.; Eramudugolla, R.; Magliano, D.J.; Shaw, J.E. Association of cognitive function with glucose tolerance and trajectories of glucose tolerance over 12 years in the AusDiab study. Alzheimers Res. Ther. 2015, 7, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunstan, D.W.; Zimmet, P.Z.; Welborn, T.A.; Cameron, A.J.; Shaw, J.; de Courten, M.; Jolley, D.; McCarty, D.J.; AusDiab Steering Committee. The Australian Diabetes, Obesity and Lifestyle Study (AusDiab)—Methods and response rates. Diabetes Res. Clin. Pract. 2002, 57, 119–129. [Google Scholar] [CrossRef] [Green Version]
- Adams, M.A.; Frank, L.D.; Schipperijn, J.; Smith, G.; Chapman, J.; Christiansen, L.B.; Coffee, N.; Salvo, D.; du Toit, L.; Dygrýn, J.; et al. International variation in neighborhood walkability, transit, and recreation environments using geographic information systems: The IPEN adult study. Int. J. Health Geogr. 2014, 13, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Intergovernmental Committee on Surveying and Mapping. Assessing the Feasability of a National Road Classification. 2006. Available online: https://www.icsm.gov.au/sites/default/files/Assessing_Feasibility_National_Road_Classification.pdf (accessed on 24 March 2022).
- Geoscape Australia. Transport and Topography; Geoscape Australia: Canberra, Australia, 2020. [Google Scholar]
- Smith, A. Symbol Digit Modalities Test (SDMT) Manual; Western Psychological Services: Los Angeles, CA, USA, 1982. [Google Scholar]
- Delis, D.C.; Kramer, J.H.; Kaplan, E.; Ober, B.A. California Verbal Learning Test; Psychological Corporation Harcourt Brace Jovanovich: San Antonio, TX, USA, 1987. [Google Scholar]
- Barr, E.L.M.; Zimmet, P.Z.; Welborn, T.A.; Jolley, D.; Magliano, D.J.; Dunstan, D.W.; Cameron, A.J.; Dwyer, T.; Taylor, H.R.; Tonkin, A.M.; et al. Risk of Cardiovascular and All-Cause Mortality in Individuals with Diabetes Mellitus, Impaired Fasting Glucose, and Impaired Glucose Tolerance. Circulation 2007, 116, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, D.B. Multiple Imputation for Non-Response in Surveys; Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Van Buuren, S. Flexible Imputation of Missing Data, 2nd ed.; Chapman & Hall: Boca Raton, FL, USA, 2018. [Google Scholar]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R.; Chapman & Hall: Boca Raton, FL, USA, 2017. [Google Scholar] [CrossRef]
- Aiken, L.S.; West, S. Multiple Regression: Testing and Interpreting Interactions; Sage Publications: Newbury Park, CA, USA, 1991. [Google Scholar]
- Kilian, J.; Kitazawa, M. The emerging risk of exposure to air pollution on cognitive decline and Alzheimer’s disease—Evidence from epidemiological and animal studies. Biomed. J. 2018, 41, 141–162. [Google Scholar] [CrossRef]
- Tonne, C.; Elbaz, A.; Beevers, S.; Singh-Manoux, A. Traffic-related air pollution in relation to cognitive function in older adults. Epidemiology 2014, 25, 674–681. [Google Scholar] [CrossRef] [Green Version]
- Power, M.C.; Adar, S.D.; Yanosky, J.D.; Weuve, J. Exposure to air pollution as a potential contributor to cognitive function, cognitive decline, brain imaging, and dementia: A systematic review of epidemiologic research. NeuroToxicology 2016, 56, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Australian Government. National Environment Protection (Ambient Air Quality) Measure; Australian Government: Canberra, Australia, 2021. [Google Scholar]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Cerin, E. Building the evidence for an ecological model of cognitive health. Health Place 2019, 60, 102206. [Google Scholar] [CrossRef]
- Cerin, E.; Barnett, A.; Shaw, J.E.; Martino, E.; Knibbs, L.D.; Tham, R.; Wheeler, A.J.; Anstey, K.J. From urban neighbourhood environments to cognitive health: A cross-sectional analysis of the role of physical activity and sedentary behaviours. BMC Public Health 2021, 21, 2320. [Google Scholar] [CrossRef]
- Cerin, E.; Barnett, A.; Chaix, B.; Nieuwenhuijsen, M.J.; Caeyenberghs, K.; Jalaludin, B.; Sugiyama, T.; Sallis, J.F.; Lautenschlager, N.T.; Ni, M.Y.; et al. International Mind, Activities and Urban Places (iMAP) study: Methods of a cohort study on environmental and lifestyle influences on brain and cognitive health. BMJ Open 2020, 10, e036607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koohsari, M.J.; Owen, N.; Cole, R.; Mavoa, S.; Oka, K.; Hanibuchi, T.; Sugiyama, T. Built environmental factors and adults’ travel behaviors: Role of street layout and local destinations. Prev. Med. 2017, 96, 124–128. [Google Scholar] [CrossRef]
- Cerin, E.; Nathan, A.; van Cauwenberg, J.; Barnett, D.W.; Barnett, A.; on behalf of the Council on Environment and Physical Activity (CEPA)—Older Adults Working Group. The neighbourhood physical environment and active travel in older adults: A systematic review and meta-analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, R.; Ee, N.; Peters, J.; Booth, A.; Mudway, I.; Anstey, K.J. Air Pollution and Dementia: A Systematic Review. J. Alzheimers Dis. 2019, 70, S145–S163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saenz, J.L.; Wong, R.; Ailshire, J.A. Indoor air pollution and cognitive function among older Mexican adults. J. Epidemiol. Commun. Health 2018, 72, 21–26. [Google Scholar] [CrossRef]
- Tzivian, L.; Dlugaj, M.; Winkler, A.; Weinmayr, G.; Hennig, F.; Fuks, K.B.; Vossoughi, M.; Schikowski, T.; Weimar, C.; Erbel, R.; et al. Long-Term Air Pollution and Traffic Noise Exposures and Mild Cognitive Impairment in Older Adults: A Cross-Sectional Analysis of the Heinz Nixdorf Recall Study. Environ. Health Perspect. 2016, 124, 1361–1368. [Google Scholar] [CrossRef] [Green Version]
- Australian Bureau of Statistics (ABS). 2033.0.55.001—Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA), Australia, 2011. Available online: https://www.abs.gov.au/ausstats/[email protected]/DetailsPage/2033.0.55.0012011 (accessed on 24 March 2022).
- Lamb, K.E.; Thornton, L.E.; King, T.L.; Ball, K.; White, S.R.; Bentley, R.; Coffee, N.T.; Daniel, M. Methods for accounting for neighbourhood self-selection in physical activity and dietary behaviour research: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 45. [Google Scholar] [CrossRef] [Green Version]
- Cerin, E.; Leslie, E.; Toit, L.d.; Owen, N.; Frank, L.D. Destinations that matter: Associations with walking for transport. Health & Place 2007, 13, 713–724. [Google Scholar] [CrossRef]
- Cat. No. 2074; Census of Population and Housing: Mesh Block Counts, 2011. Australian Bureau of Statistics (ABS): Canberra, Australia, 2011.
- Cat No. 1270.0.55.001; Australian Statistical Geography Standard (ASGS) Volume 1—Main Structure and Greater capital City Statistical Areas. Australian Bureau of Statistics: Canberra, Australia, 2011.
Characteristic | Total Sample n = 4141 | Diabetes Status | ||
---|---|---|---|---|
Diabetes (n = 405) | IGT/IFG (n = 620) | Normal Glucose Tolerance (n = 3003) | ||
Socio-demographics | ||||
Age (years), M ± SD | 61.1 ± 11.4 | 67.2 ± 10.1 | 64.5 ± 11.4 | 59.6 ± 11.0 |
Sex, female, % | 55.2 | 45.4 | 47.1 | 58.0 |
Educational attainment, % | ||||
Up to secondary | 32.7 | 39.3 | 41.1 | 30.1 |
Trade, associate diploma | 43.6 | 41.0 | 31.13 | 44.2 |
Bachelor degree, postgraduate | 23.1 | 18.3 | 17.1 | 25.2 |
Missing data | 0.6 | 1.5 | 0.7 | 0.5 |
Employment status, % | ||||
Not employed | 30.4 | 47.7 | 38.9 | 26.4 |
Paid employment | 52.2 | 34.8 | 45.2 | 56.3 |
Volunteer | 15.1 | 14.6 | 13.4 | 15.7 |
Missing data | 2.3 | 3.0 | 2.6 | 1.7 |
Household income (annual), % | ||||
Up to AUD 49,999 | 32.9 | 47.9 | 39.0 | 29.9 |
AUD 50,000–AUD 99,999 | 26.8 | 21.5 | 26.0 | 28.0 |
AUD 100,000 and over | 28.9 | 14.6 | 23.1 | 32.1 |
Missing data | 11.5 | 16.0 | 11.9 | 10.0 |
Living arrangements, % | ||||
Couple without children | 48.2 | 50.9 | 53.6 | 47.2 |
Couple with children | 26.8 | 15.6 | 21.1 | 29.4 |
Other | 22.4 | 30.4 | 22.6 | 21.6 |
Missing data | 2.4 | 3.2 | 2.7 | 1.8 |
English-speaking background, % | 89.9 | 83.7 | 87.4 | 91.5 |
Area-level IRSAD, M ± SD | 6.4 ± 2.7 | 5.9 ± 2.8 | 6.3 ± 2.7 | 6.5 ± 2.7 |
Residential self-selection—access to destinations, M ± SD | 3.0 ± 1.4 | 3.0 ± 1.3 | 3.0 ± 1.3 | 2.9 ± 1.3 |
Missing data, % | 9.0 | 9.4 | 10.5 | 8.0 |
Residential self-selection—recreational facilities, M ± SD | 3.1 ± 1.5 | 3.0 ± 1.6 | 3.1 ± 1.5 | 3.1 ± 1.4 |
Missing data, % | 8.7 | 9.1 | 10.2 | 7.7 |
Health-related variables | ||||
Diabetes status, % | ||||
Diabetes | 9.8 | - | - | - |
IGT/IFG | 15.0 | - | - | - |
Normal glucose tolerance | 72.5 | - | - | - |
Missing data, % | 2.7 | - | - | - |
Heart problems/stroke history, % | 8.7 | 19.8 | 10.5 | 6.8 |
Missing data, % | 1.0 | 1.5 | 0.2 | 0.0 |
Tobacco-smoking status, % | ||||
Current smoker | 7.0 | 4.2 | 8.7 | 7.2 |
Previous smoker | 35.9 | 44.0 | 37.6 | 34.4 |
Non-smoker | 54.5 | 48.6 | 51.0 | 56.6 |
Missing data, % | 2.6 | 3.2 | 2.7 | 1.8 |
Cognitive function, M ± SD | ||||
Memory, CVLT score | 6.5 ± 2.4 | 5.6 ± 2.4 | 6.2 ± 2.4 | 6.7 ± 2.4 |
Missing data, % | 2.3 | 5.2 | 1.5 | 1.7 |
Processing speed, SDMT score | 49.7 ± 11.6 | 43.6 ± 12.4 | 47.2 ± 12.1 | 51.1 ± 11.0 |
Missing data, % | 2.0 | 4.0 | 1.3 | 1.6 |
Characteristic | Total Sample n = 4141 | Diabetes Status | ||
---|---|---|---|---|
Diabetes (n = 405) | IGT/IFG (n = 620) | Normal Glucose Tolerance (n = 3003) | ||
Road density (100 m/km2) | ||||
200 m Euclidean buffer | 117.1 ± 42.0 | 120.7 ± 42.9 | 116.8 ± 42.4 | 117.1 ± 41.8 |
300 m Euclidean buffer | 114.9 ± 40.1 | 118.9 ± 39.0 | 114.6 ± 39.7 | 114.6 ± 40.4 |
500 m Euclidean buffer | 107.4 ± 37.7 | 111.0 ± 35.5 | 107.4 ± 36.5 | 107.1 ± 38.2 |
1000 m Euclidean buffer | 95.8 ± 34.0 | 99.5 ± 33.2 | 96.6 ± 33.2 | 95.1 ± 34.2 |
1600 m Euclidean buffer | 87.6 ± 32.3 | 91.2 ± 31.9 | 89.1 ± 31.5 | 86.8 ± 32.4 |
Minor road density (100 m/km2) | ||||
200 m Euclidean buffer | 88.6 ± 36.7 | 92.1 ± 37.6 | 89.3 ± 36.4 | 88.1 ± 36.7 |
300 m Euclidean buffer | 83.0 ± 32.7 | 86.7 ± 32.4 | 84.0 ± 32.9 | 82.4 ± 32.6 |
500 m Euclidean buffer | 75.7 ± 29.1 | 79.3 ± 28.8 | 77.1 ± 28.9 | 75.0 ± 29.1 |
1000 m Euclidean buffer | 66.1 ± 26.3 | 70.0 ± 26.3 | 67.9 ± 25.8 | 65.1 ± 26.2 |
1600 m Euclidean buffer | 59.6 ± 25.2 | 63.6 ± 25.3 | 61.7 ± 24.9 | 58.5 ± 25.2 |
Major road density (100 m/km2) | ||||
200 m Euclidean buffer | 9.7 ± 16.9 | 10.6 ± 17.7 | 9.6 ± 17.5 | 9.5 ± 16.6 |
300 m Euclidean buffer | 13.3 ± 17.0 | 14.7 ± 17.2 | 13.7 ± 17.7 | 13.1 ± 16.9 |
500 m Euclidean buffer | 13.6 ± 13.3 | 14.6 ± 13.4 | 13.9 ± 13.4 | 13.4 ± 13.3 |
1000 m Euclidean buffer | 13.1 ± 8.9 | 14.0 ± 9.0 | 13.4 ± 9.0 | 13.0 ± 8.9 |
1600 m Euclidean buffer | 12.4 ± 7.4 | 12.9 ± 7.5 | 12.8 ± 7.6 | 12.2 ± 7.3 |
Distance to nearest busy road (100 m) | 4.57 ± 4.98 | 4.38 ± 5.05 | 4.48 ± 4.86 | 4.59 ± 4.91 |
NO2 (ppb) | 5.53 ± 2.05 | 5.68 ± 2.10 | 5.47 ± 1.88 | 5.50 ± 2.07 |
TRAP Measures | Memory (CVLT Score) | Processing Speed (SDMT Score) | ||||
---|---|---|---|---|---|---|
β | 95% CI | p | β | 95% CI | p | |
Road density (100 m/km2) | ||||||
200 m Euclidean buffer | 0.003 | 0.001, 0.005 | 0.008 | 0.005 | −0.002, 0.012 | 0.173 |
300 m Euclidean buffer | 0.002 | −0.0003, 0.004 | 0.088 | 0.005 | −0.003, 0.013 | 0.257 |
500 m Euclidean buffer | 0.002 | −0.0003, 0.004 | 0.084 | 0.003 | −0.006, 0.012 | 0.507 |
1000 m Euclidean buffer | 0.003 | 0.001, 0.006 | 0.018 | 0.002 | −0.008, 0.013 | 0.678 |
1600 m Euclidean buffer | 0.004 | 0.001, 0.007 | 0.015 | 0.007 | −0.005, 0.018 | 0.263 |
Minor road density (100 m/km2) | ||||||
200 m Euclidean buffer | 0.002 | −0.0001, 0.004 | 0.058 | 0.001 | −0.008, 0.010 | 0.831 |
300 m Euclidean buffer | 0.001 | −0.002, 0.004 | 0.424 | −0.0004 | −0.010, 0.010 | 0.932 |
500 m Euclidean buffer | 0.001 | −0.002, 0.004 | 0.686 | −0.009 | −0.021, 0.003 | 0.145 |
1000 m Euclidean buffer | 0.002 | −0.002, 0.005 | 0.425 | −0.012 | −0.026, 0.003 | 0.106 |
1600 m Euclidean buffer | 0.001 | −0.003, 0.006 | 0.510 | −0.008 | −0.024, 0.008 | 0.311 |
Major road density (100 m/km2) | ||||||
200 m Euclidean buffer | 0.003 | −0.002, 0.007 | 0.268 | 0.005 | −0.012, 0.023 | 0.558 |
300 m Euclidean buffer | 0.001 | −0.003, 0.006 | 0.614 | 0.006 | −0.012, 0.024 | 0.535 |
500 m Euclidean buffer | 0.005 | −0.001, 0.011 | 0.097 | 0.020 | −0.005, 0.044 | 0.116 |
1000 m Euclidean buffer | 0.010 | 0.001, 0.020 | 0.038 | 0.034 | −0.007, 0.079 | 0.101 |
1600 m Euclidean buffer | 0.014 | 0.002, 0.026 | 0.026 | 0.055 | 0.004, 0.105 | 0.036 |
Distance to nearest busy road (100 m) | −0.0004 | −0.017, 0.016 | 0.963 | −0.054 | −0.118, 0.011 | 0.102 |
TRAP Measures | Memory (CVLT Score) | Processing Speed (SDMT Score) | ||
---|---|---|---|---|
F (2, 4114) | p | F (2, 4114) | p | |
Road density (100 m/km2) | ||||
200 m Euclidean buffer | 0.75 | 0.472 | 0.27 | 0.766 |
300 m Euclidean buffer | 0.96 | 0.383 | 0.57 | 0.566 |
500 m Euclidean buffer | 0.56 | 0.573 | 0.61 | 0.542 |
1000 m Euclidean buffer | 1.18 | 0.307 | 1.93 | 0.145 |
1600 m Euclidean buffer | 1.51 | 0.221 | 2.60 | 0.074 |
Minor road density (100 m/km2) | ||||
200 m Euclidean buffer | 0.22 | 0.800 | 0.30 | 0.741 |
300 m Euclidean buffer | 0.20 | 0.818 | 0.28 | 0.753 |
500 m Euclidean buffer | 0.36 | 0.701 | 0.20 | 0.819 |
1000 m Euclidean buffer | 0.20 | 0.815 | 1.46 | 0.231 |
1600 m Euclidean buffer | 0.08 | 0.921 | 2.94 | 0.053 |
Major road density (100 m/km2) | ||||
200 m Euclidean buffer | 2.22 | 0.108 | 0.61 | 0.543 |
300 m Euclidean buffer | 4.80 | 0.008 | 2.98 | 0.050 |
500 m Euclidean buffer | 2.28 | 0.102 | 1.16 | 0.314 |
1000 m Euclidean buffer | 1.76 | 0.172 | 0.57 | 0.567 |
1600 m Euclidean buffer | 3.16 | 0.043 | 1.66 | 0.190 |
Distance to nearest busy road (100 m) | 0.84 | 0.432 | 1.33 | 0.265 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tham, R.; Wheeler, A.J.; Carver, A.; Dunstan, D.; Donaire-Gonzalez, D.; Anstey, K.J.; Shaw, J.E.; Magliano, D.J.; Martino, E.; Barnett, A.; et al. Associations between Traffic-Related Air Pollution and Cognitive Function in Australian Urban Settings: The Moderating Role of Diabetes Status. Toxics 2022, 10, 289. https://doi.org/10.3390/toxics10060289
Tham R, Wheeler AJ, Carver A, Dunstan D, Donaire-Gonzalez D, Anstey KJ, Shaw JE, Magliano DJ, Martino E, Barnett A, et al. Associations between Traffic-Related Air Pollution and Cognitive Function in Australian Urban Settings: The Moderating Role of Diabetes Status. Toxics. 2022; 10(6):289. https://doi.org/10.3390/toxics10060289
Chicago/Turabian StyleTham, Rachel, Amanda J. Wheeler, Alison Carver, David Dunstan, David Donaire-Gonzalez, Kaarin J. Anstey, Jonathan E. Shaw, Dianna J. Magliano, Erika Martino, Anthony Barnett, and et al. 2022. "Associations between Traffic-Related Air Pollution and Cognitive Function in Australian Urban Settings: The Moderating Role of Diabetes Status" Toxics 10, no. 6: 289. https://doi.org/10.3390/toxics10060289
APA StyleTham, R., Wheeler, A. J., Carver, A., Dunstan, D., Donaire-Gonzalez, D., Anstey, K. J., Shaw, J. E., Magliano, D. J., Martino, E., Barnett, A., & Cerin, E. (2022). Associations between Traffic-Related Air Pollution and Cognitive Function in Australian Urban Settings: The Moderating Role of Diabetes Status. Toxics, 10(6), 289. https://doi.org/10.3390/toxics10060289