Simultaneous Removal of Cu2+, Cd2+ and Pb2+ by Modified Wheat Straw Biochar from Aqueous Solution: Preparation, Characterization and Adsorption Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of BC and HNC
2.3. Characterization of BC and HNC
2.4. Batch Adsorption Experiments
2.5. Adsorption Mechanism
3. Results and Discussion
3.1. Characterization of Biochar
3.2. Adsorption of Metals by BC and HNC
3.2.1. Effect of Initial pH
3.2.2. Effect of Adsorbent Dosage
3.2.3. Adsorption Kinetics
3.2.4. Adsorption Isotherms
3.2.5. Competitive Adsorption
3.3. Potential Adsorption Mechanisms
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thasneema, K.K.; Dipin, T.; Thayyil, M.S.; Sahu, P.K.; Messali, M.; Rosalin, T.; Elyas, K.K.; Saharuba, P.M.; Anjitha, T.; Ben Hadda, T. Removal of toxic heavy metals, phenolic compounds and textile dyes from industrial waste water using phosphonium based ionic liquids. J. Mol. Liq. 2021, 323, 114645. [Google Scholar] [CrossRef]
- Liu, J.; Hu, C.; Huang, Q. Adsorption of Cu2+, Pb2+, and Cd2+ onto oiltea shell from water. Bioresour. Technol. 2019, 271, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Irshad, M.; Shakoor, M.; Ali, S.; Nawaz, R.; Rizwan, M. Synthesis and application of titanium dioxide nanoparticles for removal of Cadmium from wastewater: Kinetic and equilibrium study. Water Air Soil Pollut. 2019, 230, 278. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Q.; Zheng, K.; Jiao, Z.; Ruan, X.; Wang, Y. Migration of heavy metals in the soil-grape system and potential health risk assessment. Sci. Total Environ. 2022, 806, 150646. [Google Scholar] [CrossRef]
- Yang, L.; Ren, Q.; Ge, S.; Jiao, Z.; Zhan, W.; Hou, R.; Ruan, X.; Pan, Y.; Wang, Y. Metal(loid)s spatial distribution, accumulation and potential health risk assessment in soil-wheat systems near a Pb/Zn smelter in Henan Province, central China. Int. J. Environ. Res. Pub. Health. 2022, 19, 2527. [Google Scholar] [CrossRef]
- Zheng, H.; Ren, Q.; Zheng, K.; Qin, Z.; Wang, Y.; Wang, Y. Spatial distribution and risk assessment of metal(loid)s in marine sediments in the Arctic Ocean and Bering Sea. Mar. Pollut. Bull. 2022, 197, 113729. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, S.; Li, X.; Wang, X.; Jia, Y. Simultaneous removal and oxidation of arsenic from water by delta-MnO2 modified activated carbon. J. Environ. Sci. 2020, 94, 147–160. [Google Scholar] [CrossRef]
- Matlock, M.M.; Howerton, B.S.; Atwood, D.A. Chemical precipitation of lead from lead battery recycling plant wastewater. Ind. Eng. Chem. Res. 2002, 41, 1579–1582. [Google Scholar] [CrossRef]
- Ajmal, M.; Rao, R.; Anwar, S.; Ahmad, J.; Ahmad, R. Adsorption studies on rice husk: Removal and recovery of Cd(II) from wastewater. Bioresour. Technol. 2003, 86, 147–149. [Google Scholar] [CrossRef]
- Abu Qdais, H.; Moussa, H. Removal of heavy metals from wastewater by membrane processes: A comparative study. Desalination 2004, 164, 105–110. [Google Scholar] [CrossRef]
- Li, Z.H.; Xing, B.; Ding, Y.; Li, Y.; Wang, S. A high-performance biochar produced from bamboo pyrolysis with in-situ nitrogen doping and activation for adsorption of phenol and methylene blue. Chin. J. Chem. Eng. 2020, 28, 2872–2880. [Google Scholar] [CrossRef]
- Mohan, S.R.; Gandhimathi, R. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J. Hazard. Mater. 2009, 169, 351–359. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Kim, K.; Powell, M.A.; Equeenuddin, S. Recovery of metals and other beneficial products from coal fly ash: A sustainable approach for fly ash management. Int. J. Coal. Sci. Technol. 2016, 3, 267–283. [Google Scholar] [CrossRef]
- Ghorbani, M.; Ariavand, S.; Aghamohammadhasan, M.; Seyedin, O. Synthesis and optimization of a green and efficient sorbent for removal of three heavy metal ions from wastewater samples: Kinetic, thermodynamic, and isotherm studies. J. Iran. Chem. Soc. 2021, 18, 1947–1963. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, R.H. H2O treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Sci. Total Environ. 2018, 628–629, 1139–1148. [Google Scholar] [CrossRef]
- Yang, T.T.; Xu, Y.M.; Huang, Q.Q.; Sun, Y.B.; Liang, X.F.; Wang, L.; Qin, X.; Zhao, L.J. Adsorption characteristics and the removal mechanism of two novel Fe-Zn composite modified biochar for Cd(II) in water. Bioresour. Technol. 2021, 333, 125078. [Google Scholar] [CrossRef]
- Bogusz, A.; Nowak, K.; Stefaniuk, M.; Dobrowolski, R.; Oleszczuk, P. Synthesis of biochar from residues after biogas production with respect to cadmium and nickel removal from wastewater. J. Environ. Manag. 2017, 201, 268–276. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, R.H. Comparison of characteristics of twenty-one types of biochar and their ability to remove multi-heavy metals and methylene blue in solution. Fuel Process. Technol. 2017, 160, 55–63. [Google Scholar] [CrossRef]
- Faheem; Yu, H.X.; Liu, J.; Shen, J.Y.; Sun, X.Y.; Li, J.S.; Wang, L.J. Preparation of MnOx-loaded biochar for Pb2+ removal: Adsorption performance and possible mechanism. J. Taiwan Inst. Chem. Eng. 2016, 66, 313–320. [Google Scholar] [CrossRef]
- Li, B.; Yang, L.; Wang, C.Q.; Zhang, Q.P.; Liu, Q.C.; Li, Y.D.; Xiao, R. Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 2017, 175, 332–340. [Google Scholar] [CrossRef]
- Sizmur, T.; Fresno, T.; Akgul, G.; Frost, H.; Moreno-Jimenez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Wang, X.; Feng, K.; Su, J.; Dong, J.N. The mechanism of cadmium sorption by sulphur-modified wheat straw biochar and its application cadmium-contaminated soil. Sci. Total Environ. 2020, 714, 136550. [Google Scholar] [CrossRef]
- Fan, J.J.; Cai, C.; Chi, H.F.; Reid, B.J.; Coulon, F.; Zhang, Y.C.; Hou, Y.W. Remediation of cadmium and lead polluted soil using thiol-modified biochar. J. Hazard. Mater. 2020, 388, 122037. [Google Scholar] [CrossRef]
- Li, F.; Wan, Y.; Chen, J.; Hu, X.; Tsang, D.; Wang, H.; Gao, B. Novel ball-milled biochar-vermiculite nanocomposites effectively adsorb aqueous As(V). Chemosphere 2020, 260, 127566. [Google Scholar] [CrossRef]
- Lyu, H.H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Huang, H.; Tang, J.C. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms. Environ. Pollut. 2018, 233, 54–63. [Google Scholar] [CrossRef]
- Wang, B.; Gao, B.; Wan, Y.S. Entrapment of ball-milled biochar in Ca-alginate beads for the removal of aqueous Cd(II). J. Ind. Eng. Chem. 2018, 61, 161–168. [Google Scholar] [CrossRef]
- Jin, J.; Li, S.; Peng, X.; Liu, W.; Zhang, C.L.; Yang, Y.; Han, L.; Du, Z.W.; Sun, K.; Wang, X. HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresour. Technol. 2018, 256, 247–253. [Google Scholar] [CrossRef]
- Xiong, J.; Zhou, M.G.; Qu, C.C.; Yu, D.; Chen, H.C.; Wang, M.X.; Tan, W.F. Quantitative analysis of Pb adsorption on sulfhydryl-modified biochar. Biochar 2021, 3, 37–49. [Google Scholar] [CrossRef]
- Wu, W.; Li, J.; Niazi, N.; Müller, K.; Chu, Y.; Zhang, L.; Yuan, G.; Lu, K.; Song, Z.; Wang, H. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Environ. Sci. Pollut. Res. 2016, 23, 22890–22896. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Wang, J.; Tang, Y.; Zhang, Z. Selective adsorption of Pb2+ and Cu2+ on amino-modified attapulgite: Kinetic, thermal dynamic and DFT studies. J. Hazard. Mater. 2021, 404, 124140. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, G.; Chen, P.J. Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent. J. Colloid Interface Sci. 2011, 358, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Boehm, H.P.; Voll, M. Studies on basic surface oxides of carbon. Carbon 1968, 6, 226. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Li, Y.; Liu, Y.; Chen, Y.; Li, H.; Li, L.; Xu, F.; Jiang, H.; Chen, L. Hydroxyapatite modified sludge-based biochar for the adsorption of Cu2+ and Cd2+: Adsorption behavior and mechanisms. Bioresour. Technol. 2021, 321, 124413. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Lee, S.; Dou, X.; Mohan, D.; Sung, J.; Yang, J.; Ok, Y.S. Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 2012, 118, 536–544. [Google Scholar] [CrossRef]
- Al-Wabel, M.; Al-Omran, A.; El-Naggar, A.; Nadeem, M.; Usman, A. Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes. Bioresour. Technol. 2013, 131, 374–379. [Google Scholar] [CrossRef]
- Qiu, B.B.; Tao, X.D.; Wang, H.; Li, W.K.; Ding, X.; Chu, H.Q. Biochar as a low-cost adsorbent for aqueous heavy metal removal: A review. J. Anal. Appl. Pyrol. 2021, 155, 105081. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, C.; Yang, L.; Chen, J. Cerium oxide modified activated carbon as an efficient and effective adsorbent for rapid uptake of arsenate and arsenite: Material development and study of performance and mechanisms. Chem. Eng. J. 2017, 315, 630–638. [Google Scholar] [CrossRef]
- Xue, Y.J.; Wang, C.; Hu, Z.H.; Zhou, Y.; Xiao, Y.; Wang, T. Pyrolysis of sewage sludge by electromagnetic induction: Biochar properties and application in adsorption removal of Pb(II), Cd(II) from aqueous solution. Waste Manag. 2019, 89, 48–56. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, N.; Feng, C.; Li, M.; Gao, Y. Chromium removal using a magnetic corncob biochar/polypyrrole composite by adsorption combined with reduction: Reaction pathway and contribution degree. Colloid Surf. A 2018, 556, 201–209. [Google Scholar] [CrossRef]
- Chen, R.; Cheng, Y.; Wang, P.; Wang, Q.; Wan, S.; Huang, S.; Su, R.; Song, Y.; Wang, Y. Enhanced removal of Co(II) and Ni(II) from high-salinity aqueous solution using reductive self-assembly of three-dimensional magnetic fungal hyphal/graphene oxide nanofibers. Sci. Total Environ. 2021, 756, 143871. [Google Scholar] [CrossRef]
- Chen, Y.N.; Zeng, Z.P.; Li, Y.P.; Liu, Y.H.; Chen, Y.R.; Wu, Y.X.; Zhang, J.C.; Li, H.; Xu, R.; Wang, S.; et al. Glucose enhanced the oxidation performance of iron-manganese binary oxides: Structure and mechanism of removing tetracycline. J. Colloid Interf. Sci. 2020, 573, 287–298. [Google Scholar] [CrossRef]
- Tsai, W.; Liu, S.; Chen, H.; Chang, Y.; Tsai, Y. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere 2012, 89, 198–203. [Google Scholar] [CrossRef]
- Yang, X.D.; Wan, Y.S.; Zheng, Y.L.; He, F.; Yu, Z.B.; Huang, J.; Wang, H.L.; Ok, Y.S.; Jiang, Y.S.; Gao, B. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chem. Eng. J. 2019, 366, 608–621. [Google Scholar] [CrossRef]
- Liu, L.; Fan, S.S. Removal of cadmium in aqueous solution using wheat straw biochar: Effect of minerals and mechanism. Environ. Sci. Pollut. Res. 2018, 25, 8688–8700. [Google Scholar] [CrossRef]
- Lv, Y.C.; Niu, Z.Y.; Chen, Y.C.; Hu, Y.Y. Bacterial effects and interfacial inactivation mechanism of nZVI/Pd on Pseudomonas putida strain. Water Res. 2017, 115, 297–308. [Google Scholar] [CrossRef]
- Chen, R.; Cheng, Y.; Wang, P.; Wang, Y.; Wang, Q.; Yang, Z.; Tang, C.; Xiang, S.; Luo, S.; Huang, S.; et al. Facile synthesis of a sandwiched Ti3C2Tx MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH2)2 complexing solutions. Chem. Eng. J. 2021, 421, 129682. [Google Scholar] [CrossRef]
- Pehlivan, E.; Yanik, B.H.; Ahmetli, G.; Pehlivan, M. Equilibrium isotherm studies for the uptake of cadmium and lead ions onto sugar beet pulp. Bioresour. Technol. 2008, 99, 3520–3527. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Zhang, X.X.; Yuan, X.R.; Xie, R.Y.; Han, L.J. Characteristics, adsorption behaviors, Cu(II) adsorption mechanisms by cow manure biochar derived at various pyrolysis temperatures. Bioresour. Technol. 2021, 331, 125013. [Google Scholar] [CrossRef]
- Nair, V.; Panigrahy, A.; Vinu, R. Development of novel chitosan-lignin composites for adsorption of dyes and metal ions from wastewater. Chem. Eng. J. 2014, 254, 491–502. [Google Scholar] [CrossRef]
- Rahmani, A.; Mousavi, H.Z.; Fazli, M. Effect of nanostructure alumina on adsorption of heavy metals. Desalination 2010, 253, 94–100. [Google Scholar] [CrossRef]
- Cai, C.; Zhao, M.; Yu, Z.; Rong, H.; Zhang, C.S. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review. Sci. Total Environ. 2019, 662, 205–217. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.J.; Ma, J.X.; Xia, P.; Zhao, J.F. Removal of cadmium (II) from aqueous solution: A comparative study of raw attapulgite clay and a reusable waste-struvite/attapulgite obtained from nutrient-rich wastewater. J. Hazard. Mater. 2017, 329, 66–76. [Google Scholar] [CrossRef]
- Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F. Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis. Ecol. Eng. 2016, 91, 317–332. [Google Scholar] [CrossRef]
- Beesley, L.; Inneh, O.; Norton, G.; Moreno-Jimenez, E.; Pardo, T.; Clemente, R.; Dawson, J. Assessing the influence of compost and biochar amendments on the mobility and toxicity of metals and arsenic in a naturally contaminated mine soil. Environ. Pollut. 2014, 186, 195–202. [Google Scholar] [CrossRef]
- Trakal, L.; Veselska, V.; Safarik, I.; Vitkova, M.; Cihalova, S.; Komarek, M. Lead and cadmium sorption mechanisms on magnetically modified biochars. Bioresour. Technol. 2016, 203, 318–324. [Google Scholar] [CrossRef]
- Tan, X.F.; Liu, S.B.; Liu, Y.G.; Gu, Y.L.; Zeng, G.M.; Cai, X.X.; Yan, Z.L.; Yang, C.P.; Hu, X.J.; Chen, B. One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste. Sci. Rep. 2016, 6, 39691. [Google Scholar] [CrossRef]
- Wang, H.; Huang, F.; Zhao, Z.L.; Wu, R.R.; Xu, W.X.; Wang, P.; Xiao, R.B. High-efficiency removal capacities and quantitative adsorption mechanisms of Cd2+ by thermally modified biochars derived from different feedstocks. Chemosphere 2021, 272, 129594. [Google Scholar] [CrossRef]
- Choudhary, M.; Kumar, R.; Neogi, S. Activated biochar derived from Opuntia ficus-indica for the efficient adsorption of malachite green dye, Cu2+ and Ni2+ from water. J. Hazard. Mater. 2020, 392, 122441. [Google Scholar] [CrossRef]
- He, S.R.; Li, Y.T.; Weng, L.P.; Wang, J.J.; He, J.X.; Liu, Y.L.; Zhang, K.; Wu, Q.H.; Zhang, Y.L.; Zhang, Z. Competitive adsorption of Cd2+, Pb2+ and Ni2+ onto Fe3+-modified argillaceous limestone: Influence of pH, ionic strength and natural organic matters. Sci. Total Environ. 2018, 637, 69–78. [Google Scholar] [CrossRef]
- Zu, Y.; Guo, Z.S.; Zheng, J.; Hui, Y.; Wang, S.H.; Qin, Y.C.; Zhang, L.; Liu, H.H.; Gao, X.H.; Song, L.J. Investigation of Cu(I)-Y zeolites with different Cu/Al ratios towards the ultra-deep adsorption desulfurization: Discrimination and role of the specific adsorption active sites. Chem. Eng. J. 2020, 380, 122319. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Chen, Y.; Yu, H.; Yan, L.; Zhang, J.H.; Wang, B.; Du, B.; Xing, L. Magnetic graphene oxide/MgAl-layered double hydroxide nanocomposite: One-pot solvothermal synthesis, adsorption performance and mechanisms for Pb2+, Cd2+, and Cu2+. Chem. Eng. J. 2018, 341, 1–9. [Google Scholar] [CrossRef]
- Sharma, A.S.; Biswas, K.; Basu, B. Fine scale characterization of surface/subsurface and nanosized debris particles on worn Cu-10% Pb nanocomposites. J. Nanopart. Res. 2013, 15, 1675. [Google Scholar] [CrossRef]
BC | HNC | |
---|---|---|
pHpzc | 4.77 | 2.69 |
carboxyl group (mmol/g) | 1.251 | 2.320 |
lactonic group (mmol/g) | 1.206 | 1.336 |
hydroxyl group (mmol/g) | 1.975 | 1.670 |
C [%] | 76.29 | 57.55 |
H [%] | 3.88 | 6.26 |
O [%] | 18.38 | 27.52 |
N [%] | 0.51 | 4.44 |
H/C | 0.05 | 0.11 |
O/C | 0.24 | 0.48 |
(O+N)/C | 0.25 | 0.56 |
BET surface area (m2/g) | 3.1764 | 2.7033 |
BJH pore volume (cm3/g) | 0.012958 | 0.010247 |
Average diameter of pores (nm) | 10.198 | 13.464 |
Micropore volume (cm3/g) | 0.0007243 | 0.0004308 |
Models | Parameters | Values | |||||
---|---|---|---|---|---|---|---|
Cu2+ | Cd2+ | Pb2+ | |||||
BC | HNC | BC | HNC | BC | HNC | ||
Pseudo-first-order | qe,exp (mg/g) | 8.104 | 18.27 | 7.615 | 22.63 | 37.80 | 49.74 |
qe,cal (mg/g) | 7.784 | 17.20 | 7.219 | 21.75 | 34.00 | 49.05 | |
k1 (1/min) | 1.624 | 2.382 | 2.401 | 2.629 | 1.458 | 2.444 | |
R2 | 0.9637 | 0.979 | 0.9777 | 0.9828 | 0.8976 | 0.9992 | |
Pseudo-second-order | qe,cal (mg/g) | 7.930 | 17.41 | 7.298 | 21.99 | 33.20 | 48.67 |
k2 (g/mg min) | 0.457 | 0.421 | 1.070 | 0.392 | 1.544 | 3.922 | |
R2 | 0.9842 | 0.9880 | 0.9842 | 0.9900 | 0.8609 | 0.9919 |
Adsorption Isotherm | Parameter | BC | HNC | ||||
---|---|---|---|---|---|---|---|
Cu2+ | Cd2+ | Pb2+ | Cu2+ | Cd2+ | Pb2+ | ||
Langmuir | qmax (mg·g−1) | 8.86 | 4.74 | 17.95 | 19.79 | 10.37 | 46.84 |
KL (L·mg−1) | 0.061 | 0.146 | 0.043 | 0.059 | 0.071 | 0.029 | |
R2 | 0.9957 | 0.9972 | 0.9958 | 0.9964 | 0.9940 | 0.9836 | |
Freundlich | KF (mg·g−1) | 5.06 | 2.50 | 5.97 | 7.39 | 5.62 | 9.04 |
1/n | 0.081 | 0.098 | 0.165 | 0.153 | 0.088 | 0.246 | |
R2 | 0.6348 | 0.5539 | 0.8774 | 0.9119 | 0.9701 | 0.9739 | |
A | 13,189.7 | 382.7 | 53.9 | 93.9 | 8081.4 | 12.2 | |
Temkin | B | 4659.7 | 6407.5 | 1554.5 | 1439.7 | 3912.8 | 545.4 |
R2 | 0.5737 | 0.6011 | 0.8432 | 0.9747 | 0.9098 | 0.9221 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zheng, K.; Jiao, Z.; Zhan, W.; Ge, S.; Ning, S.; Fang, S.; Ruan, X. Simultaneous Removal of Cu2+, Cd2+ and Pb2+ by Modified Wheat Straw Biochar from Aqueous Solution: Preparation, Characterization and Adsorption Mechanism. Toxics 2022, 10, 316. https://doi.org/10.3390/toxics10060316
Wang Y, Zheng K, Jiao Z, Zhan W, Ge S, Ning S, Fang S, Ruan X. Simultaneous Removal of Cu2+, Cd2+ and Pb2+ by Modified Wheat Straw Biochar from Aqueous Solution: Preparation, Characterization and Adsorption Mechanism. Toxics. 2022; 10(6):316. https://doi.org/10.3390/toxics10060316
Chicago/Turabian StyleWang, Yangyang, Kaixuan Zheng, Zhiqiang Jiao, Wenhao Zhan, Shiji Ge, Shaopeng Ning, Shiyuan Fang, and Xinling Ruan. 2022. "Simultaneous Removal of Cu2+, Cd2+ and Pb2+ by Modified Wheat Straw Biochar from Aqueous Solution: Preparation, Characterization and Adsorption Mechanism" Toxics 10, no. 6: 316. https://doi.org/10.3390/toxics10060316
APA StyleWang, Y., Zheng, K., Jiao, Z., Zhan, W., Ge, S., Ning, S., Fang, S., & Ruan, X. (2022). Simultaneous Removal of Cu2+, Cd2+ and Pb2+ by Modified Wheat Straw Biochar from Aqueous Solution: Preparation, Characterization and Adsorption Mechanism. Toxics, 10(6), 316. https://doi.org/10.3390/toxics10060316