Carbamazepine Overdose after Psychiatric Conditions: A Case Study for Postmortem Analysis in Human Bone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Standard Solutions
2.3. Samples
2.4. Preparation of the Samples and Extraction Procedure
2.5. Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.6. Validation Procedure
2.7. Expression of Analyte Levels
3. Results
3.1. GC-MS
3.2. Validation Results
3.3. Application to Real Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bridwell, R.E.; Brown, S.; Clerkin, S.; Birdsong, S.; Long, B. Neurologic toxicity of carbamazepine in treatment of trigeminal neuralgia: A case report. Am. J. Emerg. Med. 2022, 55, 231.e3–231.e5. [Google Scholar] [CrossRef] [PubMed]
- Vieta, E.; Cruz, N.; Garcia-Campayo, J.; De Arce, R.; Crespo, J.M.; Vallès, V.; Pérez-Blanco, J.; Roca, E.; Olivares, J.M.; Moríñigo, A.; et al. A double-blind, randomized, placebo-controlled prophylaxis trial of oxcarbazepine as adjunctive treatment to lithium in the long-term treatment of bipolar I and II disorder. Int. J. Neuropsychopharmacol. 2008, 11, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Tondo, L. El tratamiento a largo plazo del trastorno bipolar. Psicodebate 2014, 14, 83–100. [Google Scholar] [CrossRef] [Green Version]
- Gummin, D.D.; Mowry, J.B.; Beuhler, M.C.; Spyker, D.A.; Bronstein, A.C.; Rivers, L.J.; Pham, N.P.T.; Weber, J. 2020 Annual Report of the American Association of Poison Control Centers’ National Poison Data System (NPDS): 38th Annual Report. Clin. Toxicol. 2021, 59, 1282–1501. [Google Scholar] [CrossRef]
- Grunze, A.; Amann, B.L.; Grunze, H. Efficacy of Carbamazepine and Its Derivatives in the Treatment of Bipolar Disorder. Medicina 2021, 57, 433. [Google Scholar] [CrossRef]
- Hirsch, A.; Wanounou, M.; Perlman, A.; Hirsh-Raccah, B.; Muszkat, M. The effect of multidrug exposure on neurological manifestations in carbamazepine intoxication: A nested case-control study. BMC Pharmacol. Toxicol. 2020, 21, 47. [Google Scholar] [CrossRef]
- Ghannoum, M.; Yates, C.; Galvao, T.F.; Sowinski, K.M.; Vo, T.H.V.; Coogan, A.; Gosselin, S.; Lavergne, V.; Nolin, T.D.; Hoffman, R.S.; et al. Extracorporeal treatment for carbamazepine poisoning: Systematic review and recommendations from the EXTRIP workgroup. Clin. Toxicol. 2014, 52, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, E. Toxicological Interactions Between Alcohol and Benzodiazepines. J. Toxicol. Clin. Toxicol. 2002, 40, 69–75. [Google Scholar] [CrossRef]
- Hoegberg, L.C.G.; Shepherd, G.; Wood, D.M.; Johnson, J.; Hoffman, R.S.; Caravati, E.M.; Chan, W.L.; Smith, S.W.; Olson, K.R.; Gosselin, S. Systematic review on the use of activated charcoal for gastrointestinal decontamination following acute oral overdose. Clin. Toxicol. 2021, 59, 1196–1227. [Google Scholar] [CrossRef]
- Anand, L.S.; Anand, J.S. Self-poisoning before and during the initial year of the COVID-19 pandemic in northern Poland. Int. J. Occup. Med. Environ. 2022, 35, 1–9. [Google Scholar]
- Ahmed, H.; Larsen, M.; Hansen, M.; Andersen, C. The role of QT-prolonging medications in a forensic autopsy study from Western Denmark. Forensic Sci. Int. 2021, 325, 110889. [Google Scholar] [CrossRef] [PubMed]
- Caplan, Y.H.; Goldberger, B.A. Alternative Specimens for Workplace Drug Testing. J. Anal. Toxicol. 2001, 25, 396–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, K.K.; Jenkins, A.J. Detection of Drugs of Forensic Importance in Postmortem Bone. Am. J. Forensic Med. Pathol. 2009, 30, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Watterson, J.H.; Botman, J.E. Detection of Acute Diazepam Exposure in Bone and Marrow: Influence of Tissue Type and the Dose-Death Interval on Sensitivity of Detection by ELISA with Liquid Chromatography Tandem Mass Spectrometry Confirmation. J. Forensic Sci. 2009, 54, 708–714. [Google Scholar] [CrossRef]
- McIntyre, I.M.; King, C.V.; Boratto, M.; Drummer, O.H. Postmortem drug analyses in bone and bone marrow. Ther. Drug Monit. 2000, 22, 79–83. [Google Scholar] [CrossRef]
- Fernández, P.; Aldonza, M.; Bouzas, A.; Lema, M.; Bermejo, A.M.; Tabernero, M.J. GC-FID determination of cocaine and its metabolites in human bile and vitreous humor. J. Appl. Toxicol. 2006, 26, 253–257. [Google Scholar] [CrossRef]
- Lin, D.-L.; Chen, C.-Y.; Shaw, K.-P.; Havier, R.; Lin, R.-L. Distribution of Codeine, Morphine, and 6-Acetylmorphine in Vitreous Humor. J. Anal. Toxicol. 1997, 21, 258–261. [Google Scholar] [CrossRef] [Green Version]
- Politi, L.; Groppi, A.; Polettini, A.; Montagna, M.T. A rapid screening procedure for drugs and poisons in gastric contents by direct injection-HPLC analysis. Forensic Sci. Int. 2004, 141, 115–120. [Google Scholar] [CrossRef]
- Fernandez-Lopez, L.; Pellegrini, M.; Rotolo, M.C.; Maldonado, A.L.; Falcon, M.; Mancini, R. Development and validation of a method for analysing of duloxetine, venlafaxine and amitriptyline in human bone. Forensic Sci. Int. 2019, 299, 154–160. [Google Scholar] [CrossRef]
- Raikos, N.; Tsoukali, H.; Njau, S. Determination of opiates in postmortem bone and bone marrow. Forensic Sci. Int. 2001, 123, 140–141. [Google Scholar] [CrossRef]
- Wiebe, T.R.; Watterson, J.H. Analysis of tramadol and O-desmethyltramadol in decomposed skeletal tissues following acute and repeated tramadol exposure by gas chromatography mass spectrometry. Forensic Sci. Int. 2014, 242, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Wille, S.M.R.; Coucke, W.; De Baere, T.; Peters, F.T. Update of Standard Practices for New Method Validation in Forensic Tox-icology. Curr. Pharm. Des. 2017, 23, 5442–5454. [Google Scholar] [PubMed]
- Peters, F.T.; Wissenbach, D.K.; Busardò, F.P.; Marchei, E.; Pichini, S. Method Development in Forensic Toxicology. Curr. Pharm. Des. 2017, 23, 5455–5467. [Google Scholar] [CrossRef] [PubMed]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
- Schulz, M.; Schmoldt, A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie 2003, 58, 447–474. [Google Scholar]
- Ösby, U.; Brandt, L.; Correia, N.; Ekbom, A.; Sparén, P. Excess Mortality in Bipolar and Unipolar Disorder in Sweden. Arch. Gen. Psychiatry 2001, 58, 844–850. [Google Scholar] [CrossRef] [Green Version]
- Fazel, S.; Gulati, G.; Linsell, L.; Geddes, J.R.; Grann, M. Schizophrenia and violence: Systematic review and me-ta-analysis. PLoS Med. 2009, 6, e1000120. [Google Scholar] [CrossRef] [Green Version]
- Baillargeon, J.; Binswanger, I.A.; Penn, J.V.; Williams, B.A.; Murray, O.J. Psychiatric Disorders and Repeat Incarcerations: The Revolving Prison Door. Am. J. Psychiatry 2009, 166, 103–109. [Google Scholar] [CrossRef]
Indication | Pharmacokinetic | Blood Levels |
---|---|---|
Main indication: epilepsy Other indications: trigeminal neuralgia neuropathic pain psychiatric conditions (depression, bipolar disorder, manic episodes) | Distribution: 70–80% protein binding Reaches breast milk and crosses placental barrier. Metabolism: hepatic Elimination: 70% renal, 30% hepatic t1/2 36 h | Terapeutic: 4–12 μg/mL Toxic: >12 μg/mL Severe toxicity: 40 μg/mL (in combination with antidepressants or alcohol: 30 μg/mL) |
Substance | RT (min) | Characteristic Mass Fragments (m/z) |
---|---|---|
Carbamazepine | 12.9 | 193–165–139 |
Sertraline (IS) | 26.8 | 159–262–274–304 |
Analyte | Intra-Assay Precision (RSD) | Intra-Assay Accuracy (ABS%Error) | Inter-Assay Precision (RSD) | Inter-Assay Accuracy (ABS%Error) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
* QCL | ** QCM | *** QCH | QCL | QCM | QCH | QCL | QCM | QCH | QCL | QCM | QCH | |
Carbamazepine | 1.4 | 2.3 | 0.4 | 13.6 | 3.3 | 1.9 | 1.3 | 1.4 | 0.9 | 6.9 | 0.2 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-López, L.; Mancini, R.; Rotolo, M.-C.; Navarro-Zaragoza, J.; Hernández del Rincón, J.-P.; Falcón, M. Carbamazepine Overdose after Psychiatric Conditions: A Case Study for Postmortem Analysis in Human Bone. Toxics 2022, 10, 322. https://doi.org/10.3390/toxics10060322
Fernández-López L, Mancini R, Rotolo M-C, Navarro-Zaragoza J, Hernández del Rincón J-P, Falcón M. Carbamazepine Overdose after Psychiatric Conditions: A Case Study for Postmortem Analysis in Human Bone. Toxics. 2022; 10(6):322. https://doi.org/10.3390/toxics10060322
Chicago/Turabian StyleFernández-López, Lucia, Rosanna Mancini, Maria-Concetta Rotolo, Javier Navarro-Zaragoza, Juan-Pedro Hernández del Rincón, and Maria Falcón. 2022. "Carbamazepine Overdose after Psychiatric Conditions: A Case Study for Postmortem Analysis in Human Bone" Toxics 10, no. 6: 322. https://doi.org/10.3390/toxics10060322
APA StyleFernández-López, L., Mancini, R., Rotolo, M. -C., Navarro-Zaragoza, J., Hernández del Rincón, J. -P., & Falcón, M. (2022). Carbamazepine Overdose after Psychiatric Conditions: A Case Study for Postmortem Analysis in Human Bone. Toxics, 10(6), 322. https://doi.org/10.3390/toxics10060322