Soil and Freshwater Bioassays to Assess Ecotoxicological Impact on Soils Affected by Mining Activities in the Iberian Pyrite Belt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Geochemical Analysis
2.4. Mineralogical Analysis
2.5. Soil Sample Leaching Procedure
2.6. Bioassays
2.6.1. Acute Immobilization Test with Daphnia Magna
2.6.2. Freshwater Algae, Growth Rate Inhibition Test with Raphidocelis Subcapitata
2.6.3. Earthworm Mortality Test
2.6.4. Cytotoxicity Study Viability Assay
2.7. Ecotoxicological Statistical Analysis
3. Results and Discussion
3.1. Geochemical Analysis
3.2. Ecotoxicological Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Caliani, J.C.; Giráldez, M.I.; Waken, W.H.; Del Río, Z.M.; Córdoba, F. Soil quality changes in an Iberian pyrite mine site 15 years after land reclamation. Catena 2021, 206, 105538. [Google Scholar] [CrossRef]
- Lottermoser, B.G. Mine Wastes: Characterization, Treatment and Environmental Impacts, 1st ed.; Springer: Berlin, Germany, 2007; p. 304. [Google Scholar]
- Younger, P.L. Acid Mine Drainage. In Encyclopedia of Engineering Geology. Encyclopedia of Earth Sciences Series; Bobrowsky, P.T., Marker, B., Eds.; Springer: Cham, Switzerland, 2018; pp. 5–6. [Google Scholar] [CrossRef]
- Bird, G. The influence of the scale of mining activity and mine site remediation on the contamination legacy of historical metal mining activity. Environ. Sci. Poll. Res. 2016, 23, 23456–23466. [Google Scholar] [CrossRef] [PubMed]
- Cánovas, C.R.; Macías, F.; Basallote, M.D.; Olías, M.; Nieto, J.M.; Pérez-López, R. Metal(loid) release from sulfide-rich wastes to the environment: The case of the Iberian pyrite belt (SW Spain). Curr. Opin. Environ. Sci. Health 2021, 20, 100240. [Google Scholar] [CrossRef]
- Fuentes-López, J.M.; Olías, M.; León, R.; Basallote, M.D.; Macías, F.; Moreno-González, R.; Cánovas, C.R. Stream-pit lake interactions in an abandoned mining area affected by acid drainage (Iberian Pyrite Belt). Sci. Total Environ. 2022, 833, 155224. [Google Scholar] [CrossRef]
- Sánchez-Donoso, R.; García Lorenzo, M.L.; Esbrí, J.M.; García-Noguero, E.M.; Higueras, P.; Crespo, E. Geochemical characterization and trace-element mobility assessment for metallic mine reclamation in soils affected by mine activities in the iberian pyrite belt. Geosciences 2021, 11, 233. [Google Scholar] [CrossRef]
- García-Lorenzo, M.L.; Martínez-Sánchez, M.J.; Pérez-Sirvent, C.; Molina, J. Ecotoxicological evaluation for the screening of areas polluted by mining activities. Ecotoxicology 2009, 18, 1077–1086. [Google Scholar] [CrossRef]
- Abd Aziz, A.; Lee, B.T.; Han, H.J. Assessment of the stabilization of heavy metal contaminants in soils using chemical leaching and an earthworm bioassay. Environ. Geochem. Health 2019, 41, 447–460. [Google Scholar] [CrossRef]
- Szara-Bak, M.; Baran, A.; Klimkowicz-Pawlas, A.; Tkaczewska, J.; Wojtasik, B. Mobility, ecotoxicity, bioaccumulation and sources of trace elements in the bottom sediments of the Rożnów reservoir. Environ. Geochem. Health 2021, 43, 4701–4718. [Google Scholar] [CrossRef]
- Alvarenga, P.; Palma, P.; Gonçalves, A.P. Evaluation of tests to assess the quality of mine-contaminated soils. Environ. Geochem. Health 2008, 30, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization (FAO). IUSS Working Group WRB. In World Reference Base for Soil Resources 2014; Update 2015: International Soil Classification System for Naming soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Strauss, G. Sobre la geología de la provincial piritífera del SW de la Península Ibérica y de sus yacimientos, en especial sobre la mina de pirita de Lousal (Portugal). In Memoria del Instituto Tecnológico Geominero de España; Casa del Libro: Madrid, Spain, 1970; Volume 77, p. 266. [Google Scholar]
- Oliveira, M.; Ferreira, T.; Relvas, J.M.R.S.; Pinto, A.M.M.; Pereira, Z.; Matos, J.; Fernandes, C. Lousal, Portugal: Geologic and mining heritage of an ancient mine from Iberian Pyrite Belt. In Proceedings of the XIV Congreso Sobre Patrimonio Geológico y minero, Castrillón, Spain, 12–15 September 2013. [Google Scholar]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns. I. Matrix-flushing method of quantitative multicomponent analysis. J. Appl. Crystallogr. 1974, 7, 519–525. [Google Scholar] [CrossRef]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns. II. Adiabatic principle of X-ray diffraction analysis of mixtures. J. Appl. Crystallogr. 1974, 7, 526–531. [Google Scholar] [CrossRef]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns. III. Simultaneous determination of a set of reference intensities. J. Appl. Crystallogr. 1975, 8, 17–19. [Google Scholar] [CrossRef]
- Deutsches Institut für Normung (DIN). 38414-S4: Determination of Leachability by Water (S4); DIN: Belin, Germany, 1984. [Google Scholar]
- Organisation for Economic Cooperation and Development (OECD). Test No. 202: Daphnia sp. Acute Immobilisation Test; OECD: Paris, France, 2004. [Google Scholar] [CrossRef]
- DaphtoxkitF™ Standard Operating Procedure. 2000. Available online: https://www.microbiotests.com/wp-content/uploads/2019/07/daphnia-toxicity-test_daphtoxkit-f_standard-operating-procedure.pdf (accessed on 15 May 2022).
- Organisation for Economic Cooperation and Development (OECD). Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test; OECD: Paris, France, 2011. [Google Scholar] [CrossRef] [Green Version]
- Algaltoxkit F™ Standard Operating Procedure. 2015. Available online: https://www.microbiotests.com/wp-content/uploads/2019/07/freshwater-algae-toxicity-test_algaltoxkit-f_standard-operating-procedure.pdf (accessed on 15 May 2022).
- Organisation for Economic Cooperation and Development (OECD). Test No. 207: Earthworm, Acute Toxicity Tests; OECD: Paris, France, 1984. [Google Scholar] [CrossRef]
- Bori, J.; Vallès, B.; Ortega, L.; Riva, M.C. Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation. Environ. Sci. Poll. Res. 2016, 23, 18694–18703. [Google Scholar] [CrossRef] [Green Version]
- Twentyman, P.R.; Luscombe, M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br. J. Cancer 1987, 56, 279–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litchfield, J.T.; Wilcoxon, F. A simplified method of evaluating dose-effect experiments. J. Pharmacol. Exp. Ther. 1949, 96, 99–113. [Google Scholar]
- Persoone, G.; Marsalek, B.; Blinova, I.; Törökne, A.; Zarina, D.; Manusadzianas, L.; Nalecz-Jawecki, G.; Tofan, L.; Stepanova, N.; Tothova, L.; et al. A practical and user-friendly toxicity classification system with microbiotests for natural waters and wastewaters. Environ. Toxicol. 2003, 18, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, P.; Laneiro, C.; Palma, P. A study on As, Cu, Pb and Zn (bio)availability in an abandoned mine area (São Domingos, Portugal) using chemical and ecotoxicological tools. Environ. Sci. Pollut. Res. 2013, 20, 6539–6550. [Google Scholar] [CrossRef] [PubMed]
- Bori, J.; Vallès, B.; Navarro, A.; Riva, M.C. Ecotoxicological risks of the abandoned F–Ba–Pb–Zn mining area of Osor (Spain). Environ. Geochem. Health 2017, 39, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Barata, C.; Markich, S.J.; Baird, D.J.; Taylor, G.; Soares, A.M. Genetic variability in sublethal tolerance to mixtures of cadmium and zinc in clones of Daphnia magna Straus. Aquat. Toxicol. 2002, 60, 85–99. [Google Scholar] [CrossRef]
- Palma, P.; López-Orozco, R.; Mourinha, C.; Oropesa, A.L.; Novais, M.H.; Alvarenga, P. Assessment of the environmental impact of an abandoned mine using an integrative approach: A case-study of the “Las Musas” mine (Extremadura, Spain). Sci. Total Environ. 2019, 659, 84–94. [Google Scholar] [CrossRef]
- Kasemets, K.; Reiman, R.; Põllumaa, L.; Ivask, A.; Francois, M.; Dubourguier, H.C. Application of different toxicity tests for the detection of water-extractable toxicity of heavy metal polluted soils. In Proceedings of the Abstracts of the 11th International Symposium on Toxicity Assessment, Vilnius, Lithuania, 1–6 June 2013; p. 59. [Google Scholar]
- Kula, H.; Larink, O. Development and standardization of test methods for the prediction of sublethal effects of chemicals on earthworms. Soil Biol. Biochem. 1997, 29, 635–639. [Google Scholar] [CrossRef]
- Reddy, A.R.N.; Srividya, L. Evaluation of in vitro cytotoxicity of Zinc oxide (ZnO) nanoparticles using human cell Lines. J. Toxicol. Risk Assess. 2018, 4, 9. [Google Scholar] [CrossRef]
- De Schamphelaere, K.A.; Heijerick, D.G.; Janssen, C.R. Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 2002, 133, 243–258. [Google Scholar] [CrossRef]
- De Schamphelaere, K.A.C.; Janssen, C.R. Bioavailability Models for Predicting Copper Toxicity to Freshwater Green Microalgae as a Function of Water Chemistry. Environ. Sci. Technol. 2006, 40, 4514–4522. [Google Scholar] [CrossRef]
- European Chemistry Agency (ECHA). Available online: https://echa.europa.eu/es/registration-dossier/-/registered-dossier/22366/6/2/4 (accessed on 15 May 2022).
- Li, H.; Toh, P.Z.; Tan, J.Y.; Zin, M.T.; Lee, C.; Li, B.; Leolukman, M.; Bao, H.; Kang, L. Selected Biomarkers Revealed Potential Skin Toxicity Caused by Certain Copper Compounds. Sci. Rep. 2016, 6, 37664. [Google Scholar] [CrossRef] [Green Version]
- Bae, D.; Gennings, C.; Carter, W.H., Jr.; Yang, R.S.H.; Campain, J.A. Toxicological Interactions among Arsenic, Cadmium, Chromium, and Lead in Human Keratinocytes. Toxicol. Sci. 2001, 63, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Biesinger, K.E.; Christensen, G.M.; Fiandt, J.T. Effects of metal salt mixtures on Daphnia magna reproduction. Ecotox. Environ. Safe. 1986, 11, 9–14. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants. Brazilian. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef]
- Mykhaylenko, N.F.; Zolotareva, E.K. The effect of copper and selenium nanocarboxylates on biomass accumulation and photosynthetic energy transduction efficiency of the green algae chlorella vulgaris. Nanoscale Res. Lett. 2017, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- Aziz, R.; Rafiq, M.T.; Yang, J.; Liu, D.; Lu, L.; He, Z.; Daud, M.K.; Tingqiang, L.; Yang, X. Impact assessment of cadmium toxicity and its bioavailability in human cell lines (Caco-2 and HL-7702). BioMed Res. Int. 2014, 2014, 839538. [Google Scholar] [CrossRef]
- Boim, A.; Wragg, J.; Canniatti-Brazaca, S.G.; Alleoni, L. Human intestinal Caco-2 cell line in vitro assay to evaluate the absorption of Cd, Cu, Mn and Zn from urban environmental matrices. Environ. Geochem. Health 2020, 42, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Denys, S.; Caboche, J.; Tack, K.; Rychen, G.; Wragg, J.; Cave, M.; Jondreville, C.; Feidt, C. In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environ. Sci. Technol. 2012, 46, 6252–6260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borovanský, J.; Riley, P.A. Cytotoxicity of zinc in vitro. Chem.-Biol. Interact. 1989, 69, 279–291. [Google Scholar] [CrossRef]
- Brosin, A.; Wolf, V.; Mattheus, A.; Heise, H. Use of XTT-assay to assess the cytotoxicity of different surfactants and metal salts in human keratinocytes (HaCaT). A feasible method for in vitro testing of skin irritants. Acta Derm.-Venereol. 1997, 77, 26–28. [Google Scholar] [PubMed]
- van de Sandt, J.; Roguet, R.; Cohen, C.; Esdaile, D.; Ponec, M.; Corsini, E.; Fartasch, M. The use of human keratinocytes and human skin models for predicting skin irritation: The report and recommendations of ECVAM Workshop 38. ATLA-Altern. Lab. Anim. 1999, 27, 723–743. [Google Scholar] [CrossRef] [PubMed]
Sample | LOS 06 | LOS 07 | LOS 09 | LOS 10 | LOS 13 |
---|---|---|---|---|---|
Al2O3 (%wt) | 21.9 | 18.7 | 25.2 | 23.4 | 24.1 |
SiO2 (%wt) | 53.8 | 63.4 | 54.1 | 54.2 | 51.2 |
P2O5 (%wt) | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
SO3 (%wt) | 3.3 | 3.1 | 1.4 | 2.2 | 6.0 |
Cl (%wt) | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 |
K2O (%wt) | 5.3 | 4.3 | 5.2 | 5.1 | 4.9 |
Ti (%wt) | 0.7 | 0.6 | 0.6 | 0.7 | 0.6 |
Fe2O3 (%wt) | 13.2 | 8.7 | 12.2 | 13.2 | 9.6 |
CaO (%wt) | 0.5 | 0.3 | 0.2 | 0.2 | 2.5 |
V (mg kg−1) | 184 | 123 | 199 | 207 | 187 |
Cr (mg kg−1) | 137 | 81 | 145 | 134 | 120 |
Mn (mg kg−1) | 389 | 552 | 507 | 353 | 528 |
Co (mg kg−1) | 812 | 581 | 714 | 769 | 590 |
Ni (mg kg−1) | 68 | 55 | 72 | 61 | 71 |
Cu (mg kg−1) | 1320 | 365 | 318 | 512 | 432 |
Zn (mg kg−1) | 546 | 163 | 308 | 367 | 539 |
Ga (mg kg−1) | 27 | 30 | 34 | 36 | 30 |
As (mg kg−1) | 530 | 421 | 312 | 430 | 254 |
Rb (mg kg−1) | 285 | 210 | 230 | 257 | 231 |
Sr (mg kg−1) | 145 | 148 | 121 | 121 | 156 |
Y (mg kg−1) | 46 | 50 | 31 | 42 | 54 |
Zr (mg kg−1) | 504 | 442 | 294 | 441 | 421 |
Nb (mg kg−1) | 26 | 27 | 19 | 25 | 21 |
Sn (mg kg−1) | 77 | 54 | 65 | 78 | 67 |
Te (mg kg−1) | 30 | 35 | 37 | 36 | 30 |
Ba (mg kg−1) | 396 | 253 | 331 | 409 | 336 |
Pb (mg kg−1) | 591 | 61 | 105 | 140 | 167 |
Eu (mg kg−1) | 120 | 66 | 55 | 105 | 68 |
Yb (mg kg−1) | 64 | 47 | 42 | 59 | 45 |
Qtz | Msc | Ill | Chl | Mnt | Fsp | Gt | Jar | Alu | Gyp | |
---|---|---|---|---|---|---|---|---|---|---|
LOS 6 | 49 | 35 | 1 | 4 | 9 | 1 | 1 | |||
LOS 7 | 60 | 30 | 8 | 2 | ||||||
LOS 9 | 38 | 32 | 9 | 4 | 14 | 2 | 1 | |||
LOS 10 | 26 | 33 | 14 | 7 | 4 | 11 | 4 | 1 | ||
LOS 13 | 30 | 32 | 8 | 10 | 1 | 2 | 5 | 12 |
PHE | Soil Sample Sites | ||||
---|---|---|---|---|---|
LOS06 | LOS07 | LOS09 | LOS10 | LOS13 | |
As (mg/L) | 0.011 | 0.006 | 0.004 | 0.003 | 0.01 |
Zn (mg/L) | 152.2 | 16.2 | 80.4 | 113.3 | 144.3 |
Cu (mg/L) | 99.6 | 0.1 | 22.6 | 31.3 | 27.7 |
Aqueous Extracts Toxicity Tests | Sample Sites | |||||
---|---|---|---|---|---|---|
LOS 06 | LOS 07 | LOS 09 | LOS 10 | LOS 13 | ||
D. magna immobilization | 48 h EC50 | 0.66 (0.61–0.70) | NT | 1.0 (0.56–1.8) | 0.34 (0.30–0.39) | 0.5 (0.42–0.76) |
TU * | 152 | <1 | 99 | 290 | 179 | |
Hazard Class [27] | V | I | IV | V | V | |
R.D. 9/2005 classification ** | C | NC | C | C | C | |
R. subcapitata Inhibition growth | 72 h ErC50 | 3.02 (2.1–5.5) | NT | 11.6 (5.8–37.3) | 1.3 (1–1.8) | 0.1 (0.05–0.2) |
TU * | 33.1 | <1 | 8.6 | 78.1 | 1000 | |
Hazard Class [27] | IV | I | III | IV | V | |
R.D. 9/2005 classification ** | NC | NC | NC | NC | C | |
Whole soil toxicity test | ||||||
E. foetida mortality | 14 d EC50 | 37.5 (NOEC: 25%) | 33.9 (NOEC: 25%) | >50 (NOEC: 25%) | 37.5 (NOEC: 25%) | > 50 (NOEC: 50%) |
TU * | 2.7 | 2.9 | <2 | 2.7 | <2 | |
Hazard Class [27] | III | III | II | III | II | |
R.D. 9/2005 classification ** | NC | NC | NC | NC | NC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andreu-Sánchez, Ó.; García-Lorenzo, M.L.; Esbrí, J.M.; Sánchez-Donoso, R.; Iglesias-Martínez, M.; Arroyo, X.; Crespo-Feo, E.; Ruiz-Costa, N.; Roca-Pérez, L.; Castiñeiras, P. Soil and Freshwater Bioassays to Assess Ecotoxicological Impact on Soils Affected by Mining Activities in the Iberian Pyrite Belt. Toxics 2022, 10, 353. https://doi.org/10.3390/toxics10070353
Andreu-Sánchez Ó, García-Lorenzo ML, Esbrí JM, Sánchez-Donoso R, Iglesias-Martínez M, Arroyo X, Crespo-Feo E, Ruiz-Costa N, Roca-Pérez L, Castiñeiras P. Soil and Freshwater Bioassays to Assess Ecotoxicological Impact on Soils Affected by Mining Activities in the Iberian Pyrite Belt. Toxics. 2022; 10(7):353. https://doi.org/10.3390/toxics10070353
Chicago/Turabian StyleAndreu-Sánchez, Óscar, Mari Luz García-Lorenzo, José María Esbrí, Ramón Sánchez-Donoso, Mario Iglesias-Martínez, Xabier Arroyo, Elena Crespo-Feo, Nuria Ruiz-Costa, Luis Roca-Pérez, and Pedro Castiñeiras. 2022. "Soil and Freshwater Bioassays to Assess Ecotoxicological Impact on Soils Affected by Mining Activities in the Iberian Pyrite Belt" Toxics 10, no. 7: 353. https://doi.org/10.3390/toxics10070353
APA StyleAndreu-Sánchez, Ó., García-Lorenzo, M. L., Esbrí, J. M., Sánchez-Donoso, R., Iglesias-Martínez, M., Arroyo, X., Crespo-Feo, E., Ruiz-Costa, N., Roca-Pérez, L., & Castiñeiras, P. (2022). Soil and Freshwater Bioassays to Assess Ecotoxicological Impact on Soils Affected by Mining Activities in the Iberian Pyrite Belt. Toxics, 10(7), 353. https://doi.org/10.3390/toxics10070353