Early-Life Exposure to Formaldehyde through Clothing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Determination of Formaldehyde
2.3. Washout Effect
2.4. Exposure Assessment and Risk Characterization
2.5. Statistics
3. Results
3.1. Analysis of Formaldehyde
3.2. Human Exposure and Risk Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Parliament. The impact of textile production and waste on the environment (infographic). 2020. Available online: https://www.europarl.europa.eu/news/en/headlines/society/20201208STO93327/the-impact-of-textile-production-and-waste-on-the-environment-infographic (accessed on 23 June 2022).
- Giménez-Arnau, A. A public danger induces common action: Contact allergy epidemic to dimethylfumarate in Europe. Expert Rev. Dermatol. 2011, 6, 263–271. [Google Scholar] [CrossRef]
- Mobolaji-Lawal, M.; Nedorost, S. The Role of Textiles in Dermatitis: An Update. Curr. Allergy Asthma Rep. 2015, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Walter, N.; McQueen, R.H.; Keelan, M. In vivo assessment of antimicrobial-treated textiles on skin microflora. Int. J. Cloth. Sci. Technol. 2014, 26, 330–342. [Google Scholar] [CrossRef]
- Rovira, J.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Trace elements in skin-contact clothes and migration to artificial sweat: Risk assessment of human dermal exposure. Text. Res. J. 2017, 87, 726–738. [Google Scholar] [CrossRef]
- Herrero, M.; Rovira, J.; Nadal, M.; Domingo, J.L. Risk assessment due to dermal exposure of trace elements and indigo dye in jeans: Migration to artificial sweat. Environ. Res. 2019, 172, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Negev, M.; Berman, T.; Reicher, S.; Sadeh, M.; Ardi, R.; Shammai, Y. Concentrations of trace metals, phthalates, bisphenol A and flame-retardants in toys and other children’s products in Israel. Chemosphere 2018, 192, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.; Carrer, V.; Espinosa, S.; Zanuy, M.; Córdoba, M.; Vidal, B.; Domínguez, M.; Godessart, N.; Coderch, L.; Pont, M. Prediction of the skin permeability of topical drugs using in silico and in vitro models. Eur. J. Pharm. Sci. 2019, 136, 104945. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, F.; Ruan, W.; Liu, L.; Lai, R.; Zeng, F.; Ouyang, G. Determination of organochlorine pesticides in textiles using solid-phase microextraction with gas chromatography-mass spectrometry. Microchem. J. 2013, 110, 280–284. [Google Scholar] [CrossRef]
- Windler, L.; Height, M.; Nowack, B. Comparative evaluation of antimicrobials for textile applications. Environ. Int. 2013, 53, 62–73. [Google Scholar] [CrossRef]
- Benkhaya, S.; M’rabet, S.; El Harfi, A. A review on classifications, recent synthesis and applications of textile dyes. Inorg. Chem. Commun. 2020, 115, 107891. [Google Scholar] [CrossRef]
- Ujhelyiová, A.; Baníková, K.; Ryba, J.; Plavec, R.; Hrabovská, V.; Hricová, M. Fibres from biodegradable polymers and additives for textile applications. Vlak. A Text. 2020, 27, 132–137. [Google Scholar]
- James, N.R.; Ramesh, C.; Sivaram, S. Development of structure and morphology during crystallization and solid state polymerization of polyester oligomers. Macromol. Chem. Phys. 2001, 202, 1200–1206. [Google Scholar] [CrossRef]
- Begam, R.; Joshi, M.; Purwar, R. Antimicrobial Finishing of Cotton Textiles using Silver Intercalated Clay. Fibers Polym. 2022, 23, 148–154. [Google Scholar] [CrossRef]
- Hongrattanavichit, I.; Aht-Ong, D. Antibacterial and water-repellent cotton fabric coated with organosilane-modified cellulose nanofibers. Ind. Crops Prod. 2021, 171, 113858. [Google Scholar] [CrossRef]
- Wang, X.; Lu, Y.; Zhang, Q.; Wang, K.; Carmalt, C.J.; Parkin, I.P.; Zhang, Z.; Zhang, X. Durable fire retardant, superhydrophobic, abrasive resistant and air/UV stable coatings. J. Colloid Interface Sci. 2021, 582, 301–311. [Google Scholar] [CrossRef]
- Moiz, A.; Padhye, R.; Wang, X. Coating of TPU-PDMS-TMS on Polycotton Fabrics for Versatile Protection. Polymers 2017, 9, 660. [Google Scholar] [CrossRef] [Green Version]
- Rovira, J.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment. Environ. Res. 2015, 140, 308–316. [Google Scholar] [CrossRef]
- Dagar, G.; Bagchi, G. Nanoparticles as Potential Endocrine Disruptive Chemicals. In NanoBioMedicine; Saxena, S.K., Khurana, S.M.P., Eds.; Springer: Singapore, 2020; pp. 411–429. ISBN 978-981-32-9898-9. [Google Scholar]
- The European Commission. European Commission 2014/350/EU: Commission Decision of 5 June 2014 establishing the ecological criteria for the award of the EU Ecolabel for textile products (notified under document C (2014) 3677) Text with EEA relevance. Off. J. Eur. Union L 2014, 174, 45. [Google Scholar]
- Morrison, G.C.; Andersen, H.V.; Gunnarsen, L.; Varol, D.; Uhde, E.; Kolarik, B. Partitioning of PCBs from air to clothing materials in a Danish apartment. Indoor Air 2018, 28, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Salthammer, T. Data on formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings. Data Br. 2019, 22, 400–435. [Google Scholar] [CrossRef]
- Aldag, N.; Gunschera, J.; Salthammer, T. Release and absorption of formaldehyde by textiles. Cellulose 2017, 24, 4509–4518. [Google Scholar] [CrossRef]
- Grgac, S.F.; Tarbuk, A.; Dekanic, T.; Sujka, W.; Draczynski, Z. The chitosan implementation into cotton and polyester/cotton blend fabrics. Materials 2020, 13, 1616. [Google Scholar] [CrossRef] [Green Version]
- Murayama, S.; Mizawa, M.; Takegami, Y.; Makino, T.; Tadamichi, S. Two cases of keratosis follicularis squamosa (Dohi) caused by swimsuit friction. Eur. J. Dermatol. 2013, 23, 230–232. [Google Scholar] [CrossRef] [PubMed]
- Novick, R.M.; Nelson, M.L.; McKinley, M.A.; Anderson, G.L.; Keenan, J.J. The Effect of Clothing Care Activities on Textile Formaldehyde Content. J. Toxicol. Environ. Heal. Part A 2013, 76, 883–893. [Google Scholar] [CrossRef]
- Fei, X.; Freeman, H.S.; Hinks, D. Toward closed loop recycling of polyester fabric: Step 1. decolorization using sodium formaldehyde sulfoxylate. J. Clean. Prod. 2020, 254, 120027. [Google Scholar] [CrossRef]
- Golden, R. Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards. Crit. Rev. Toxicol. 2011, 41, 672–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolkoff, P.; Nielsen, G.D. Non-cancer effects of formaldehyde and relevance for setting an indoor air guideline. Environ. Int. 2010, 36, 788–799. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 88. Formaldehyde, 2-Butoxyethanol and 1- tert-Butoxypropan-2-ol; IARC Working Group on the Evaluation of Carcinogenic Risks to Humans: Lyon, France, 2006. [Google Scholar]
- GAO, U.S. Government Accountability Office. Formaldehyde in textiles: While Levels in Clothing Generally Appear to Be Low, Allergic Contact Dermatitis Is a Health Issue for Some People. Available online: https://www.gao.gov/products/gao-10-875 (accessed on 23 June 2022).
- ECHA, European Chemicals Agency. Substance Information: Formaldehyde. Available online: https://echa.europa.eu/es/registration-dossier/-/registered-dossier/15858 (accessed on 22 February 2022).
- Prodi, A.; Rui, F.; Belloni Fortina, A.; Corradin, M.T.; Larese Filon, F. Sensitization to formaldehyde in Northeastern Italy, 1996 to 2012. Dermatitis 2016, 27, 21–25. [Google Scholar] [CrossRef]
- Tunca, M.; Çaliskan, E.; Yürekli, A. Frequent contact allergens in Ankara/Turkey: A retrospective study of patch test results. Turkderm Turk. Arch. Dermatol. Venereol. 2019, 53, 49–52. [Google Scholar] [CrossRef]
- Neale, H.; Garza-Mayers, A.C.; Tam, I.; Yu, J. De Pediatric allergic contact dermatitis. Part I: Clinical features and common contact allergens in children. J. Am. Acad. Dermatol. 2021, 84, 235–244. [Google Scholar] [CrossRef]
- Rizzi, M.; Cravello, B.; Tonello, S.; Renò, F. Formaldehyde solutions in simulated sweat increase human melanoma but not normal human keratinocyte cells proliferation. Toxicol. Vitr. 2016, 37, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Raj Raj, A.; Chowdhury, A.; Ali, S.W. Green chemistry: Its opportunities and challenges in colouration and chemical finishing of textiles. Sustain. Chem. Pharm. 2022, 27, 100689. [Google Scholar] [CrossRef]
- Luongo, G.; Avagyan, R.; Hongyu, R.; Östman, C. The washout effect during laundry on benzothiazole, benzotriazole, quinoline, and their derivatives in clothing textiles. Environ. Sci. Pollut. Res. 2016, 23, 2537–2548. [Google Scholar] [CrossRef] [PubMed]
- Windler, L.; Lorenz, C.; Von Goetz, N.; Hungerbühler, K.; Amberg, M.; Heuberger, M.; Nowack, B. Release of titanium dioxide from textiles during washing. Environ. Sci. Technol. 2012, 46, 8181–8188. [Google Scholar] [CrossRef]
- Napper, I.E.; Thompson, R.C. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar. Pollut. Bull. 2016, 112, 39–45. [Google Scholar] [CrossRef] [Green Version]
- De Falco, F.; Gullo, M.P.; Gentile, G.; Di Pace, E.; Cocca, M.; Gelabert, L.; Brouta-Agnésa, M.; Rovira, A.; Escudero, R.; Villalba, R.; et al. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ. Pollut. 2018, 236, 916–925. [Google Scholar] [CrossRef]
- NIOSH Skin Notation (SK) Profile. Formaldehyde/Formalin. Available online: https://www.cdc.gov/niosh/docs/2011-145/pdfs/2011-145.pdf?id=10.26616/NIOSHPUB2011145 (accessed on 15 September 2021).
- ECHA, European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.15: Consumer Exposure Assessment. Version 3.0; European Chemicals Agency: Helsinki, Finland, 2016; ISBN 978-92-9495-079-6. [Google Scholar]
- Bundesinstitut für Risikobewertung Introduction to the Problems Surrounding Garment Textiles. Available online: www.bfr.bund.de (accessed on 15 August 2019).
- US EPA Regional Screening Levels (RSLs)—Generic Tables | US EPA (May 2021). Available online: https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables (accessed on 15 September 2021).
- US EPA. Exposure Factors Handbook. Chapter 7-Dermal Exposure Factors. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/efh-chapter07.pdf (accessed on 7 March 2022).
- Martínez, M.A.; Rovira, J.; Sharma, R.P.; Nadal, M.; Schuhmacher, M.; Kumar, V. Prenatal exposure estimation of BPA and DEHP using integrated external and internal dosimetry: A case study. Environ. Res. 2017, 158, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Sobradillo, B.; Aguirre, A.; Aresti, U. Curvas y Tablas de Crecimiento Orbegozo (Estudios Longitudinal y Transversal); Fundación Faustino Orbegozo Eizaguirre: Bilbao, Spain, 2000. [Google Scholar]
- Vilavert, L.; Figueras, M.J.; Schuhmacher, M.; Nadal, M.; Domingo, J.L. Formaldehyde: A chemical of concern in the vicinity of MBT plants of municipal solid waste. Environ. Res. 2014, 133, 27–35. [Google Scholar] [CrossRef]
- Colas, A.; Baudet, A.; Cann, P.L.; Blanchard, O.; Gangneux, J.P.; Baurès, E.; Florentin, A. Quantitative Health Risk Assessment of the Chronic Inhalation of Chemical Compounds in Healthcare and Elderly Care Facilities. Toxics 2022, 10, 141. [Google Scholar] [CrossRef]
- Rovira, J.; Roig, N.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Human health risks of formaldehyde indoor levels: An issue of concern. J. Environ. Sci. Heal. Part A Toxic/Hazard. Subst. Environ. Eng. 2016, 51, 357–363. [Google Scholar] [CrossRef] [Green Version]
- US EPA. Exposure Factors Handbook. Chapter 6—Inhalation Rates. Available online: https://www.epa.gov/sites/default/files/2015-09/documents/efh-chapter06.pdf (accessed on 23 June 2022).
- Caro Zapata, A.C.; Gómez Rave, N.A.; Aguiar Santa, J. Validación de un método analítico mediante espectrofotometría UV/VIS, para la cuantificación de formaldehído libre en textiles y aplicación en el análisis de prendas comercializadas en el mercado colombiano. Inf. Técnico. 2018, 82, 50. [Google Scholar] [CrossRef]
- Nyamukamba, P.; Bantom, C.; Mququ, Z.; Ngcobo, T.; Isaacs, S. Determination of the Levels of Heavy Metals and Formaldehyde in Baby Clothes in South Africa: A Case Study of Stores in the Greater Cape Town Region. J. Spectrosc. 2020, 2020, 5084062. [Google Scholar] [CrossRef]
- Piccinini, P.; Senaldi, C.; Summa, C. European Survey on the Release of Formaldehyde from Textiles; Institute for Health and Consumer Protection, Directorate-General Joint Research Centre, European Commission: Luxembourg, 2007; Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC36150/6150%20-%20HCHO_survey_final_report.pdf (accessed on 23 June 2022).
- Laursen, S.E.; Hansen, O.C.; Pedersen, E.; Pommer, K.; Hansen, J. Survey of chemical compounds in textile fabrics. Technical Report. Danish Environmental Protection Agency. 2003. Available online: https://www.researchgate.net/publication/242529117_Survey_of_chemical_compounds_in_textile_fabrics (accessed on 23 June 2022).
- De Groot, A.C.; Le Coz, C.J.; Lensen, G.J.; Flyvholm, M.A.; Maibach, H.I.; Coenraads, P.-J. Formaldehyde-releasers: Relationship to formaldehyde contact allergy. Formaldehyde-releasers in clothes: Durable press chemical finishes. Part 1. Contact Dermat. 2010, 62, 259–271. [Google Scholar] [CrossRef]
- Piccinini, P.; Senaldi, C.; Buriova, E. European survey on the presence of banned azodyes in textiles; Directorate-General Joint Research Centre, European Commission: Luxembourg, 2008; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC44198 (accessed on 23 June 2022).
- Herrero, M.; Rovira, J.; Esplugas, R.; Nadal, M.; Domingo, J.L. Human exposure to trace elements, aromatic amines and formaldehyde in swimsuits: Assessment of the health risks. Environ. Res. 2020, 181, 951. [Google Scholar] [CrossRef] [PubMed]
- Byrd, K.; Su, J. Investigating consumer behaviour for environmental, sustainable and social apparel. Int. J. Cloth. Sci. Technol. 2020, 33, 336–352. [Google Scholar] [CrossRef]
- European Commission. Commission Decision 2002/272/EC of 25 March 2002 Establishing the Ecological Criteria for the Award of the Community Eco-Label to Hard Floor-Coverings; Publications Office of the European Union: Luxembourg, 2002. [Google Scholar]
- GOTS. Global Organic Textile Standard. Version 6.0. Available online: https://global-standard.org/images/resource-library/documents/standard-and-manual/gots_version_6_0_en1.pdf (accessed on 23 June 2022).
- European Chemicals Agency. Investigation Report. Formaldehyde and Formaldehyde Releasers. Available online: https://echa.europa.eu/documents/10162/13641/annex_xv_report_formaldehyde_en.pdf/58be2f0a-7ca7-264d-a594-da5051a1c74b (accessed on 23 February 2022).
- OEKO-TEX Association STANDARD 100 by OEKO-TEX®. Available online: http://www.oeko-tex.com (accessed on 11 December 2018).
- European Commission. EU Strategy for Sustainable Textiles; European Commission: Brussels, Belgium, 2021; pp. 1–4. [Google Scholar]
- Lisa, L.; Turunen, M.; Halme, M.; Zhifu, M. Communicating actionable sustainability information to consumers: The Shades of Green instrument for fashion. J. Clean. Prod. 2021, 297, 126605. [Google Scholar] [CrossRef]
- Hayat, N.; Hussain, A.; Lohano, H.D. Eco-labeling and sustainability: A case of textile industry in Pakistan. J. Clean. Prod. 2020, 252, 119807. [Google Scholar] [CrossRef]
- Salthammer, T. Formaldehyde sources, formaldehyde concentrations and air exchange rates in European housings. Build. Environ. 2019, 150, 219–232. [Google Scholar] [CrossRef]
- Samburova, V.; Bhattarai, C.; Strickland, M.; Darrow, L.; Angermann, J.; Son, Y.; Khlystov, A. Aldehydes in Exhaled Breath during E-Cigarette Vaping: Pilot Study Results. Toxics 2018, 6, 46. [Google Scholar] [CrossRef] [Green Version]
- Langer, S.; Bekö, G.; Bloom, E.; Widheden, A.; Ekberg, L. Indoor air quality in passive and conventional new houses in Sweden. Build. Environ. 2015, 93, 92–100. [Google Scholar] [CrossRef]
Variable | Description | Value | Reference |
---|---|---|---|
Fcloth | Weight fraction of substance in garments | Cloth specific mg/mg | Supplementary Table S1 |
dcloth | Clothing grammage | Cloth specific mg/cm2 | Supplementary Table S1 |
Askin | Pregnancy women t-shirt (trunk + arms) | 8910 cm2 | [46] |
Pregnancy Troussers_Jeans_Leggings (legs) | 5980 cm2 | ||
Pregnancy Band of Trouser (trunk/2) | 3270 cm2 | ||
Pregnancy Troussers_Jeans_Leggings + Band (legs + trunk/2) | 9250 cm2 | ||
Pregnancy Bra (Bosom) | 2594 cm2 | ||
Pregnancy underwear without brand (genitals and buttocks) | 1469 cm2 | ||
Pregnancy underwear with brand (genitals and buttocks +trunk/2) | 4739 cm2 | ||
Baby Pyjamas (Trunk + Arms + Legs + Feet) | 2778 cm2 | ||
Baby Bodysuits (trunk + arms) | 1795 cm2 | ||
Baby socks (Feet) | 235 cm2 | ||
Toddlers Pyjamas (Trunk + arms + legs) | 4355 cm2 | ||
Underwear (Genitals) | 383 cm2 | ||
Dresses (Trunk + arms + 1/2legs) | 3665 cm2 | ||
T-shirt (trunk + arms) | 2975 cm2 | ||
Trousser/Jeans/leggings (Legs) | 5980 cm2 | ||
Fcontact | Fraction of contact area for skin | 1 | [44] |
Fmig | Migration fraction from cloth to skin | 0.5% | [44] |
Fpen | Fraction of penetration inside the body | 0.01 | [42] |
Tcontact | Contact duration between skin-textile | 0.33 (8 h/24 h) 0.67 (16 h/24 h) 1 (24 h) | Assumed |
N | Mean number of events per day | 1/d | Assumed |
BW | Adult Female | 76.9 kg | [47] |
Birth to <12 month | 7.31 kg | [48] | |
1 < 3 years | 12.5 kg |
Variable | Description | Value | Reference |
---|---|---|---|
Ci | Air concentration | ||
Bedroom | 27.3 µg/m3 | [51] | |
Living room | 22.5 µg/m3 | ||
Outdoor | 1.62 µg/m3 | ||
Work | 21.8 µg/m3 | ||
IRi | Inhalation rates | ||
Pregnant women | 19.2 m3/day | [52] | |
Infants <12 months | 5.40 m3/day | ||
Toddlers 12–36 months | 8.45 m3/day | ||
Fi | Time fraction | ||
Bedroom | 0.36 | [51] | |
Indoor (excl. bedroom) | 0.37 | ||
Outdoor | 0.10 | ||
At work | 0.14 | ||
EF | Exposure frequency | 350 days/year | [51] |
BW | Body weight | ||
Pregnant women | 76.9 kg | [47] | |
Infants <12 months | 7.31 kg | [48] | |
Toddlers 12–36 months | 12.5 kg |
Detection Rate (%) | Mean | SD | Minimum | Maximum | ||
---|---|---|---|---|---|---|
Pregnant women’s clothes | T-shirts (n = 10) | 20 | 8.44 | 4.42 | <12.8 | 18.4 |
Jeans/leggings (n = 10) | 80 | 18.2 | 9.77 | <12.8 | 24.5 | |
Bras (n = 10) | 20 | 7.94 | 3.35 | <12.8 | 15.5 | |
Panties (n = 10) | 40 | 16.7 | 17.0 | <12.8 | 55.7 | |
Babies clothes (<12 months) | Pyjamas (n = 10) | 0 | <12.8 | 0.00 | <12.8 | <12.8 |
Bodysuits (n = 10) | 0 | <12.8 | 0.00 | <12.8 | <12.8 | |
Socks (n = 10) | 10 | 8.19 | 5.72 | <12.8 | 24.5 | |
Toddlers clothes (12–36 months) | Pyjamas (n = 10) | 0 | <12.8 | 0.00 | <12.8 | <12.8 |
Underwear (n = 10) | 0 | <12.8 | 0.00 | <12.8 | <12.8 | |
Dresses (n = 10) | 10 | 7.74 | 4.29 | <12.8 | 20.0 | |
T-shirts (n = 10) | 10 | 7.48 | 3.49 | <12.8 | 17.4 | |
Trousers (n = 10) | 40 | 9.87 | 4.65 | <12.8 | 16.4 |
Dermal Exposure per Item | Total Exposure (Non-Cancer Risk) | ||
---|---|---|---|
Pregnant women | T-shirts | 5.23 × 10−5 | 2.58 × 10−4 |
Jeans/leggings | 1.48 × 10−4 | ||
Bras | 1.54 × 10−5 | ||
Panties | 4.23 × 10−5 | ||
Babies (<12 months old) | Pyjamas | 3.07 × 10−4 | 1.11 × 10−3 |
Bodysuits | 2.92 × 10−4 | ||
Socks | 5.13 × 10−4 | ||
Toddlers (12–36 months old) | Pyjamas | 2.68 × 10−4 | 4.50 × 10−4 * 1.44 × 10−4 ** |
Underwear | 2.99 × 10−5 | ||
Dresses | 1.14 × 10−4 | ||
T-shirts | 8.96 × 10−5 | ||
Trousers | 3.30 × 10−4 |
Country | Year | Number and Type of Clothes | Detection Rate | Formaldehyde Content | Reference |
---|---|---|---|---|---|
Spain | 2022 | 124 samples | 19% | ND–56 mg/kg | This study |
South Africa | 2019 | 34 socks samples | 0% | 100% ND | [54] |
Colombia | 2018 | 62 samples | 74% | ND–87 mg/kg | [53] |
Europe | 2017 | 4 curtains, 4 pants, 14 T-shirts and 2 shirts | 71% | ND–76 mg/kg | [23] |
European Union | 2007 | 221 samples (48 water extraction) | 48% | ND in 52%; 30–166 mg/kg in 48% | [55] |
Denmark | 2003 | 10 textiles | 30% | ND in 70%; 35–82 mg/kg in 30% | [56] |
USA | 1998 | 16 fabrics | 50% | ND in 50%; <200 p.p.m in 50% | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herrero, M.; González, N.; Rovira, J.; Marquès, M.; Domingo, J.L.; Nadal, M. Early-Life Exposure to Formaldehyde through Clothing. Toxics 2022, 10, 361. https://doi.org/10.3390/toxics10070361
Herrero M, González N, Rovira J, Marquès M, Domingo JL, Nadal M. Early-Life Exposure to Formaldehyde through Clothing. Toxics. 2022; 10(7):361. https://doi.org/10.3390/toxics10070361
Chicago/Turabian StyleHerrero, Marta, Neus González, Joaquim Rovira, Montse Marquès, José L. Domingo, and Martí Nadal. 2022. "Early-Life Exposure to Formaldehyde through Clothing" Toxics 10, no. 7: 361. https://doi.org/10.3390/toxics10070361
APA StyleHerrero, M., González, N., Rovira, J., Marquès, M., Domingo, J. L., & Nadal, M. (2022). Early-Life Exposure to Formaldehyde through Clothing. Toxics, 10(7), 361. https://doi.org/10.3390/toxics10070361