Prenatal Exposure to Locally Emitted Air Pollutants Is Associated with Birth Weight: An Administrative Cohort Study from Southern Sweden
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Setting and Study Population
2.2. Exposure Assessment
2.3. Exposure Variables
2.4. Outcome Variables
2.5. Covariates
2.6. Statistical Methods
2.7. Ethical Approval
3. Results
4. Discussion
4.1. Main Findings
4.2. Evidence from Current Literature
4.3. Biological Mechanisms
4.4. Implications
4.5. Future Research
4.6. Methodological Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Ambient Air Pollution: A Global Assessment of Exposure and Burden of Disease; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef] [PubMed]
- Tsoli, S.; Ploubidis, G.B.; Kalantzi, O.-I. Particulate air pollution and birth weight: A systematic literature review. Atmos. Pollut. Res. 2019, 10, 1084–1122. [Google Scholar] [CrossRef]
- Malmqvist, E.; Liew, Z.; Källén, K.; Rignell-Hydbom, A.; Rittner, R.; Rylander, L.; Ritz, B. Fetal growth and air pollution-a study on ultrasound and birth measures. Environ. Res. 2017, 152, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsal, K. Perinatalt Omhändertagande vid Extrem Underburenhet (In English: “Perinatal Care in Case of Extreme Premature Births”); Socialstyrelsen: Lund, Sweden, 2004. [Google Scholar]
- Gustafsson, S. Uppbyggnad och validering av emisssionsdatabas avseende luftföroreningar för Skåne med basår 2001. In Department of Physical Geography and Ecosystems Analysis; Lund University: Lund, Sweden, 2007. [Google Scholar]
- Rittner, R.; Gustafsson, S.; Spanne, M.; Malmqvist, E. Particle concentrations, dispersion modelling and evaluation in southern Sweden. SN Appl. Sci. 2020, 2, 1–15. [Google Scholar] [CrossRef]
- WHO. Available online: https://www.who.int/data/nutrition/nlis/info/low-birth-weight (accessed on 5 February 2022).
- Statistiska Centralbyrån. Statistikens Framställning: Inkomster och Skatter; Enheten För Statistik om Befolkning och Ekonomisk välfärd, Ed.; SCB: Stockholm, Sweden, 2021; p. 9. [Google Scholar]
- Wang, Z.; Ding, R.; Wang, J. The association between vitamin D status and Autism Spectrum Disorder (ASD): A systematic review and meta-analysis. Nutrients 2020, 13, 86. [Google Scholar] [CrossRef]
- Mandakh, Y.; Rittner, R.; Flanagan, E.; Oudin, A.; Isaxon, C.; Familari, M.; Hansson, S.R.; Malmqvist, E. Maternal Exposure to Ambient Air Pollution and Risk of Preeclampsia: A Population-Based Cohort Study in Scania, Sweden. Int. J. Environ. Res. Public Health 2020, 17, 1744. [Google Scholar] [CrossRef] [Green Version]
- Malmö, C.O. Miljöbarometern. Available online: https://malmo.miljobarometern.se/miljoprogram/stadsmiljo/renare-och-tystare/halten-av-partiklar-pm-2-5/?start=2016&end=2020 (accessed on 27 June 2022).
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Pereira, P.P.D.S.; Da Mata, F.A.; Figueiredo, A.C.G.; de Andrade, K.R.C.; Pereira, M.G. Maternal active smoking during pregnancy and low birth weight in the Americas: A systematic review and meta-analysis. Nicotine Tob. Res. 2017, 19, 497–505. [Google Scholar] [CrossRef]
- Ion, R.C.; Wills, A.K.; Bernal, A.L. Environmental tobacco smoke exposure in pregnancy is associated with earlier delivery and reduced birth weight. Reprod. Sci. 2015, 22, 1603–1611. [Google Scholar] [CrossRef] [Green Version]
- Ottone, M.; Broccoli, S.; Parmagnani, F.; Giannini, S.; Scotto, F.; Bonvicini, L.; Luberto, F.; Bacco, D.; Trentini, A.; Poluzzi, V. Source-related components of fine particulate matter and risk of adverse birth outcomes in Northern Italy. Environ. Res. 2020, 186, 109564. [Google Scholar] [CrossRef]
- Ng, C.; Malig, B.; Hasheminassab, S.; Sioutas, C.; Basu, R.; Ebisu, K. Source apportionment of fine particulate matter and risk of term low birth weight in California: Exploring modification by region and maternal characteristics. Sci. Total Environ. 2017, 605, 647–654. [Google Scholar] [CrossRef]
- Olsson, D.; Johansson, C.; Forsberg, B. Associations between Vehicle Exhaust Particles and Ozone at Home Address and Birth Weight. Int. J. Environ. Res. Public Health 2020, 17, 3836. [Google Scholar] [CrossRef]
- Barrett, J.R. Cooking up Problems for Babies: Wood Smoke and Low Birth Weight. Environ. Health Perspect. 2002, 110, A42. [Google Scholar] [CrossRef]
- Thompson, L.M.; Bruce, N.; Eskenazi, B.; Diaz, A.; Pope, D.; Smith, K.R. Impact of reduced maternal exposures to wood smoke from an introduced chimney stove on newborn birth weight in rural Guatemala. Environ. Health Perspect. 2011, 119, 1489–1494. [Google Scholar] [CrossRef] [Green Version]
- Boy, E.; Bruce, N.; Delgado, H. Birth Weight and Exposure to Kitchen Wood Smoke during Pregnancy in Rural Guatemala. Environ. Health Perspect. 2002, 110, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Darrow, L.A.; Klein, M.; Strickland, M.J.; Mulholland, J.A.; Tolbert, P.E. Ambient air pollution and birth weight in full-term infants in Atlanta, 1994–2004. Environ. Health Perspect. 2011, 119, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, M.; Giorgis-Allemand, L.; Bernard, C.; Aguilera, I.; Andersen, A.-M.N.; Ballester, F.; Beelen, R.M.; Chatzi, L.; Cirach, M.; Danileviciute, A. Ambient air pollution and low birthweight: A European cohort study (ESCAPE). Lancet Respir. Med. 2013, 1, 695–704. [Google Scholar] [CrossRef]
- Clemente, D.B.; Casas, M.; Vilahur, N.; Begiristain, H.; Bustamante, M.; Carsin, A.-E.; Fernández, M.F.; Fierens, F.; Gyselaers, W.; Iñiguez, C. Prenatal Ambient Air Pollution, Placental Mitochondrial DNA Content, and Birth Weight in the INMA (Spain) and ENVIR ON AGE (Belgium) Birth Cohorts. Environ. Health Perspect. 2016, 124, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Hajat, A.; Allison, M.; Diez-Roux, A.V.; Jenny, N.S.; Jorgensen, N.W.; Szpiro, A.A.; Vedal, S.; Kaufman, J.D. Long-term Exposure to Air Pollution and Markers of Inflammation, Coagulation, and Endothelial Activation: A Repeat-measures Analysis in the Multi-Ethnic Study of Atherosclerosis (MESA). Epidemiology 2015, 26, 310–320. [Google Scholar] [CrossRef]
- Nawrot, T.S.; Saenen, N.D.; Schenk, J.; Janssen, B.G.; Motta, V.; Tarantini, L.; Cox, B.; Lefebvre, W.; Vanpoucke, C.; Maggioni, C.; et al. Placental circadian pathway methylation and in utero exposure to fine particle air pollution. Environ. Int. 2018, 114, 231–241. [Google Scholar] [CrossRef]
- Pedersen, M.; Halldorsson, T.I.; Olsen, S.F.; Hjortebjerg, D.; Ketzel, M.; Grandström, C.; Raaschou-Nielsen, O.; Sørensen, M. Impact of road traffic pollution on pre-eclampsia and pregnancy-induced hypertensive disorders. Epidemiology 2017, 28, 99. [Google Scholar] [CrossRef] [Green Version]
- Beltran, A.J.; Wu, J.; Laurent, O. Associations of meteorology with adverse pregnancy outcomes: A systematic review of preeclampsia, preterm birth and birth weight. Int. J. Environ. Res. Public Health 2014, 11, 91–172. [Google Scholar] [CrossRef]
- Unosson, J.; Blomberg, A.; Sandström, T.; Muala, A.; Boman, C.; Nyström, R.; Westerholm, R.; Mills, N.L.; Newby, D.E.; Langrish, J.P.; et al. Exposure to wood smoke increases arterial stiffness and decreases heart rate variability in humans. Part. Fibre Toxicol. 2013, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Orach, J.; Rider, C.F.; Carlsten, C. Concentration-dependent health effects of air pollution in controlled human exposures. Environ. Int. 2021, 150, 106424. [Google Scholar] [CrossRef]
- Schwartz, C.; Bølling, A.K.; Carlsten, C. Controlled human exposures to wood smoke: A synthesis of the evidence. Part. Fibre Toxicol. 2020, 17, 49. [Google Scholar] [CrossRef]
- Bhutta, A.T.; Cleves, M.A.; Casey, P.H.; Cradock, M.M.; Anand, K.J.S. Cognitive and Behavioral Outcomes of School-Aged Children Who Were Born Preterm: A Meta-analysis. J. Am. Med. Assoc. 2002, 288, 728–737. [Google Scholar] [CrossRef]
- Kormos, C.E.; Wilkinson, A.J.; Davey, C.J.; Cunningham, A.J. Low birth weight and intelligence in adolescence and early adulthood: A meta-analysis. J. Public Health 2014, 36, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Gu, H.; Wang, L.; Liu, L.; Luo, X.; Wang, J.; Hou, F.; Nkomola, P.D.; Li, J.; Liu, G.; Meng, H.; et al. A gradient relationship between low birth weight and IQ: A meta-analysis. Sci. Rep. 2017, 7, 18035. [Google Scholar] [CrossRef] [Green Version]
- Caputo, D.V.; Mandell, W. Consequence of low birth weight. Dev. Psychol. 1970, 3, 363–383. [Google Scholar] [CrossRef]
- Bo, S.C.-P.P.; Ciccone, G.; Scaglione, L.; Pagano, G. The metabolic syndrome in twins: A cnsequence f lw birth weight or of being twins? Exp. Clin. Endcrinol. Diabetes 2001, 109, 135–140. [Google Scholar] [CrossRef]
- Behrman, R.E.; Butler, A.S. Preterm Birth: Causes, Consequences, and Prevention; Richard, E.B., Adrienne Stith, B., Eds.; National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Agrawal, V.K.; Agrawal, P.; Chaudhary, V.; Agarwal, K.; Agarwal, A. Prevalence and determinants of “low birth weight” among institutional deliveries. Ann. Niger. Med. 2011, 5, 48. [Google Scholar] [CrossRef]
- Segersson, D.; Johansson, C.; Forsberg, B. Near-Source Risk Functions for Particulate Matter Are Critical When Assessing the Health Benefits of Local Abatement Strategies. Int. J. Environ. Res. Public Health 2021, 18, 6847. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Brajer, V.; Mead, R.W. Blowing in the wind: The impact of China’s Pearl River Delta on Hong Kong’s air quality. Sci. Total Environ. 2006, 367, 96–111. [Google Scholar] [CrossRef] [PubMed]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and health impacts of air pollution: A review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IEA. Trends and Developments in Electric Vehicle Markets; IEA: Paris, France, 2021. [Google Scholar]
- IEA. Prospects for Electric Vehicle Deployment; IEA: Paris, France, 2021. [Google Scholar]
- Szidat, S.; Prévôt, A.S.; Sandradewi, J.; Alfarra, M.R.; Synal, H.A.; Wacker, L.; Baltensperger, U. Dominant impact of residential wood burning on particulate matter in Alpine valleys during winter. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Molnár, P.; Sallsten, G. Contribution to PM 2.5 from domestic wood burning in a small community in Sweden. Environ. Sci. Processes Impacts 2013, 15, 833–838. [Google Scholar] [CrossRef]
- Kjällstrand, J.; Petersson, G. Phenols and aromatic hydrocarbons in chimney emissions from traditional and modern residential wood burning. Environ. Technol. 2001, 22, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Zeglinski, M.R.; Turner, C.T.; Zeng, R.; Schwartz, C.; Santacruz, S.; Pawluk, M.A.; Zhao, H.; Chan, A.W.; Carlsten, C.; Granville, D.J. Soluble wood smoke extract promotes barrier dysfunction in alveolar epithelial cells through a MAPK signaling pathway. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Oudin, A.; Segersson, D.; Adolfsson, R.; Forsberg, B. Association between air pollution from residential wood burning and dementia incidence in a longitudinal study in Northern Sweden. PLoS ONE 2018, 13, e0198283. [Google Scholar] [CrossRef] [Green Version]
- Olsson, D.; Forsberg, B.; Bråbäck, L.; Geels, C.; Brandt, J.; Christensen, J.H.; Frohn, L.M.; Oudin, A. Early childhood exposure to ambient air pollution is associated with increased risk of paediatric asthma: An administrative cohort study from Stockholm, Sweden. Environ. Int. 2021, 155, 106667. [Google Scholar] [CrossRef]
- Viana, M.; de Leeuw, F.; Bartonova, A.; Castell, N.; Ozturk, E.; González Ortiz, A. Air quality mitigation in European cities: Status and challenges ahead. Environ. Int. 2020, 143, 105907. [Google Scholar] [CrossRef]
- Olsen, Y.; Nøjgaard, J.K.; Olesen, H.R.; Brandt, J.; Sigsgaard, T.; Pryor, S.C.; Ancelet, T.; Viana, M.d.M.; Querol, X.; Hertel, O. Emissions and source allocation of carbonaceous air pollutants from wood stoves in developed countries: A review. Atmos. Pollut. Res. 2020, 11, 234–251. [Google Scholar] [CrossRef]
- WHO. Residential Heating with Wood and Coal: Health Impacts and Policy Options in Europe and North America; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- Stroh, E.; Rittner, R.; Oudin, A.; Ardö, J.; Jakobsson, K.; Björk, J.; Tinnerberg, H. Measured and modeled personal and environmental NO2 exposure. Popul. Health Metr. 2012, 10, 10. [Google Scholar] [CrossRef] [Green Version]
N * | Mean (SD) | (%) | |||||
---|---|---|---|---|---|---|---|
All-Source PM2.5 | Small-Scale Residential Heating | Tailpipe Exhaust | Vehicle Wear-and-Tear | Birth Weight | LBW | ||
Total | 40,245 | 1.41 (0.64) | 0.48 (0.25) | 0.13 (0.08) | 0.32 (0.21) | 3564 (513) | 1.8 |
LBW | |||||||
No | 39,505 | 1.41 (0.64) | 0.48 (0.25) | 0.13 (0.08) | 0.32 (0.21) | 3589 (483) | – |
Yes | 740 | 1.47 (0.64) | 0.54 (0.26) | 0.14 (0.08) | 0.32 (0.21) | 2232 (257) | – |
Annual household disposable income (quartiles) | |||||||
Lowest | 9539 | 1.72 (0.63) | 0.57 (0.28) | 0.17 (0.08) | 0.42 (0.22) | 3467 (508) | 2.4 |
Lower-middle | 9910 | 1.52 (0.65) | 0.53 (0.26) | 0.14 (0.08) | 0.35 (0.22) | 3559 (521) | 2.2 |
Upper-middle | 10,733 | 1.25 (0.58) | 0.44 (0.23) | 0.11 (0.06) | 0.25 (0.17) | 3606 (513) | 1.6 |
Highest | 10,050 | 1.17 (0.52) | 0.40 (0.20) | 0.11 (0.06) | 0.25 (0.17) | 3617 (496) | 1.2 |
Maternal education (years) | |||||||
≤9 | 4965 | 1.67 (0.63) | 0.55 (0.27) | 0.16 (0.08) | 0.41 (0.22) | 3477 (509) | 2.6 |
10–12 | 16,854 | 1.35 (0.64) | 0.47 (0.25) | 0.13 (0.08) | 0.30 (0.21) | 3577 (525) | 1.8 |
13–16 | 16,224 | 1.35 (0.60) | 0.47 (0.24) | 0.12 (0.07) | 0.30 (0.20) | 3592 (499) | 1.6 |
>16 | 652 | 1.30 (0.51) | 0.48 (0.22) | 0.11 (0.06) | 0.28 (0.16) | 3567 (488) | 1.4 |
Maternal age | |||||||
≤30 | 21,688 | 1.45 (0.64) | 0.49 (0.25) | 0.14 (0.08) | 0.34 (0.22) | 3536 (503) | 1.8 |
31–34 | 10,904 | 1.34 (0.61) | 0.47 (0.24) | 0.13 (0.07) | 0.30 (0.20) | 3598 (518) | 1.7 |
≥35 | 7653 | 1.37 (0.62) | 0.48 (0.26) | 0.13 (0.07) | 0.31 (0.20) | 3597 (530) | 2.1 |
Maternal smoking status | |||||||
Non-smoker | 34,193 | 1.40 (0.63) | 0.48 (0.25) | 0.13 (0.08) | 0.32 (0.21) | 3587 (500) | 1.4 |
1–9 cig/day | 2676 | 1.47 (0.65) | 0.51 (0.25) | 0.14 (0.08) | 0.33 (0.21) | 3426 (508) | 2.3 |
≥10 cig/day | 1091 | 1.51 (0.68) | 0.53 (0.27) | 0.14 (0.08) | 0.34 (0.22) | 3378 (522) | 3.6 |
Maternal BMI | |||||||
<18.5 | 953 | 1.50 (0.64) | 0.51 (0.25) | 0.14 (0.08) | 0.35 (0.22) | 3316 (453) | 2.9 |
18.5–<25 | 22,444 | 1.41 (0.63) | 0.48 (0.25) | 0.13 (0.08) | 0.32 (0.21) | 3530) 485) | 1.6 |
25–<30 | 8731 | 1.41 (0.65) | 0.48 (0.26) | 0.13 (0.08) | 0.32 (0.22) | 3643 (513) | 1.3 |
≥30 | 3732 | 1.42 (0.68) | 0.48 (0.28) | 0.14 (0.08) | 0.33 (0.23) | 3691 (550) | 1.4 |
Parity | |||||||
First child | 19,241 | 1.44 (0.64) | 0.49 (0.25) | 0.14 (0.08) | 0.34 (0.22) | 3491 (498) | 2.4 |
Second child | 13,396 | 1.33 (0.61) | 0.47 (0.25) | 0.12 (0.07) | 0.29 (0.20) | 3633 (514) | 1.3 |
Third child | 4973 | 1.37 (0.64) | 0.48 (0.25) | 0.13 (0.08) | 0.31 (0.21) | 3648 (521) | 1.1 |
≥Fourth child | 2635 | 1.62 (0.66) | 0.55 (0.28) | 0.16 (0.08) | 0.39 (0.23) | 3590 (530) | 1.9 |
Crude | Adjusted † | |
---|---|---|
All-source PM2.5 ‡ | 59 (51–66), p < 0.001 | 34 (26–43), p < 0.001 |
Tailpipe exhaust | 55 (47–63), p < 0.001 | 33 (25–42), p < 0.001 |
Vehicle wear-and-tear | 51 (43–58), p < 0.001 | 33 (25–41), p < 0.001 |
Small-scale residential heating | 33 (26–40), p < 0.001 | 12 (5–19), p < 0.001 |
Crude | Adjusted † | |
---|---|---|
All-source PM2.5 ‡ | 1.16 (1.04–1.30), p = 0.007 | 1.07 (0.93–1.23), p > 0.300 |
Tailpipe exhaust | 1.10 (0.99–1.24), p = 0.070 | 1.05 (0.91–1.21), p > 0.300 |
Vehicle wear-and-tear | 1.01 (0.90–1.12), p > 0.300 | 0.97 (0.85–1.10), p > 0.300 |
Small-scale residential heating | 1.26 (1.17–1.37), p < 0.001 | 1.14 (1.04–1.26), p = 0.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balidemaj, F.; Flanagan, E.; Malmqvist, E.; Rittner, R.; Källén, K.; Åström, D.O.; Oudin, A. Prenatal Exposure to Locally Emitted Air Pollutants Is Associated with Birth Weight: An Administrative Cohort Study from Southern Sweden. Toxics 2022, 10, 366. https://doi.org/10.3390/toxics10070366
Balidemaj F, Flanagan E, Malmqvist E, Rittner R, Källén K, Åström DO, Oudin A. Prenatal Exposure to Locally Emitted Air Pollutants Is Associated with Birth Weight: An Administrative Cohort Study from Southern Sweden. Toxics. 2022; 10(7):366. https://doi.org/10.3390/toxics10070366
Chicago/Turabian StyleBalidemaj, Festina, Erin Flanagan, Ebba Malmqvist, Ralf Rittner, Karin Källén, Daniel Oudin Åström, and Anna Oudin. 2022. "Prenatal Exposure to Locally Emitted Air Pollutants Is Associated with Birth Weight: An Administrative Cohort Study from Southern Sweden" Toxics 10, no. 7: 366. https://doi.org/10.3390/toxics10070366
APA StyleBalidemaj, F., Flanagan, E., Malmqvist, E., Rittner, R., Källén, K., Åström, D. O., & Oudin, A. (2022). Prenatal Exposure to Locally Emitted Air Pollutants Is Associated with Birth Weight: An Administrative Cohort Study from Southern Sweden. Toxics, 10(7), 366. https://doi.org/10.3390/toxics10070366