Metabolomics: A New Approach in the Evaluation of Effects in Human Beings and Wildlife Associated with Environmental Exposition to POPs
Abstract
:1. Introduction
2. Application of Omics in the POPs Assessment
2.1. Metabolomics
2.2. Methodologies and Techniques in Metabolomics
3. Description of the Population Evaluated with a Metabolomic Approach
Analytic Method | POPs | POPs Concentration (ng/g Dry Weight) | Specie | Tissue or Biofluid | Associated Effect | Altered Metabolites | Reference |
---|---|---|---|---|---|---|---|
1 H-NMR | Ʃ DDT | M = 18.69 F = 24.31 | Red tuna of the Atlantic (Thunnus thynnus) (n = 20) | Liver | Alteration in the energetic metabolism | Decrease of glucose; Increase of malonate, acetate, and acetone | [56] |
Ʃ 7 PCB-DL | M = 16.69 F = 7.94 | ||||||
Ʃ 6 PCB-NDL | M = 130.78 F = 53.27 | ||||||
NMR | Ʃ 2 PFSA | 264 ± 130 | Polar bear (Ursus maritimus) (Females n = 112) | Plasma | Alteration in the metabolism of lipids | Glucose, lactate, HDL, triglycerides, cholesterol | [58] |
Ʃ 6 PFCA | 81.7 ± 38.0 | ||||||
1 H-NMR | Ʃ DDT | M = 18.69 F = 24.31 | Red tuna of the Atlantic (Thunnus thynnus) (Males = 10) (Females = 10) | Liver | Alteration of the metabolic pathways producer of energy | 14 aminoacids (isoleucine, leucine, valine, threonine, alanine, lysine, proline, sarcosine, taurine, glycine, tyrosine, phenylalanine, glutamate, and creatine; 9 metabolites of energy (acetate, acetone, acetoacetate, succinate, malonate, malate, lactate, glucosa, fumarate); 1 nucleoside (Inosine) 9 diverse metabolites (isopropanol, glutathione, choline, phosphocholine, niacinamide, hypoxanthine, glycerophosphocholine, and glycerol) | [57] |
Ʃ 7 PCB-DL | M = 16.69 F = 7.94 | ||||||
Ʃ 6 PCB-NDL | M = 130.78 F = 53.27 |
Analytic Method | POPs | Concentration | Population/Exposure Type | Tissue/Biofluid | Effect Associated | Altered Metabolites | Reference |
---|---|---|---|---|---|---|---|
UHPLC-QTOF-MS | Dioxin | (~ 5000 pg/g lipid) | 11 workers from a herbicide production plant. Occupational | Urine | Alteration of endogenous steroid metabolites and profiles of urinary, biliary acids | Glucuro and sulfoconjugates of glycochenodeoxycholic acid, estrone glucuronide, glycocholic acid-3-glucuronide, glycoursodeoxycholic acid glucuronide and sulfate, hydroxytestosterone glucuronide, hydroxyandrosterone glucuronide, Dihydrotestosterone sulfate, glucuro and sulfoconjugates of androsterone, Dihydroxyandrostenone sulfate, Isomer of epitestosterone glucuronide, glycocholic acid, chenodeoxycholic acid sulfate, hydroxyandrostane glucuronide, pregnanediol-3-glucuronide, cholic acid glucuronide, deoxycholic acid glucoronide | [59] |
UPLC-QTOF-MS | p,p′-DDE | 309 ng/g lipid | 965 older men and women Environmental | Plasma | Changes in lipid metabolic pathways include fatty acids, Glycerophospholipids, Sphingolipids and glycerolipids | Oleic acid amide, heptadecanoic acid, linolenic aldehyde, flavone, Lysophosphatidylcholine (18:1), Lysophosphatidylcholine (0:0/18:2), Lysophosphatidylcholine (18:2/0:0), Lysophosphatidylcholine (18:3), Monoacylglycerol (18:2), Phosphoethanolamine ceramide (34:1), Phosphoethanolamine ceramide (36:1),cinnamic acid and its derivatives, docosahexaenoic acid, lysophosphatidylethanolamine (18: 1p/0: 0), Lysophosphatidylethanolamine (18: 1b), Lysophosphatidylethanolamine (18:2) | [60] |
HCB | 40.8 ng/g lípid | ||||||
1 H-NMR | Β-HCH | 21.4–46.8 ng/g lípid | 750 Pregnant women from general population Environmental | Plasma | Changes in: Mitochondrial catabolic pathway of the L-leucine and in the metabolism f organic acids | 3-hydroxyisovalerate (decrease), 4 deoxyerythronic acid, succinate, Pregnanolone-3G, Alanine, Glycine, 3-hydroxybutyrate/3-Aminoisobutyrate, acetone. | [61] |
HCB | 21.6–66.6 | ||||||
DDE | 75.5–201 | ||||||
PCB138 | 11.6–27.7 | ||||||
PCB180 | 15.9–34.3 | ||||||
PCB180 | 15.9–34.3 | ||||||
PFOAS | 1.69–3.67 | ||||||
PFOS | 3.94–8.15 | ||||||
PFNA | 0.557–1.05 | ||||||
PFHxS | 0.686–1.14 | ||||||
ICR-FTMS | PFOA | 1.88–5.37 ng/mL | 19 boys and 21 girls Hispanic Environmental | Plasma | Deregulation of metabolic pathways of lipids, amino acids, and glucose | Glycosphingolipids, fatty acids, linoleic acid, asparagine, tyrosine, arginine and proline | [62] |
PFOS | 1.95–65.3 ng/mL | ||||||
PFHxS | 0.47–12.81 ng/mL | ||||||
UHPLC-FTMS | PFOAS | 2.6 ng/mL | 49 boys and 66 girls from Cincinnati Environmental | Plasma | Alteration of the metabolism of amino acids and lipids | Arginine, proline, aspartate, asparagine, beta-alanine, butanoate, glutamate, glycerophospholipids, glycine, serine, alanine, threonine, glycosphingolipids, Gloxylate, Dicarboxylate, histidine, Linoleate, methionine cysteine, tyrosine, urea, Tianima and nicotinamide. | [63] |
PFOS | 4.4 ng/mL | ||||||
PFNA | 0.9 ng/mL | ||||||
PFHxS | 2.1 ng/mL | ||||||
UHPLC-Orbitrap-MS | PBB-153 | 5.3–53.2 ng/g | 68 men and 88 women from Michigan Environmental | Plasma | Changes in the metabolic pathways of the catecholamines, the cellular respiration, the essential fatty acids, the lipids, and polyamines. | Asparagine, Threonine, Retinyl beta-glucuronide 25-hydroxyvitamin D2, 1 alfa, 24R, 25-trihydroxyvitamin D3, Leukotriene B4,Sphinganine, Creatine, Acetylcarnitine, Succinate, Citrate;Iso-cittrate Glucose, Cytosine, 5-hydroxy-N-formylquinurenine, Dopamine, Putrescine, N-acetyl-L-glutamate 5-semialdehyde, Picolinic acid, 5,10-methylenetetrahydrofolate, Prostaglandin B1 N-acetyl-L-glutamate 5-phosphate, Uridine triphosphate 3-(4-hydroxyphenyl) pyruvate, 3,4-dihydroxy-L-phenylalanine 3-methoxytyramine, Glycine, Selenohomocysteine Tryptophan, Pyridoxamine, Retinyl beta-glucuronide, Linoleic acid, Glycolate, Dihydrobiopterin, Tetrahydrobiopterin, Spermine Dialdehyde N-methylputrescine, N8-acetylspermidine, Cortisol, serine, Eicosadienoic acid Phosphoethanolamine, Cer (d18: 0/22: 0) PI (16: 0/20: 0), Palmitoylcarnitine, Uracil, Urocortisol | [64] |
PCB-153 | 9.9–20.5 ng/g | ||||||
UHPLC-Orbitrap-MS | PFAS | 1.61–3.18 ug/L | 58 men and 44 women with obesity or over- weight Environmental | Plasma | Alteration of the metabolic pathways of fatty acids, lipids, and amino acids. | Arginine, proline, tryptophan, hexoses | [65] |
PFOS | 1.61–11.47 ug/L | ||||||
PFHxS | 0.32–5.79 ug/L | ||||||
UHPLC-Orbitrap-MS | p,p′-DDE | 42.81 ng/mL | 50 women with breast cancer Perinatal | Maternal perinatal serum | Alteration of the metabolic pathways of amino acids, glycerophospholipids, fatty acids, and the cycle of urea | Pipecolate, semialdehyde, Hydroxyglutamate, Methylphenylethanolamine, Arginine, sarcosine, tyramine, 4-acetamidobutanoate, 2-Amino-3-oxobutanoic acid, Betaine, (-)—Salsolinol, 2-phenylacetamide, 4, Fumarylacetoacetate, Indol-5, 6-quinone | [66] |
UHPLC-Orbitrap-MS | PFOA | 3.42 ng/mL | 52 boys and 22 girls with NAFLD | Liver | Changes in the key pathways of amino acids and lipids underlying the pathophysiology of the NAFLD | Increase of: Phosphoethanolamine, Tyrosine, phenylalanine, Aspartate and creatine Decrease of: Betaine | [67] |
PFOS | 3.59 ng/mL | ||||||
PFHxS | 1.53 ng/mL | ||||||
UHPLC-Orbitrap-MS | 17 dioxin congeners | (3.29–765.35 pgTEQ/g lipid) | 95 Workers from a waste incineration power plant and two electronics factories Environmental | Plasma | Changes in the metabolism f the β-oxidation of the fatty acids, Glycerophospholipids, sphingolipids, essential fatty acids, purines, aminoacids | Tetradecanoylcarnitine, Decanoylcarnitine, L-palmitoylcarnitine, Palmitamide, 3-hydroxy caproic acid, Prostaglandin H2 (PGH2), Arachidonic acid (AA), Stearidonic acid, 9-OxoODE, Octadecanamide, Glycerophospho-N-palmitoyl ethanolamine (GP-NPEA), N-Oleoylserine, PC (18:1/18:1), LPC (16:0/0:0), LPE(16:0/0:0), Sphingosine-1-phosphate (S1P), Adenosine monophosphate (AMP), Xanthine, Indolactic acid and aspartic acid. | [68] |
UHPLC-QTRAP-MS | Trans-nonachlor | 3.88–9.59 | 26 women without endometrioma; 49 women with endometrioma Environmental | Plasma | Dysregulation of bile acid homeostasis and lipase activity: Higher concentrations of POPs are associated with a higher risk of endometrioma | Interleukin-8, monocyte chemoattractant protein-1, triglycerides, lysophosphatidylcholines, phosphatidylcholines, ceramides, fatty acids | [69] |
PCB-114 | 128.17–255.70 |
4. Challenges and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Wang, C.; Li, H.; Ma, R.; Yu, Z.; Li, L.; Xiang, M.; Chen, X.; Hua, X.; Yu, Y. A review of toxicity induced by persistent organic pollutants (POPs) and endocrine-disrupting chemicals (EDCs) in the nematode Caenorhabditis elegans. J. Environ. Manag. 2019, 237, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Rawson, C.A.; Tremblay, L.A.; Warne, M.S.J.; Ying, G.; Kookana, R.; Laginestra, E.; Chapman, J.C.; Lim, R.P. Bioactivity of POPs and their effects in mosquitofish in Sydney Olympic Park, Australia. Sci. Total Environ. 2009, 407, 3721–3730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, H.; Katsoyiannis, A.A.; Brorström-Lundén, E.; Olafsdottir, K.; Aas, W.; Breivik, K.; Bohlin-Nizzetto, P.; Sigurdsson, A.; Hakola, H.; Bossi, R.; et al. Temporal trends of Persistent Organic Pollutants (POPs) in arctic air: 20 years of monitoring under the Arctic Monitoring and Assessment Programme (AMAP). Environ. Pollut. 2016, 217, 52–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahugija, J.A.M.; Henkelmann, B.; Schramm, K.W. Levels, compositions and distributions of organochlorine pesticide residues in soil 5–14 years after clean-up of former storage sites in Tanzania. Chemosphere 2014, 117, 330–337. [Google Scholar] [CrossRef]
- Zawiyah, S.; Man, Y.B.C.; Nazimah, S.A.H.; Chin, C.K.; Tsukamoto, I.; Hamanyza, A.H.; Norhaizan, I. Determination of organochlorine and pyrethroid pesticides in fruit and vegetables using SAX/PSA clean-up column. Food Chem. 2007, 102, 98–103. [Google Scholar] [CrossRef]
- Vaccher, V.; Ingenbleek, L.; Adegboye, A.; Hossou, S.E.; Koné, A.Z.; Oyedele, A.D.; Kisito, C.S.K.J.; Dembélé, Y.K.; Hu, R.; Malak, I.A.; et al. Levels of persistent organic pollutants (POPs) in foods from the first regional Sub-Saharan Africa Total Diet Study. Environ. Int. 2020, 135, 105413. [Google Scholar] [CrossRef]
- Kuranchie-Mensah, H.; Atiemo, S.M.; Palm, L.M.N.D.; Blankson-Arthur, S.; Tutu, A.O.; Fosu, P. Determination of organochlorine pesticide residue in sediment and water from the Densu river basin, Ghana. Chemosphere 2012, 86, 286–292. [Google Scholar] [CrossRef]
- Shen, L.; Wania, F. Compilation, evaluation, and selection of physical−chemical property data for organochlorine pesticides. J. Chem. Eng. Data 2005, 50, 742–768. [Google Scholar] [CrossRef]
- Ahmed, K.E.M.; Frøysa, H.G.; Karlsen, O.A.; Blaser, N.; Zimmer, K.E.; Berntsen, H.F.; Verhaegen, S.; Ropstad, E.; Kellmann, R.; Goksøyr, A. Effects of defined mixtures of POPs and endocrine disruptors on the steroid metabolome of the human H295R adrenocortical cell line. Chemosphere 2019, 218, 328–339. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.; Srivastava, T.; Kumar, M.S. Fate of the persistent organic pollutant (POP)Hexachlorocyclohexane (HCH) and remediation challenges. Int. Biodeterior. Biodegrad. 2019, 140, 43–56. [Google Scholar] [CrossRef]
- Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 2018, 263, 442–453. [Google Scholar] [CrossRef]
- Nossen, I.; Ciesielski, T.M.; Dimmen, M.V.; Jensen, H.; Ringsby, T.H.; Polder, A.; Rønning, B.; Jenssen, B.M.; Styrishave, B. Steroids in house sparrows (Passer domesticus): Effects of POPs and male quality signalling. Sci. Total Environ. 2016, 547, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Mizukawa, H.; Nomiyama, K.; Nakatsu, S.; Yachimori, S.; Hayashi, T.; Tashiro, Y.; Nagano, Y.; Tanabe, S. Species-specific differences in the accumulation features of organohalogen contaminants and their metabolites in the blood of Japanese terrestrial mammals. Environ. Pollut. 2013, 174, 28–37. [Google Scholar] [CrossRef]
- Kirschbaum, A.A.; Seriani, R.; Pereira, C.D.S.; Assunção, A.; de Souza Abessa, D.M.; Rotundo, M.M.; Ranzani-Paiva, M.J.T. Cytogenotoxicity biomarkers in fat snook Centropomus parallelus from Cananéia and São Vicente estuaries, SP, Brazil. Genet. Mol. Biol. 2009, 32, 151–154. [Google Scholar] [CrossRef]
- Hatcher, J.M.; Delea, K.C.; Richardson, J.R.; Pennell, K.D.; Miller, G.W. Disruption of dopamine transport by DDT and its metabolites. Neurotoxicology 2008, 29, 682–690. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.; Kumar, S.; Karmoker, J.; Kamruzzaman, M.; Rahman, M.A.; Biswas, N.; Tran, T.K.A.; Rahman, M.M. Bioaccumulation and adverse effects of persistent organic pollutants (POPs) on ecosystems and human exposure: A review study on Bangladesh perspectives. Environ. Technol. Innov. 2018, 12, 115–131. [Google Scholar] [CrossRef]
- Mrema, E.J.; Rubino, F.M.; Brambilla, G.; Moretto, A.; Tsatsakis, A.M.; Colosio, C. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology 2013, 307, 74–88. [Google Scholar] [CrossRef]
- UNEP. United Nations Environment Programme. Listing of POPs in the Stockholm Convention. Available online: http://chm.pops.int/TheConvention/ThePOPs/ListingofPOPs/tabid/2509/Default.aspx (accessed on 12 June 2022).
- Holma-Suutari, A.; Ruokojärvi, P.; Komarov, A.A.; Makarov, D.A.; Ovcharenko, V.V.; Panin, A.N.; Kiviranta, H.; Laaksonen, S.; Nieminen, M.; Viluksela, M.; et al. Biomonitoring of selected persistent organic pollutants (PCDD/Fs, PCBs and PBDEs) in Finnish and Russian terrestrial and aquatic animal species. Environ. Sci. Eur. 2016, 28, 1. [Google Scholar] [CrossRef]
- Weckwerth, W. Green systems biology—From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J. Proteom. 2011, 75, 284–305. [Google Scholar] [CrossRef] [Green Version]
- Robertson, D.G. Metabonomics in toxicology: A review. Toxicol. Sci. 2005, 85, 809–822. [Google Scholar] [CrossRef]
- Fowler, B.A. Biomarkers in toxicology and risk assessment. EXS 2012, 101, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Martyniuk, C.J.; Simmons, D.B. Spotlight on environmental omics and toxicology: A long way in a short time. Comp. Biochem. Physiol. Part D Genom. Proteom. 2016, 19, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Snape, J.R.; Maund, S.J.; Pickford, D.B.; Hutchinson, T.H. Ecotoxicogenomics: The challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquat. Toxicol. 2004, 67, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, T.; Watanabe, H.; Katsu, Y. Application of ecotoxicogenomics for studying endocrine disruption in vertebrates and invertebrates. Environ. Health Perspect. 2006, 114, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Bonvallot, N.; David, A.; Chalmel, F.; Chevrier, C.; Cordier, S.; Cravedi, J.P.; Zalko, D. Metabolomics as a powerful tool to decipher the biological effects of environmental contaminants in humans. Curr. Opin. Toxicol. 2018, 8, 48–56. [Google Scholar] [CrossRef]
- Deng, P.; Li, X.; Petriello, M.C.; Wang, C.; Morris, A.J.; Hennig, B. Application of metabolomics to characterize environmental pollutant toxicity and disease risks. Rev. Environ. Health 2019, 34, 251–259. [Google Scholar] [CrossRef]
- Poynton, H.C.; Wintz, H.; Vulpe, C.D. Progress in ecotoxicogenomics for environmental monitoring, mode of action, and toxicant identification. Adv. Exp. Biol. 2008, 2, 21–323. [Google Scholar] [CrossRef]
- Yan, M.; Xu, G. Current and future perspectives of functional metabolomics in disease studies–A review. Anal. Chim. Acta 2018, 1037, 41–54. [Google Scholar] [CrossRef]
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, D608–D617. [Google Scholar] [CrossRef]
- TMIC. The Metabolomics Innovation Centre. Human Metabolome Database: Browsing Metabolites. Available online: https://hmdb.ca/metabolites?utf8=✓&filter=true&filter=true (accessed on 27 June 2022).
- Amberg, A.; Riefke, B.; Schlotterbeck, G.; Ross, A.; Senn, H.; Dieterle, F.; Keck, M. NMR and MS methods for metabolomics. In Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1641. [Google Scholar] [CrossRef]
- Matthews, H.; Hanison, J.; Nirmalan, N. “Omics”—Informed drug and biomarker discovery: Opportunities, challenges and future perspectives. Proteomes 2016, 4, 28. [Google Scholar] [CrossRef] [Green Version]
- Dunn, W.B.; Ellis, D.I. Metabolomics: Current analytical platforms and methodologies. TrAC-Trends Anal. Chem. 2005, 24, 285–294. [Google Scholar] [CrossRef]
- Singh, R.; Sinclair, K.D. Metabolomics: Approaches to assessing oocyte and embryo quality. Theriogenology 2007, 68, S56–S62. [Google Scholar] [CrossRef]
- Aznar-Alemany, Ò.; Llorca, M. Metabolomics strategies and analytical techniques for the investigation of contaminants of industrial origin. In Environmental Metabolomics; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897–1905. [Google Scholar] [CrossRef] [Green Version]
- Ribbenstedt, A.; Ziarrusta, H.; Benskin, J.P. Development, characterization and comparisons of targeted and non-targeted metabolomics methods. PLoS ONE 2018, 13, e0207082. [Google Scholar] [CrossRef] [Green Version]
- González-Riano, C.; Dudzik, D.; Garcia, A.; Gil-De-La-Fuente, A.; Gradillas, A.; Godzien, J.; López-Gonzálvez, Á.; Rey-Stolle, F.; Rojo, D.; Ruperez, F.J.; et al. Recent developments along the analytical process for metabolomics workflows. Anal. Chem. 2020, 92, 203–226. [Google Scholar] [CrossRef]
- Lawton, K.A.; Berger, A.; Mitchell, M.; Milgram, K.E.; Evans, A.M.; Guo, L.; Hanson, R.W.; Kalhan, S.C.; Ryals, J.A.; Milburn, M.V. Analysis of the adult human plasma metabolome. Pharmacogenomics 2008, 9, 383–397. [Google Scholar] [CrossRef]
- Khamis, M.M.; Adamko, D.J.; El-Aneed, A. Mass spectrometric based approaches in urine metabolomics and biomarker discovery. Mass Spectrom. Rev. 2017, 36, 115–134. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Wang, X. Saliva metabolomics opens door to biomarker discovery, disease diagnosis, and treatment. Appl. Biochem. Biotechnol. 2012, 168, 1718–1727. [Google Scholar] [CrossRef]
- Palmas, F.; Fattuoni, C.; Noto, A.; Barberini, L.; Dessì, A.; Fanos, V. The choice of amniotic fluid in metabolomics for the monitoring of fetus health. Expert Rev. Mol. Diagn. 2016, 16, 473–486. [Google Scholar] [CrossRef]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Jiye, A.; Trygg, J.; Gullberg, J.; Johansson, A.I.; Jonsson, P.; Antti, H.; Marklund, S.L.; Moritz, T. Extraction and GC/MS analysis of the human blood plasma metabolome. Anal. Chem. 2005, 77, 8086–8094. [Google Scholar] [CrossRef]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692–2703. [Google Scholar] [CrossRef]
- Carrizo, D.; Chevallier, O.P.; Woodside, J.V.; Brennan, S.F.; Cantwell, M.M.; Cuskelly, G.; Elliott, C.T. Untargeted metabolomic analysis of human serum samples associated with exposure levels of Persistent organic pollutants indicate important perturbations in Sphingolipids and Glycerophospholipids levels. Chemosphere 2017, 168, 731–738. [Google Scholar] [CrossRef]
- De Castro, F.; Benedetti, M.; Del Coco, L.; Fanizzi, F.P. NMR-based metabolomics in metal-based drug research. Molecules 2019, 24, 2240. [Google Scholar] [CrossRef] [Green Version]
- Fiehn, O. Metabolomics by gas chromatography-mass spectrometry: Combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 2016, 2006, 30.4.1–30.4.32. [Google Scholar] [CrossRef]
- Alonso, A.; Marsal, S.; Julià, A. Analytical methods in untargeted metabolomics: State of the art in 2015. Front. Bioeng. Biotechnol. 2015, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Nagana Gowda, G.A.; Raftery, D. NMR-Based Metabolomics. Adv. Exp. Med. Biol. 2021, 1280, 19–37. [Google Scholar] [CrossRef]
- Heiles, S. Advanced tandem mass spectrometry in metabolomics and lipidomics—methods and applications. Anal. Bioanal. Chem. 2021, 413, 5927–5948. [Google Scholar] [CrossRef]
- Kusonmano, K.; Vongsangnak, W.; Chumnanpuen, P. Informatics for metabolomics. In Advances in Experimental Medicine and Biology; Springer Nature: Berlin, Germany, 2016; Volume 939. [Google Scholar]
- Cui, L.; Lu, H.; Lee, Y.H. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom. Rev. 2018, 37, 772–792. [Google Scholar] [CrossRef]
- Xia Lab McGill. MetaboAnalyst 5.0. Available online: https://www.metaboanalyst.ca/ (accessed on 20 June 2022).
- Maisano, M.; Cappello, T.; Oliva, S.; Natalotto, A.; Giannetto, A.; Parrino, V.; Battaglia, P.; Romeo, T.; Salvo, A.; Spanò, N.; et al. PCB and OCP accumulation and evidence of hepatic alteration in the Atlantic bluefin tuna, T. thynnus, from the Mediterranean Sea. Mar. Environ. Res. 2016, 121, 40–48. [Google Scholar] [CrossRef]
- Cappello, T.; Giannetto, A.; Parrino, V.; De Marco, G.; Mauceri, A.; Maisano, M. Food safety using NMR-based metabolomics: Assessment of the Atlantic bluefin tuna, Thunnus thynnus, from the Mediterranean Sea. Food Chem. Toxicol. 2018, 115, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Tartu, S.; Lille-Langøy, R.; Størseth, T.R.; Bourgeon, S.; Brunsvik, A.; Aars, J.; Goksøyr, A.; Jenssen, B.M.; Polder, A.; Thiemann, G.W.; et al. Multiple-stressor effects in an apex predator: Combined influence of pollutants and sea ice decline on lipid metabolism in polar bears. Sci. Rep. 2017, 7, 16487. [Google Scholar] [CrossRef] [PubMed]
- Jeanneret, F.; Boccard, J.; Badoud, F.; Sorg, O.; Tonoli, D.; Pelclova, D.; Vlckova, S.; Rutledge, D.N.; Samer, C.F.; Hochstrasser, D.; et al. Human urinary biomarkers of dioxin exposure: Analysis by metabolomics and biologically driven data dimensionality reduction. Toxicol. Lett. 2014, 230, 234–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salihovic, S.; Ganna, A.; Fall, T.; Broeckling, C.D.; Prenni, J.E.; van Bavel, B.; Lind, P.M.; Ingelsson, E.; Lind, L. The metabolic fingerprint of p,p′-DDE and HCB exposure in humans. Environ. Int. 2016, 88, 60–66. [Google Scholar] [CrossRef]
- Maitre, L.; Robinson, O.; Martinez, D.; Toledano, M.B.; Ibarluzea, J.; Marina, L.S.; Sunyer, J.; Villanueva, C.M.; Keun, H.C.; Vrijheid, M.; et al. Urine Metabolic Signatures of Multiple Environmental Pollutants in Pregnant Women: An Exposome Approach. Environ. Sci. Technol. 2018, 52, 13469–13480. [Google Scholar] [CrossRef] [Green Version]
- Alderete, T.L.; Jin, R.; Walker, D.I.; Valvi, D.; Chen, Z.; Jones, D.P.; Peng, C.; Gilliland, F.D.; Berhane, K.; Conti, D.V.; et al. Perfluoroalkyl substances, metabolomic profiling, and alterations in glucose homeostasis among overweight and obese Hispanic children: A proof-of-concept analysis. Environ. Int. 2019, 126, 445–453. [Google Scholar] [CrossRef]
- Kingsley, S.L.; Walker, D.I.; Calafat, A.M.; Chen, A.; Papandonatos, G.D.; Xu, Y.; Jones, D.P.; Lanphear, B.P.; Pennell, K.D.; Braun, J.M. Metabolomics of childhood exposure to perfluoroalkyl substances: A cross-sectional study. Metabolomics 2019, 15, 95 . [Google Scholar] [CrossRef]
- Walker, D.I.; Marder, M.E.; Yano, Y.; Terrell, M.; Liang, Y.; Barr, D.B.; Miller, G.W.; Jones, D.P.; Marcus, M.; Pennell, K.D. Multigenerational metabolic profiling in the Michigan PBB registry. Environ. Res. 2019, 172, 182–193. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, T.; Walker, D.I.; Thomas, D.C.; Qiu, C.; Chatzi, L.; Alderete, T.L.; Kim, J.S.; Conti, D.V.; Breton, C.V.; et al. Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. Environ. Int. 2020, 145, 106091. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Cirillo, P.; Krigbaum, N.; Tran, V.L.; Ishikawa, T.; La Merrill, M.A.; Jones, D.P.; Cohn, B. Metabolome Wide Association Study of serum DDT and DDE in Pregnancy and Early Postpartum. Reprod. Toxicol. 2020, 92, 129–137. [Google Scholar] [CrossRef]
- Jin, R.; McConnell, R.; Catherine, C.; Xu, S.; Walker, D.I.; Stratakis, N.; Jones, D.P.; Miller, G.W.; Peng, C.; Conti, D.V.; et al. Perfluoroalkyl substances and severity of nonalcoholic fatty liver in Children: An untargeted metabolomics approach. Environ. Int. 2020, 134, 105220. [Google Scholar] [CrossRef]
- Liang, Y.; Tang, Z.; Jiang, Y.; Ai, C.; Peng, J.; Liu, Y.; Chen, J.; Zhang, J.; Cai, Z. Serum metabolic changes associated with dioxin exposure in a Chinese male cohort. Environ. Int. 2020, 143, 105984. [Google Scholar] [CrossRef]
- Matta, K.; Lefebvre, T.; Vigneau, E.; Cariou, V.; Marchand, P.; Guitton, Y.; Royer, A.L.; Ploteau, S.; Le Bizec, B.; Antignac, J.P.; et al. Associations between persistent organic pollutants and endometriosis: A multiblock approach integrating metabolic and cytokine profiling. Environ. Int. 2022, 158, 106926. [Google Scholar] [CrossRef]
- Jugan, J.; Lind, P.M.; Salihovic, S.; Stubleski, J.; Kärrman, A.; Lind, L.; La Merrill, M.A. The associations between p,p′-DDE levels and plasma levels of lipoproteins and their subclasses in an elderly population determined by analysis of lipoprotein content. Lipids Health Dis. 2020, 19, 249. [Google Scholar] [CrossRef]
- Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; Kaliszan, R. Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal. 2015, 113, 108–120. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef]
- Moco, S.; Vervoort, J.; Moco, S.; Bino, R.J.; De Vos, R.C.H.; Bino, R. Metabolomics technologies and metabolite identification. TrAC-Trends Anal. Chem. 2007, 26, 855–866. [Google Scholar] [CrossRef]
- Chaleckis, R.; Meister, I.; Zhang, P.; Wheelock, C.E. Challenges, progress and promises of metabolite annotation for LC–MS-based metabolomics. Curr. Opin. Biotechnol. 2019, 55, 44–50. [Google Scholar] [CrossRef]
- Rattray, N.J.W.; Deziel, N.C.; Wallach, J.D.; Khan, S.A.; Vasiliou, V.; Ioannidis, J.P.A.; Johnson, C.H. Beyond genomics: Understanding exposotypes through metabolomics. Hum. Genom. 2018, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Misra, B.B. Challenges and Opportunities in Cancer Metabolomics. Proteomics 2019, 19, e1900042. [Google Scholar] [CrossRef]
- Pinu, F.R.; Goldansaz, S.A.; Jaine, J. Translational metabolomics: Current challenges and future opportunities. Metabolites 2019, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, D.K.; Hollywood, K.A.; Goodacre, R. Metabolomics for the masses: The future of metabolomics in a personalized world. New Horiz. Transl. Med. 2017, 3, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Mias, G.I.; Li-Pook-Than, J.; Jiang, L.; Lam, H.Y.K.; Chen, R.; Miriami, E.; Karczewski, K.J.; Hariharan, M.; Dewey, F.E.; et al. Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell 2012, 148, 1293–1307. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.V.; Hu, Y.J. Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases. Adv. Genet. 2016, 93, 147–190. [Google Scholar] [CrossRef] [Green Version]
- Geng, N.; Ren, X.; Gong, Y.; Zhang, H.; Wang, F.; Xing, L.; Cao, R.; Xu, J.; Gao, Y.; Giesy, J.P.; et al. Integration of metabolomics and transcriptomics reveals short-chain chlorinated paraffin-induced hepatotoxicity in male Sprague-Dawley rat. Environ. Int. 2019, 133, 105231. [Google Scholar] [CrossRef]
- Pinu, F.R.; Beale, D.J.; Paten, A.M.; Kouremenos, K.; Swarup, S.; Schirra, H.J.; Wishart, D. Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites 2019, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Popa, M.-L.; Albulescu, R.; Neagu, M.; Hinescu, M.E.; Tanase, C. Multiplex assay for multiomics advances in personalized-precision medicine. J. Immunoass. Immunochem. 2019, 40, 3–25. [Google Scholar] [CrossRef]
Classification | ||||||
---|---|---|---|---|---|---|
POPs | A | B | C | Pesticides | Industrial Chemicals | Unintentional Production |
Perfluorooctanoic acid (PFOA), its salts and related compounds with PFOA | x | x | ||||
Perfluorooctane sulfonic acid, its salts and Perfluorooctane sulfonyl fluoride | x | x | x | |||
Aldrin | x | x | ||||
Polychlorinated biphenyls (PCB) | x | x | x | x | ||
Chlordane | x | x | ||||
Chlordecone | x | x | ||||
Dichlorodiphenyltrichloroethane (DDT) | x | x | ||||
Decabromodiphenyl ether (commercial mixture, c-decaBDE) | x | x | ||||
Polychlorinated dibenzofurans (PCDF) | x | x | ||||
Polychlorinated dibenzo-p-dioxins (PCDD) | x | x | ||||
Dicofol | x | x | ||||
Dieldrín | x | x | ||||
Technical endosulfan and its related isomers | x | x | ||||
Endrin | x | x | ||||
Heptachlor | x | x | ||||
Hexabromobiphenyl | x | x | ||||
Hexabromocyclododecane (HBCDD) | x | x | ||||
Hexabromodiphenyl ether and heptabromodiphenyl ether | x | x | ||||
Hexachlorobenzene (HCB) | x | x | x | x | x | |
Hexachlorabutadiene (HCBD) | x | x | x | x | ||
Lindane | x | x | ||||
Mirex | x | x | ||||
Polychlorinated naphthalenes | x | x | x | x | ||
Short-chains chlorinated paraffin (PCCC) | x | x | x | x | ||
Pentachlorobenzene | x | x | x | x | x | |
Pentachlorophenol and its salts and esters | x | x | ||||
Tetrabromodiphenyl ether and pentabromodiphenyl ether | x | x | ||||
Toxaphene | x | x | ||||
α-hexachlorocyclohexane | x | x | ||||
β- hexachlorocyclohexane | x | x |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acosta-Tlapalamatl, M.; Romo-Gómez, C.; Anaya-Hernández, A.; Juárez-Santacruz, L.; Gaytán-Oyarzún, J.C.; Acevedo-Sandoval, O.A.; García-Nieto, E. Metabolomics: A New Approach in the Evaluation of Effects in Human Beings and Wildlife Associated with Environmental Exposition to POPs. Toxics 2022, 10, 380. https://doi.org/10.3390/toxics10070380
Acosta-Tlapalamatl M, Romo-Gómez C, Anaya-Hernández A, Juárez-Santacruz L, Gaytán-Oyarzún JC, Acevedo-Sandoval OA, García-Nieto E. Metabolomics: A New Approach in the Evaluation of Effects in Human Beings and Wildlife Associated with Environmental Exposition to POPs. Toxics. 2022; 10(7):380. https://doi.org/10.3390/toxics10070380
Chicago/Turabian StyleAcosta-Tlapalamatl, Miriam, Claudia Romo-Gómez, Arely Anaya-Hernández, Libertad Juárez-Santacruz, Juan Carlos Gaytán-Oyarzún, Otilio Arturo Acevedo-Sandoval, and Edelmira García-Nieto. 2022. "Metabolomics: A New Approach in the Evaluation of Effects in Human Beings and Wildlife Associated with Environmental Exposition to POPs" Toxics 10, no. 7: 380. https://doi.org/10.3390/toxics10070380
APA StyleAcosta-Tlapalamatl, M., Romo-Gómez, C., Anaya-Hernández, A., Juárez-Santacruz, L., Gaytán-Oyarzún, J. C., Acevedo-Sandoval, O. A., & García-Nieto, E. (2022). Metabolomics: A New Approach in the Evaluation of Effects in Human Beings and Wildlife Associated with Environmental Exposition to POPs. Toxics, 10(7), 380. https://doi.org/10.3390/toxics10070380