Impact Factors on Migration of Molybdenum(VI) from the Simulated Trade Effluent Using Membrane Chemical Reactor Combined with Carrier in the Mixed Renewal Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Design of MCR-OW and Reactionmechanisms
2.2. Materials and Reagent
2.3. Test Method
2.4. Experimental Procedure
3. Results and Discussion
3.1. Effects of pH and Ion Strength in the Feeding Pool
3.2. Effects of the Volume Ratio and Carrier Concentration in the Renewal Pool
3.3. Effects of Mo(VI) Retention on the Reuse of the Membrane
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Z.; Yang, X.; Dong, Y.; Zhu, B.; Chen, D. Molybdenum deposits in the eastern Qinling, central China: Constraints on the geodynamics. Int. Geol. Rev. 2011, 53, 261–290. [Google Scholar] [CrossRef]
- Zeng, Q.D.; Liu, J.M.; Qin, K.Z.; Fan, H.; Chu, S.; Wang, Y.; Zhou, L. Types, characteristics, and time-space distribution of molybdenum deposits in China. Int. Geol. Rev. 2013, 55, 1311–1358. [Google Scholar] [CrossRef]
- Han, C.M.; Xiao, W.J.; Su, B.X.; Sakyi, P.A.; Ao, S.; Zhang, J.; Wan, B.; Song, D.; Zhang, Z.; Wang, Z.; et al. Late Paleozoic metallogenesis and evolution of the Chinese Western Tianshan Collage, NW China, Central Asia orogenic belt. Ore. Geol. Rev. 2020, 124, 103643. [Google Scholar] [CrossRef]
- Chen, X.-R.; Zhai, Q.-J.; Dong, H.; Dai, B.-H.; Mohrbacher, H. Molybdenum alloying in cast iron and steel. Adv. Manuf. 2020, 8, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Tsai, K.-S.; Chang, Y.-M.; Kao, J.C.M.; Lin, K.-L. Groundwater Molybdenum from Emerging Industries in Taiwan. Bull. Environ. Contam. Tox. 2016, 96, 102–106. [Google Scholar] [CrossRef]
- Ghazaryan, K.A.; Movsesyan, H.S.; Khachatryan, H.E.; Ghazaryan, N.P. Geochemistry of potentially toxic trace elements in soils of mining area: Acase study from zangezurcopper and molybdenum combine. Armenia. Bull. Environ. Contam. Tox. 2018, 101, 732–737. [Google Scholar] [CrossRef]
- Solongo, T.; Fukushi, K.; Altansukh, O.; Fukushi, K.; Altansukh, O.; Takahashi, Y.; Akehi, A.L.; Baasansuren, G.; Ariuntungalag, Y.; Enkhjin, O.; et al. Distribution and chemical speciation of molybdenum in river and pond sediments affected by mining activity in Erdenet City, Mongolia. Minerals 2018, 8, 288. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Wan, D.; Tian, H.; He, W.; Wang, Z.; Liu, Q. Pollution assessment of heavy metals in soils and plants around a Molybdenum mine in Central China. Pol. J. Environ. Stud. 2019, 28, 123–133. [Google Scholar] [CrossRef]
- Song, Z.; Song, G.; Tang, W.; Yan, D.; Zhao, Y.; Zhu, Y.; Wang, J.; Ma, Y. Molybdenum contamination dispersion from mining site to a reservoir. Ecotoxicol. Environ. Saf. 2021, 208, 111631. [Google Scholar] [CrossRef]
- Li, F.P.; Wang, Y.; Mao, L.C.; Tao, H.; Chen, M. Molybdenum background and pollution levels in the TaipuRiver, China. Environ. Chem. Lett. 2022, 20, 1009–1015. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, M.; Yu, W.; Li, J.; Kong, D. Ecotoxicological risk ranking of 19 metals in the lower Yangtze River of China based on their threats to aquatic wildlife. Sci. Total Environ. 2022, 812, 152370. [Google Scholar] [CrossRef] [PubMed]
- Davies, T.D.; Pickard, J.; Hall, K.J. Acute molybdenum toxicity to rainbow trout and other fish. J. Environ. Eng. Sci. 2005, 4, 481–485. [Google Scholar] [CrossRef]
- Pichler, T.; Koopmann, S. Should monitoring of molybdenum (Mo) in groundwater, drinking water and well permitting made mandatory? Environ. Sci. Technol. 2020, 54, 1009–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Qiu, Z.; Yang, J.; Cao, L.; Zhang, W. Recovery of Mo and Ni from spent acrylonitrile catalysts using an oxidation leaching-chemical precipitation technique. Hydrometallurgy 2016, 164, 64–70. [Google Scholar] [CrossRef]
- Hamza, M.F.; Roux, J.C.; Guibai, E. Metal valorization from the waste produced in the manufacturing of Co/Mo catalysts: Leaching and selective precipitation. J. Mater. Cycles. Waste Manag. 2019, 21, 525–538. [Google Scholar] [CrossRef]
- Zeng, L.; Zhao, Z.; Huo, G.; Wang, X.; Pu, H. Mechanism of selective precipitation of molybdenum from tungstate solution. JOM 2020, 72, 800–805. [Google Scholar] [CrossRef]
- Joo, S.H.; Kim, Y.U.; Kang, J.G.; Kumar, J.R.; Yoon, H.-S.; Parhi, P.L.; Shin, S.M. Recovery of Rhenium and Molybdenum from Molybdenite Roasting Dust Leaching Solution by Ion Exchange Resins. Mater. Trans. 2012, 53, 2034–2037. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.G.; Zhang, B.; Liu, H.Z.; Wang, W.; Cao, Y. Recovery of molybdenum from alkali leaching solution of low-grade molybdenum concentrate by ion exchange. Green Process. Synth. 2015, 4, 317–321. [Google Scholar] [CrossRef]
- Okutani, T.; Noshiro, K.; Sakuragawa, A. Determination of a trace amount of molybdenum(VI) by graphite-furnace atomic absorption spectrometry after adsorption and elution as a molybdenum-Pyrocatechol Violet complex on activated carbon. Anal. Sci. 1998, 14, 621–624. [Google Scholar] [CrossRef] [Green Version]
- Li, M.M.; Wang, Y.J. Determination of molybdenum in alloy steel by flame atomic absorption spectrometry with mixed surfactant. Chinese J. Anal. Chem. 2000, 28, 428–431. [Google Scholar]
- Mukherjee, B.; Simsek, E. Plasmonics Enhanced Average Broadband Absorption of Monolayer MoS2. Plasmonics 2016, 11, 285–289. [Google Scholar] [CrossRef]
- Yobilishetty, S.M.; Marathe, K.V. Removal of molybdenum (VI) from effluent waste water streams by cross flow micellar enhanced ultrafiltration (MEUF) using anionic, non-ionic and mixed surfactants. Indian J. Chem. Techn. 2014, 21, 321–327. [Google Scholar]
- Lian, J.J.; Xu, S.G.; Zhang, Y.M.; Han, C.W. Molybdenum(VI) removal by using constructed wetlands with different filter media and plants. Water Sci. Technol. 2013, 67, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Rouhani, S.H.R.; Davarkhah, R.; Zaheri, P.; Mousavian, S.M.A. Separation of molybdenum from spent HDS catalysts using emulsion liquid membrane system. Chem. Eng. Process. 2020, 153, 107958. [Google Scholar] [CrossRef]
- Kröpfelová, L.; Vymazal, J.; Švehla, J.; Štíchová, J. Removal of trace elements in three horizontal sub-surface flow constructed wetlands in the Czech Republic. Environ. Pollut. 2009, 157, 1186–1194. [Google Scholar] [CrossRef]
- Chen, B.; Zhou, F.J.; Yang, F.; Lian, J.J.; Ye, T.R.; Wu, H.Y.; Wang, L.M.; Song, N.; Liu, Y.Y.; Hui, A.Y. Enhanced sequestration of molybdenum(VI) using composite constructed wetlands and responses of microbial communities. Water Sci. Technol. 2022, 85, 1065–1078. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.E.; Olin, T.J.; Bricka, R.; Adrian, D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, G.; Zeng, L.; Zhou, Q.; Li, Z.; Zhang, D.; Cao, Z.; Guan, W.; Li, Q.; Xiao, L. Study on removal of molybdenum from ammonium tungstate solutions using solvent extraction with quaternary ammonium salt extractant. Hydrometallugy 2019, 186, 218–225. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, G.; Zeng, L.; Guan, W.; Wu, S.; Li, Z.; Zhou, Q.; Zhang, D.; Qing, J.; Long, Y.; et al. Continuous solvent extraction operations for the removal of molybdenum from ammonium tungstate solution with quaternary ammonium salt extractant. Hydrometallugy 2020, 195, 105401. [Google Scholar] [CrossRef]
- Kasra-Kermanshahi, R.; Tajer-Mohammad-Ghazvini, P.; Bahrami-Bavani, M. A biotechnological strategy for molybdenum extraction using acidithiobacillusferrooxidans. Appl. Biochem. Biotechnol. 2020, 193, 884–895. [Google Scholar] [CrossRef]
- Yang, X.J.; Fane, A.G.; MacNaughton, S. Removal and recovery of heavy metals from wastewaters by supported liquid membranes. Water Sci. Technol. 2001, 43, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Pei, L.; Wang, L.M.; Ma, Z.Y. Modelling of Ce(IV) Transport through a Dispersion Combined Liquid Membrane with Carrier p507. Front. Env. Sci. Eng. 2014, 8, 503–509. [Google Scholar] [CrossRef]
- Pei, L.; Yao, B.H.; Zhang, C.J. Transport of Tm(III) through dispersion supported liquid membrane containing PC-88A in kerosene as the carrier. Sep. Purif. Technol. 2009, 65, 220–227. [Google Scholar] [CrossRef]
- Valenzuela, F.; Fonseca, C.; Basualto, C.; Correa, O.; Tapia, C.; Sapag, J. Removal of copper ions from a waste water by a liquid emulsion membrane method. Miner. Eng. 2015, 18, 33–40. [Google Scholar] [CrossRef]
- Albarak, Z. Carrier-mediated liquid membrane systems for lead (II) ion separations. Chem. Pap. 2020, 74, 77–88. [Google Scholar] [CrossRef]
- Ahmad, A.; Tariq, S.; Zaman, J.U.; Perales, A.I.M.; Mubashir, M.; Luque, R. Recent trends and challenges with the synthesis of membranes: Industrial opportunities towards environmental remediation. Chemosphere 2022, 306, 135634. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Zhan, K.; Sun, R.; Sheng, Z.; Wang, M.; Wang, S.; Hou, X. Two dimensional nanomaterial-based separation membranes. Electrophoresis 2019, 40, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Mal’tseva, E.E.; Blokhin, A.A.; Murashkin, Y.V.; Mikhaylenko, M.A. Sorptiveparation of molybdenum(VI)from rhenium-containing solutions. Russ. J. Appl. Chem. 2017, 90, 528–532. [Google Scholar] [CrossRef]
- Bhatluri, K.K.; Manna, M.S.; Ghoshal, A.K.; Saha, P. Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition. Electrochim. Acta. 2017, 229, 1–7. [Google Scholar] [CrossRef]
- Foong, C.Y.; Wirzal, M.D.H.; Bustam, M.A. A review on nanofibers membrane with amino-based ionic liquid for heavy metal removal. J. Mol. Liq. 2020, 297, 111793. [Google Scholar] [CrossRef]
- He, D.S.; Ma, M.; Wang, H.; Zhou, P. Effect of kinetic synergiston transport of Copper(II) through a liquid membrane containing P507 in Kerosene. Can. J. Chem. 2001, 79, 1213–1219. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, L.; Sun, L. Impact Factors on Migration of Molybdenum(VI) from the Simulated Trade Effluent Using Membrane Chemical Reactor Combined with Carrier in the Mixed Renewal Solutions. Toxics 2022, 10, 438. https://doi.org/10.3390/toxics10080438
Pei L, Sun L. Impact Factors on Migration of Molybdenum(VI) from the Simulated Trade Effluent Using Membrane Chemical Reactor Combined with Carrier in the Mixed Renewal Solutions. Toxics. 2022; 10(8):438. https://doi.org/10.3390/toxics10080438
Chicago/Turabian StylePei, Liang, and Liying Sun. 2022. "Impact Factors on Migration of Molybdenum(VI) from the Simulated Trade Effluent Using Membrane Chemical Reactor Combined with Carrier in the Mixed Renewal Solutions" Toxics 10, no. 8: 438. https://doi.org/10.3390/toxics10080438
APA StylePei, L., & Sun, L. (2022). Impact Factors on Migration of Molybdenum(VI) from the Simulated Trade Effluent Using Membrane Chemical Reactor Combined with Carrier in the Mixed Renewal Solutions. Toxics, 10(8), 438. https://doi.org/10.3390/toxics10080438