Time Trends of Acrylamide Exposure in Europe: Combined Analysis of Published Reports and Current HBM4EU Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection and Integration of Published Data on European Acrylamide Biomarker Levels
2.2. Datasets Provided by HBM4EU Aligned Studies
2.3. Data Stratification
2.4. Data Harmonization
2.4.1. Estimation of Means from Medians and Ranges or Quartiles
2.4.2. Calculations of Estimates for Urine Acrylamide Metabolite Concentrations from Available Blood Adduct Levels (Trans-Matrix Estimates)
2.4.3. Influence of Age on Acrylamide Time-Trends
2.4.4. Influence of Sex on Acrylamide Time-Trends
2.4.5. Statistics
3. Results
4. Discussion
4.1. Time-Trend of Acrylamide Exposure in Europe 2001–2021
4.2. Regional Trends
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAMA | N-acetyl-S-(carbamoylethyl)-l-cysteine) |
GAMA | N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-l-cysteine) |
HBM4EU | Human biomonitoring for European Union |
CYP2E1 | Cytochrome P450 2E1 |
Appendix A
References
- Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Törnqvist, M. Acrylamide: A Cooking Carcinogen? Chem. Res. Toxicol. 2000, 13, 517–522. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Acrylamide in Food. EFSA J. 2015, 13, 4104. [Google Scholar] [CrossRef]
- Mottram, D.S.; Wedzicha, B.L.; Dodson, A.T. Acrylamide Is Formed in the Maillard Reaction. Nature 2002, 419, 448–449. [Google Scholar] [CrossRef]
- Mesias, M.; Delgado-Andrade, C.; Morales, F.J. An Updated View of Acrylamide in Cereal Products. Curr. Opin. Food Sci. 2022, 46, 100847. [Google Scholar] [CrossRef]
- Esposito, F.; Velotto, S.; Rea, T.; Stasi, T.; Cirillo, T. Occurrence of Acrylamide in Italian Baked Products and Dietary Exposure Assessment. Molecules 2020, 25, 4156. [Google Scholar] [CrossRef] [PubMed]
- Amrein, T.M.; Andres, L.; Escher, F.; Amadò, R. Occurrence of Acrylamide in Selected Foods and Mitigation Options. Food Addit. Contam. 2007, 24 (Suppl. 1), 13–25. [Google Scholar] [CrossRef] [PubMed]
- Strocchi, G.; Rubiolo, P.; Cordero, C.; Bicchi, C.; Liberto, E. Acrylamide in Coffee: What Is Known and What Still Needs to Be Explored. A Review. Food Chem. 2022, 393, 133406. [Google Scholar] [CrossRef] [PubMed]
- Besaratinia, A.; Pfeifer, G.P. DNA Adduction and Mutagenic Properties of Acrylamide. Mutat. Res. 2005, 580, 31–40. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Acrylamide. IARC Monogr. Eval. Carcinog. Risks Hum. 1994, 60, 389–483. [Google Scholar]
- Eisenbrand, G. Revisiting the Evidence for Genotoxicity of Acrylamide (AA), Key to Risk Assessment of Dietary AA Exposure. Arch. Toxicol. 2020, 94, 2939–2950. [Google Scholar] [CrossRef]
- Pennisi, M.; Malaguarnera, G.; Puglisi, V.; Vinciguerra, L.; Vacante, M.; Malaguarnera, M. Neurotoxicity of Acrylamide in Exposed Workers. Int. J. Environ. Res. Public Health 2013, 10, 3843–3854. [Google Scholar] [CrossRef] [PubMed]
- Maddu, N.; Begum, S.F. Review on Chronic Exposure of Acrylamide Causes a Neurotoxicity Risk. INNOSC Theranostics Pharmacol. Sci. 2018, 1, 20–26. [Google Scholar] [CrossRef]
- Ghanayem, B.I.; Bai, R.; Kissling, G.E.; Travlos, G.; Hoffler, U. Diet-Induced Obesity in Male Mice Is Associated with Reduced Fertility and Potentiation of Acrylamide-Induced Reproductive Toxicity. Biol. Reprod. 2010, 82, 96–104. [Google Scholar] [CrossRef] [PubMed]
- González-Alzaga, B.; Hernández, A.F.; Kim Pack, L.; Iavicoli, I.; Tolonen, H.; Santonen, T.; Vinceti, M.; Filippini, T.; Moshammer, H.; Probst-Hensch, N.; et al. The Questionnaire Design Process in the European Human Biomonitoring Initiative (HBM4EU). Environ. Int. 2022, 160, 107071. [Google Scholar] [CrossRef]
- Vioque, J.; Gimenez-Monzo, D.; Navarrete-Muñoz, E.M.; Garcia-de-la Hera, M.; Gonzalez-Palacios, S.; Rebagliato, M.; Ballester, F.; Murcia, M.; Iñiguez, C.; Granado, F.; et al. Reproducibility and Validity of a Food Frequency Questionnaire Designed to Assess Diet in Children Aged 4–5 Years. PLoS ONE 2016, 11, e0167338. [Google Scholar] [CrossRef]
- Cade, J.; Thompson, R.; Burley, V.; Warm, D. Development, Validation and Utilisation of Food-Frequency Questionnaires—A Review. Public Health Nutr. 2002, 5, 567–587. [Google Scholar] [CrossRef]
- Schettgen, T.; Müller, J.; Fromme, H.; Angerer, J. Simultaneous Quantification of Haemoglobin Adducts of Ethylene Oxide, Propylene Oxide, Acrylonitrile, Acrylamide and Glycidamide in Human Blood by Isotope-Dilution GC/NCI-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 2467–2473. [Google Scholar] [CrossRef]
- Heudorf, U.; Hartmann, E.; Angerer, J. Acrylamide in Children–Exposure Assessment via Urinary Acrylamide Metabolites as Biomarkers. Int. J. Hyg. Environ. Health 2009, 212, 135–141. [Google Scholar] [CrossRef]
- Ospina, M.; Vesper, H.W.; Licea-Perez, H.; Meyers, T.; Mi, L.; Myers, G. LC/MS/MS Method for the Analysis of Acrylamide and Glycidamide Hemoglobin Adducts. Adv. Exp. Med. Biol. 2005, 561, 97–107. [Google Scholar] [CrossRef]
- Doerge, D.R.; Young, J.F.; McDaniel, L.P.; Twaddle, N.C.; Churchwell, M.I. Toxicokinetics of Acrylamide and Glycidamide in Fischer 344 Rats. Toxicol. Appl. Pharmacol. 2005, 208, 199–209. [Google Scholar] [CrossRef]
- Boettcher, M.I.; Bolt, H.M.; Drexler, H.; Angerer, J. Excretion of Mercapturic Acids of Acrylamide and Glycidamide in Human Urine after Single Oral Administration of Deuterium-Labelled Acrylamide. Arch. Toxicol. 2006, 80, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Fuhr, U.; Boettcher, M.I.; Kinzig-Schippers, M.; Weyer, A.; Jetter, A.; Lazar, A.; Taubert, D.; Tomalik-Scharte, D.; Pournara, P.; Jakob, V.; et al. Toxicokinetics of Acrylamide in Humans after Ingestion of a Defined Dose in a Test Meal to Improve Risk Assessment for Acrylamide Carcinogenicity. Cancer Epidemiol. Biomarkers Prev. 2006, 15, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Fennell, T.R.; Sumner, S.C.J.; Snyder, R.W.; Burgess, J.; Friedman, M.A. Kinetics of Elimination of Urinary Metabolites of Acrylamide in Humans. Toxicol. Sci. 2006, 93, 256–267. [Google Scholar] [CrossRef]
- Miller, M.J.; Carter, D.E.; Sipes, I.G. Pharmacokinetics of Acrylamide in Fisher-344 Rats. Toxicol. Appl. Pharmacol. 1982, 63, 36–44. [Google Scholar] [CrossRef]
- Tareke, E.; Twaddle, N.C.; McDaniel, L.P.; Churchwell, M.I.; Young, J.F.; Doerge, D.R. Relationships between Biomarkers of Exposure and Toxicokinetics in Fischer 344 Rats and B6C3F1 Mice Administered Single Doses of Acrylamide and Glycidamide and Multiple Doses of Acrylamide. Toxicol. Appl. Pharmacol. 2006, 217, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Gallani, B.; Curtis, A. The Revised Food Drink Europe ‘Acrylamide Toolbox’. Food Drink. Eur. Publ. 2019, 25, 36–37. Available online: https://www.fooddrinkeurope.eu/wp-content/uploads/2021/05/FoodDrinkEurope_Acrylamide_Toolbox_2019.pdf (accessed on 28 July 2022).
- FAO-WHO CODEXALIMENTARIUS. 2022. Available online: https://www.fao.org/fao-who-codexalimentarius/roster/detail/en/c/468937/ (accessed on 28 July 2022).
- European Food Safety Authority. Update on Acrylamide Levels in Food from Monitoring Years 2007 to 2010. EFS2 2012, 10, 2938. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Benford, D.; Bignami, M.; Chipman, J.K.; Ramos Bordajandi, L. Assessment of the Genotoxicity of Acrylamide. EFSA J. 2022, 20, e07293. [Google Scholar] [CrossRef]
- Commission Regulation 2017/2158. 2017. Available online: https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32017R2158 (accessed on 28 July 2022).
- Committee, E.S.; Hardy, A.; Benford, D.; Halldorsson, T.; Jeger, M.J.; Knutsen, K.H.; More, S.; Mortensen, A.; Naegeli, H.; Noteborn, H.; et al. Update: Use of the Benchmark Dose Approach in Risk Assessment. EFSA J. 2017, 15, e04658. [Google Scholar] [CrossRef]
- HBM4EU: About Us. 2017. Available online: https://www.hbm4eu.eu/about-us/ (accessed on 28 July 2022).
- Gilles, L.; Govarts, E.; Rambaud, L.; Vogel, N.; Castaño, A.; Esteban López, M.; Rodriguez Martin, L.; Koppen, G.; Remy, S.; Vrijheid, M.; et al. HBM4EU Combines and Harmonises Human Biomonitoring Data across the EU, Building on Existing Capacity—The HBM4EU Survey. Int. J. Hyg. Environ. Health 2021, 237, 113809. [Google Scholar] [CrossRef]
- Kopp, E.K.; Dekant, W. Biotransformation and Toxicokinetics of Acrylamide in Humans. Ph.D. Thesis, Maximilians University, Munich, Germany, 2009. [Google Scholar]
- Urban, M.; Kavvadias, D.; Riedel, K.; Scherer, G.; Tricker, A.R. Urinary Mercapturic Acids and a Hemoglobin Adduct for the Dosimetry of Acrylamide Exposure in Smokers and Nonsmokers. Inhal. Toxicol. 2006, 18, 831–839. [Google Scholar] [CrossRef] [PubMed]
- International Conference on Harmonization of Technical. ICH Q2(R1) Validation of Analytical Procedures: Text and Methodology-GMP Navigator. 2022. Available online: https://www.gmp-navigator.com/guidelines/gmp-guideline/ich-q2r1-validation-of-analytical-procedures-text-and-methodology (accessed on 28 July 2022).
- Lermen, D.; Bartel-Steinbach, M.; Gwinner, F.; Conrad, A.; Weber, T.; von Briesen, H.; Kolossa-Gehring, M. Trends in Characteristics of 24-h Urine Samples and Their Relevance for Human Biomonitoring Studies. Int. J. Hyg. Environ. Health 2019, 222, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Hagmar, L.; Wirfält, E.; Paulsson, B.; Törnqvist, M. Differences in Hemoglobin Adduct Levels of Acrylamide in the General Population with Respect to Dietary Intake, Smoking Habits and Gender. Mutat. Res. 2005, 580, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Obón-Santacana, M.; Freisling, H.; Peeters, P.H.; Lujan-Barroso, L.; Ferrari, P.; Boutron-Ruault, M.C.; Mesrine, S.; Baglietto, L.; Turzanski-Fortner, R.; Katzke, V.A.; et al. Acrylamide and Glycidamide Hemoglobin Adduct Levels and Endometrial Cancer Risk: A Nested Case-Control Study in Nonsmoking Postmenopausal Women from the EPIC Cohort. Int. J. Cancer 2016, 138, 1129–1138. [Google Scholar] [CrossRef]
- Vikström, A.C.; Warholm, M.; Paulsson, B.; Axmon, A.; Wirfält, E.; Törnqvist, M. Hemoglobin Adducts as a Measure of Variations in Exposure to Acrylamide in Food and Comparison to Questionnaire Data. Food Chem. Toxicol. 2012, 50, 2531–2539. [Google Scholar] [CrossRef]
- Schettgen, T.; Weiss, T.; Drexler, H.; Angerer, J. A First Approach to Estimate the Internal Exposure to Acrylamide in Smoking and Non-Smoking Adults from Germany. Int. J. Hyg. Environ. Health 2003, 206, 9–14. [Google Scholar] [CrossRef]
- Chevolleau, S.; Jacques, C.; Canlet, C.; Tulliez, J.; Debrauwer, L. Analysis of Hemoglobin Adducts of Acrylamide and Glycidamide by Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry, as Exposure Biomarkers in French Population. J. Chromatogr. A 2007, 1167, 125–134. [Google Scholar] [CrossRef]
- Schettgen, T.; Rossbach, B.; Kütting, B.; Letzel, S.; Drexler, H.; Angerer, J. Determination of Haemoglobin Adducts of Acrylamide and Glycidamide in Smoking and Non-Smoking Persons of the General Population. Int. J. Hyg. Environ. Health 2004, 207, 531–539. [Google Scholar] [CrossRef]
- Kütting, B.; Schettgen, T.; Schwegler, U.; Fromme, H.; Uter, W.; Angerer, J.; Drexler, H. Acrylamide as Environmental Noxious Agent: A Health Risk Assessment for the General Population Based on the Internal Acrylamide Burden. Int. J. Hyg. Environ. Health 2009, 212, 470–480. [Google Scholar] [CrossRef]
- Boettcher, M.I.; Schettgen, T.; Kütting, B.; Pischetsrieder, M.; Angerer, J. Mercapturic Acids of Acrylamide and Glycidamide as Biomarkers of the Internal Exposure to Acrylamide in the General Population. Mutat. Res. 2005, 580, 167–176. [Google Scholar] [CrossRef]
- Hartmann, E.C.; Boettcher, M.I.; Schettgen, T.; Fromme, H.; Drexler, H.; Angerer, J. Hemoglobin Adducts and Mercapturic Acid Excretion of Acrylamide and Glycidamide in One Study Population. J. Agric. Food Chem. 2008, 56, 6061–6068. [Google Scholar] [CrossRef] [PubMed]
- Bjellaas, T.; Olesen, P.T.; Frandsen, H.; Haugen, M.; Stølen, L.H.; Paulsen, J.E.; Alexander, J.; Lundanes, E.; Becher, G. Comparison of Estimated Dietary Intake of Acrylamide with Hemoglobin Adducts of Acrylamide and Glycidamide. Toxicol. Sci. 2007, 98, 110–117. [Google Scholar] [CrossRef] [PubMed]
- von Stedingk, H.; Vikström, A.C.; Rydberg, P.; Pedersen, M.; Nielsen, J.K.S.; Segerbäck, D.; Knudsen, L.E.; Törnqvist, M. Analysis of Hemoglobin Adducts from Acrylamide, Glycidamide, and Ethylene Oxide in Paired Mother/Cord Blood Samples from Denmark. Chem. Res. Toxicol. 2011, 24, 1957–1965. [Google Scholar] [CrossRef]
- Duarte-Salles, T.; von Stedingk, H.; Granum, B.; Gützkow, K.B.; Rydberg, P.; Törnqvist, M.; Mendez, M.A.; Brunborg, G.; Brantsæter, A.L.; Meltzer, H.M.; et al. Dietary Acrylamide Intake during Pregnancy and Fetal Growth-Results from the Norwegian Mother and Child Cohort Study (MoBa). Environ. Health Perspect. 2013, 121, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Vikström, A.C.; Abramsson-Zetterberg, L.; Naruszewicz, M.; Athanassiadis, I.; Granath, F.N.; Törnqvist, M.A. In Vivo Doses of Acrylamide and Glycidamide in Humans after Intake of Acrylamide-Rich Food. Toxicol. Sci. 2011, 119, 41–49. [Google Scholar] [CrossRef]
- Mojska, H.; Gielecińska, I.; Cendrowski, A. Acrylamide Content in Cigarette Mainstream Smoke and Estimation of Exposure to Acrylamide from Tobacco Smoke in Poland. Ann. Agric. Environ. Med. 2016, 23, 456–461. [Google Scholar] [CrossRef]
- Goerke, K.; Ruenz, M.; Lampen, A.; Abraham, K.; Bakuradze, T.; Eisenbrand, G.; Richling, E. Biomonitoring of Nutritional Acrylamide Intake by Consumers without Dietary Preferences as Compared to Vegans. Arch. Toxicol. 2019, 93, 987–996. [Google Scholar] [CrossRef]
- Goempel, K.; Tedsen, L.; Ruenz, M.; Bakuradze, T.; Schipp, D.; Galan, J.; Eisenbrand, G.; Richling, E. Biomarker Monitoring of Controlled Dietary Acrylamide Exposure Indicates Consistent Human Endogenous Background. Arch. Toxicol. 2017, 91, 3551–3560. [Google Scholar] [CrossRef]
- Frigerio, G.; Mercadante, R.; Campo, L.; Polledri, E.; Boniardi, L.; Olgiati, L.; Missineo, P.; Fustinoni, S. Urinary Biomonitoring of Subjects with Different Smoking Habits. Part I: Profiling Mercapturic Acids. Toxicol. Lett. 2020, 327, 48–57. [Google Scholar] [CrossRef]
- Schwedler, G.; Murawski, A.; Schmied-Tobies, M.I.H.; Rucic, E.; Scherer, M.; Pluym, N.; Scherer, G.; Bethke, R.; Kolossa-Gehring, M. Benzene Metabolite SPMA and Acrylamide Metabolites AAMA and GAMA in Urine of Children and Adolescents in Germany—Human Biomonitoring Results of the German Environmental Survey 2014–2017 (GerES V). Environ. Res. 2021, 192, 110295. [Google Scholar] [CrossRef]
- Albiach-Delgado, A.; Esteve-Turrillas, F.A.; Fernández, S.F.; Garlito, B.; Pardo, O. Review of the State of the Art of Acrylamide Human Biomonitoring. Chemosphere 2022, 295, 133880. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Vryonidis, E.; Joensen, A.; Törnqvist, M. Hemoglobin Adducts of Acrylamide in Human Blood – What Has Been Done and What Is Next? Food Chem. Toxicol. 2022, 161, 112799. [Google Scholar] [CrossRef] [PubMed]
- Esteban López, M.; Göen, T.; Mol, H.; Nübler, S.; Haji-Abbas-Zarrabi, K.; Koch, H.M.; Kasper-Sonnenberg, M.; Dvorakova, D.; Hajslova, J.; Antignac, J.P.; et al. The European Human Biomonitoring Platform - Design and Implementation of a Laboratory Quality Assurance/Quality Control (QA/QC) Programme for Selected Priority Chemicals. Int. J. Hyg. Environ. Health 2021, 234, 113740. [Google Scholar] [CrossRef]
- Deliverable 9.4, The Quality Assurance/Quality Control Scheme in the HBM4EU Project. 2017. Available online: https://www.hbm4eu.eu/work-packages/deliverable-9-4-the-quality-assurancequality-control-scheme-in-the-hbm4eu-project/ (accessed on 28 July 2022).
- Rich-Edwards, J.W.; Kaiser, U.B.; Chen, G.L.; Manson, J.E.; Goldstein, J.M. Sex and Gender Differences Research Design for Basic, Clinical, and Population Studies: Essentials for Investigators. Endocr. Rev. 2018, 39, 424–439. [Google Scholar] [CrossRef]
- Hozo, S.P.; Djulbegovic, B.; Hozo, I. Estimating the Mean and Variance from the Median, Range, and the Size of a Sample. BMC Med. Res. Methodol. 2005, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Wang, W.; Liu, J.; Tong, T. Estimating the Sample Mean and Standard Deviation from the Sample Size, Median, Range and/or Interquartile Range. BMC Med. Res. Methodol. 2014, 14, 135. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 28 July 2022).
- Settels, E.; Bernauer, U.; Palavinskas, R.; Klaffke, H.S.; Gundert-Remy, U.; Appel, K.E. Human CYP2E1 mediates the formation of glycidamide from acrylamide. Arch. Toxicol. 2008, 82, 717–727. [Google Scholar] [CrossRef]
- Paulsson, B.; Rannug, A.; Henderson, A.P.; Golding, B.T.; Tornqvist, M.; Warholm, M. In Vitro Studies of the Influence of Glutathione Transferases and Epoxide Hydrolase on the Detoxification of Acrylamide and Glycidamide in Blood. Mutat. Res. Genet. Toxicol. Environ. 2005, 580, 53–59. [Google Scholar] [CrossRef]
- Duale, N.; Bjellaas, T.; Alexander, J.; Becher, G.; Haugen, M.; Paulsen, J.E.; Frandsen, H.; Olesen, P.T.; Brunborg, G. Biomarkers of Human Exposure to Acrylamide and Relation to Polymorphisms in Metabolizing Genes. Toxicol. Sci. 2009, 108, 90–99. [Google Scholar] [CrossRef]
- Pellè, L.; Carlsson, H.; Cipollini, M.; Bonotti, A.; Foddis, R.; Cristaudo, A.; Romei, C.; Elisei, R.; Gemignani, F.; Törnqvist, M.; et al. The Polymorphism Rs2480258 within CYP2E1 Is Associated with Different Rates of Acrylamide Metabolism in Vivo in Humans. Arch. Toxicol. 2018, 92, 2137–2140. [Google Scholar] [CrossRef]
- Hays, S.M.; Aylward, L.L. Biomonitoring Equivalents (BE) Dossier for Acrylamide (AA) (CAS No. 79-06-1). Regul. Toxicol. Pharmacol. 2008, 51, S57–S67. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency, National Center for Environmental Assessment. IRIS Toxicological Review of Acrylamide (External Review Draft). Available online: https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=187729 (accessed on 28 July 2022).
- Rietjens, I.M.C.M.; Michael, A.; Bolt, H.M.; Siméon, B.; Andrea, H.; Nils, H.; Christine, K.; Angela, M.; Gloria, P.; Daniel, R.; et al. The Role of Endogenous versus Exogenous Sources in the Exposome of Putative Genotoxins and Consequences for Risk Assessment. Arch. Toxicol. 2022, 96, 1297–1352. [Google Scholar] [CrossRef] [PubMed]
- Carrière, V.; Berthou, F.; Baird, S.; Belloc, C.; Beaune, P.; de Waziers, I. Human Cytochrome P450 2E1 (CYP2E1): From Genotype to Phenotype. Pharmacogenetics 1996, 6, 203–211. [Google Scholar] [CrossRef]
- Bjellaas, T.; Janák, K.; Lundanes, E.; Kronberg, L.; Becher, G. Determination and Quantification of Urinary Metabolites after Dietary Exposure to Acrylamide. Xenobiotica 2005, 35, 1003–1018. [Google Scholar] [CrossRef] [PubMed]
- Boettcher, M.I.; Rihs, H.P.; Schettgen, T.; Drexler, H.; Angerer, J. Metabolism of Acrylamide (AA) in Humans: Internal Burden of the General Population and First Assessment of the Relevance of Gene Variations in Involved Enzymes. Epidemiology 2006, 17, S148. [Google Scholar] [CrossRef]
- Vesper, H.W.; Caudill, S.P.; Osterloh, J.D.; Meyers, T.; Scott, D.; Myers, G.L. Exposure of the U.S. Population to Acrylamide in the National Health and Nutrition Examination Survey 2003–2004. Environ. Health Perspect. 2010, 118, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Hubacek, J.A. Drug Metabolising Enzyme Polymorphisms in Middle- and Eastern-European Slavic Populations. Drug Metabol. Drug Interact. 2014, 29, 29–36. [Google Scholar] [CrossRef]
- Poteser, M.; Laguzzi, F.; Schettgen, T.; Vogel, N.; Weber, T.; Murawski, A.; Schmidt, P.; Rüther, M.; Kolossa-Gehring, M.; Namorado, S.; et al. Trends of Exposure to Acrylamide as Measured by Urinary Biomarkers Levels within the HBM4EU Biomonitoring Aligned Studies (2000–2021). Toxics 2022, 10, 443. [Google Scholar] [CrossRef]
- Boettcher, M.I.; Angerer, J. Determination of the Major Mercapturic Acids of Acrylamide and Glycidamide in Human Urine by LC-ESI-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005, 824, 283–294. [Google Scholar] [CrossRef]
Nr. | Author | Pub. Year | Sampl. Year | Matrix | Num. Participants, Non-Smoker/Smoker | Age (Mean, Median, Range) in Years | Sex (Perc. Male) | Rep. Value | AA (ns/s) | GA (ns/s) | Unit |
---|---|---|---|---|---|---|---|---|---|---|---|
1 [38] X | L. Hagmar et al. (LH) | 2005 | 1991–1996 * | blood | ns 70 s 72 | (45–73) | - | median | 31 152 | pmol/g | |
2 [39] X | M. Obon-Santacana et al. (MOS) | 2016 | 1992–2000 * | blood | ns 417 | M: 58 | 0 | median | 43.1 | 35.4 | pmol/g |
3 [40] X | Anna C, Vikström et al. (AV1) | 2012 | 1999–2000 * | blood | ns 68 | 45–73 | - | median | 39 | 67 | pmol/g |
4 [41] | Thomas Schettgen et al. (TS1) | 2003 | 2001 | blood | ns 25 s 47 | M: 34 (19–59) | 88 | median | 21 85 | pmol/g | |
5 [35] X | Michael Urban et al. (MU) | 2006 | 2002 | urine | ns 60 s 60 | - | 38.3 | mean | 41.6 107.3 | 8.7 15.0 | µg/L |
5 [35] X | Michael Urban et al. (MU) | 2006 | 2002 | blood | ns 60 s 60 | - | 38.3 | mean | 27.6 81.8 | - | pmol/g |
6 [42] X | Sylvie Chevolleau et al. (SC) | 2007 | - | blood | ns 52 s 16 | 18–77 | 42.6 | mean | 27 53 | 23 34 | pmol/L |
7 [43] | Thomas Schettgen et al. (TS2) | 2004 | 2003 | blood | ns 13 s16 | M: 35 (16–67) | 23.0 | mean | 18 80 | 17 53 | pmol/g |
8 [44] | Birgitta Kütting et al. (BK) | 2009 | 2003 | blood | ns 857 s 148 | 41.6 | 46.9 | mean | 28.2 82.6 | - | pmol/g |
9 [45] | Melanie Isabell Boettcher et al. (MB) | 2005 | 2003 | urine | ns 16 s 13 | m: 25.5 | 31.2 | median | 29 127 | 5 19 | µg/L |
10 [17] | Thomas Schettgen et al. (TS3) | 2010 | 2003 | blood | n.s. 92 | M: 35 (6–80) | 21.7 | median | 29.9 | 35.2 | pmol/g |
11 [46] | Eva C, Hartmann et al. (EH) | 2008 | 2003 | urine | ns 91 | m: 36 | 49.4 | median | 29 | 7 | µg/L |
11 [46] | Eva C, Hartmann et al. (EH) | 2008 | 2003 | blood | ns 91 | m: 36 | 49.4 | median | 30 | 34 | pmol/g |
12 [47] | Thomas Bjellaas et al. (TB) | 2007 | 2005 | blood | ns 44 s 6 | m: 45 | 45.4 | mean | 38.4 154 | 19.6 76.6 | pmol/g |
13 [18] | Ursel Heudorf (UH) | 2009 | 2007 | urine | ns 110 | 5–6 | 57.2 | mean | 57.8 | 18.3 | µg/L |
14 [48] | Hans von Stedingk et al. (HS) | 2011 | 2007 | blood | ns 81 s 6 | m: 30 | 0 | mean | 28 110 | 22 102 | pmol/g |
15 [34] | Eva Katarina Kopp et al. (EKK) | 2009 | 2008 | urine | ns 67 s 67 | m: 35.5 | 32.8 | median | 39 121 | 9 25 | µg/L |
16 [49] | Talita Duarte-Salles et al. (TDS) | 2013 | 2007–2009 * | blood | ns 79 | m: 30 | 0 | mean | 31 | 23 | pmol/g |
17 [50] | Anna C Vikström et al. (AV2) | 2011 | 2011 | blood | ns 10 | m: 46 | 50 | mean | 59 | 72 | pmol/g |
18 [51] | Hanna Mojska et al. (HM) | 2016 | 2012 | urine | ns 78 s 5 | m: 30 (20–40) | 0 | median | 18.9 168 | 6.8 27.7 | µg/L |
19 [52] | Katharina Goerke et al. (KG) | 2019 | 2015 | urine | ns 20 | m: 26 | 50 | mean | 312 | 45 | nmol/day |
20 [53] | Katharina Goempel et al. (KG2) | 2017 | 2015 | blood | ns 6 | (20–44) *** | 100 | mean | 24.5 | 17.2 | pmol/g |
21 [54] X | Gianfranco Frigerio et al. (GF) | 2020 | 2017 | urine | ns 38 s 22 | m: 46 | 89.4 | median | 142 405 | 1.3 3.2 | µg/g creatinine |
22 [55] X | Gerda Schwedler et al. (GS) | 2021 | 2015–2017 ** | urine | ns 2211 s 48 | m: 10.4 | 51.6 | mean | 95.33 242.4 | - | µg/L |
Data Provider | Year of Sampling | No. Participants | Mean Age (Years) | Sex (Perc. Male) | Mean AAMA in µg/L | Mean GAMA in µg/L |
---|---|---|---|---|---|---|
EPIUD NAC II (IT1) | 2014 | ns 18 | 7.0 | 0 | 64.85 | 24.73 |
EPIUD NAC II (IT2) | 2015 | ns 132 | 7.2 | 52.3 | 84.58 | 31.57 |
EPIUD NAC II (IT3) | 2016 | ns 147 | 7.0 | 55.1 | 94.58 | 30.46 |
UBA GerES V (DE1) | 2015 | ns 852 | 10.3 | 50.2 | 90.7 | 17.57 |
UBA GerES V (DE2) | 2016 | ns 849 | 10.3 | 47.1 | 88.24 | 16.43 |
UBA GerES V (DE3) | 2017 | ns 517 | 10.3 | 49.7 | 102.52 | 20.52 |
NIPH NEB II (NO) | 2016 | ns 289 | 9.8 | 52.9 | 75.92 | 11.13 |
ANSP ESTEBAN (FR4) | 2014 | ns 55 | 8.5 | 49.1 | 92.6 | 12.15 |
ANSP ESTEBAN (FR5) | 2015 | ns 208 | 8.9 | 52.6 | 85.52 | 11.37 |
ANSP ESTEBAN (FR6) | 2016 | ns 37 | 8.9 | 54.0 | 82.97 | 11.59 |
UI Diet-HBM (IS1) | 2019 | ns 289 s 6 | 31.6 | 53.6 | 70.88 146.91 | 9.87 19.24 |
UI Diet-HBM (IS2) | 2020 | ns 154 s 12 | 30.6 | 41.5 | 77.57 158.40 | 12.18 22.89 |
INSA INSEF-ExpoQuim (PT1) | 2019 | ns 177 s 67 | 34.5 | 39.0 | 84.32 232.46 | 29.07 52.07 |
INSA INSEF-ExpoQuim (PT2) | 2020 | ns 37 s 12 | 34.7 | 40.5 | 90.85 136.95 | 27.96 50.62 |
LNS Oriscav-Lux2 (LU1) | 2016 | ns 34 s 7 | 33.3 | 41.2 | 72.48 263.24 | 13.32 34.71 |
LNS Oriscav-Lux2 (LU2) | 2017 | ns 123 s 25 | 33.5 | 48.0 | 68.42 184.85 | 14.44 28.47 |
LNS Oriscav-Lux2 (LU3) | 2018 | ns 12 | 33.7 | 58.3 | 57.93 | 11.69 |
ANSP ESTEBAN (FR1) | 2014 | ns 36 s 27 | 31.4 | 50 | 68.25 278.72 | 8.2 26.15 |
ANSP ESTEBAN (FR2) | 2015 | ns 138 s 64 | 32.5 | 39.9 | 85.94 304.32 | 10.35 29.29 |
ANSP ESTEBAN (FR3) | 2016 | ns 23 s 10 | 34.0 | 34.8 | 89.22 222.21 | 11.43 21.42 |
Counts (N) | Variable | AAMA vs. Sampling Year | GAMA vs. Sampling Year | |
---|---|---|---|---|
including estimated values | 5245 | Sampling year | s: 2.09, *** | - |
Age | s: −0.49, ** | - | ||
Sex | s: 0.21, n.s. | - | ||
excluding estimated values | 4202 | Sampling year | s: 1.91, ** | s: 0.12, n.s. |
Age | s: −0.45, * | s: −0.07, n.s. | ||
Sex | s: 0.12, n.s. | s: −0.06, n.s. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poteser, M.; Laguzzi, F.; Schettgen, T.; Vogel, N.; Weber, T.; Zimmermann, P.; Hahn, D.; Kolossa-Gehring, M.; Namorado, S.; Van Nieuwenhuyse, A.; et al. Time Trends of Acrylamide Exposure in Europe: Combined Analysis of Published Reports and Current HBM4EU Studies. Toxics 2022, 10, 481. https://doi.org/10.3390/toxics10080481
Poteser M, Laguzzi F, Schettgen T, Vogel N, Weber T, Zimmermann P, Hahn D, Kolossa-Gehring M, Namorado S, Van Nieuwenhuyse A, et al. Time Trends of Acrylamide Exposure in Europe: Combined Analysis of Published Reports and Current HBM4EU Studies. Toxics. 2022; 10(8):481. https://doi.org/10.3390/toxics10080481
Chicago/Turabian StylePoteser, Michael, Federica Laguzzi, Thomas Schettgen, Nina Vogel, Till Weber, Philipp Zimmermann, Domenica Hahn, Marike Kolossa-Gehring, Sónia Namorado, An Van Nieuwenhuyse, and et al. 2022. "Time Trends of Acrylamide Exposure in Europe: Combined Analysis of Published Reports and Current HBM4EU Studies" Toxics 10, no. 8: 481. https://doi.org/10.3390/toxics10080481
APA StylePoteser, M., Laguzzi, F., Schettgen, T., Vogel, N., Weber, T., Zimmermann, P., Hahn, D., Kolossa-Gehring, M., Namorado, S., Van Nieuwenhuyse, A., Appenzeller, B., Halldórsson, T. I., Eiríksdóttir, Á., Haug, L. S., Thomsen, C., Barbone, F., Rosolen, V., Rambaud, L., Riou, M., ... Moshammer, H. (2022). Time Trends of Acrylamide Exposure in Europe: Combined Analysis of Published Reports and Current HBM4EU Studies. Toxics, 10(8), 481. https://doi.org/10.3390/toxics10080481