Utilization of Waste Amine-Oxime (WAO) Resin to Generate Carbon by Microwave and Its Removal of Pb(II) in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization Methods
2.3. Microwave Semi-Carbonisation Methods
2.4. Adsorption Experiments
3. Results
3.1. Characteristics of WAO
3.2. Characteristics of MT-WAO
3.3. Adsorption
3.3.1. Effect of Microwave Treatment Time
3.3.2. Effect of pH
3.3.3. Effect of Time and Adsorption Kinetics
3.3.4. Effect of Temperature and Adsorption Isotherm
3.4. Adsorption Mechanism
3.5. Elution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WAO | Waste amine-oxime resin |
FAO | Fresh amine oxime resin |
MT-WAO | Waste amine-oxime resin after microwave pretreatment |
FT-IR | Fourier-transform infrared spectroscopy |
SEM-EDS | Scanning electron microscopy with energy dispersive spectroscopy |
XPS | X-ray photoelectron spectroscopy |
ICP-AES | Inductively coupled plasma-atomic emission spectrometry |
TG-DTA | Thermogravimetry and differential thermal analysis |
Kd | distribution coefficient (Ratio of resin metal concentration to solution metal concentration at equilibrium, Kd = Qe/Ce or Kd = [(C0 − Cs)/Cs] × (V/m). |
References
- Lee, J.C.; Hong, H.J.; Chung, K.W.; Kim, A.Y. Separation of platinum, palladium and rhodium from aqueous solutions using ion exchange resin: A review. Sep. Purif. Technol. 2020, 246, 116896. [Google Scholar] [CrossRef]
- Chidiac, C.; Kim, Y.; Lannoy, C. Enhanced Pb(II) removal from water using conductive carbonaceous nanomaterials as bacterial scaffolds: An experimental and modelling approach. J. Hazard. Mater. 2022, 431, 128516. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Y.M.; Al-Mamun, A.; Al Khatib, M.F.R.; Jameel, A.T.; AlSaadi, M.A.H.A.R. Efficient lead sorption from wastewater by carbon nanofibers. Environ. Chem. Lett. 2015, 13, 341–346. [Google Scholar] [CrossRef]
- Shama, P.; Dutta, D.; Udayan, A.; Kumar, S. Industrial wastewater purification through metal pollution reduction employing microbes and magnetic nanocomposites. J. Environ. Chem. Eng. 2021, 9, 106673. [Google Scholar] [CrossRef]
- Barakat, M.A. New trends in removing heavy metals from industrial wastewater. J. Arab. Chen. 2011, 4, 361–377. [Google Scholar] [CrossRef]
- Hashim, M.A.; Mukhopadhyay, S.; Sahu, J.N.; Gupta, B.S. Remediation technologies for heavy metal contaminated groundwater. J. Environ. Manag. 2011, 92, 2355–2388. [Google Scholar] [CrossRef]
- Qureshi, U.A.; Khatri, Z.; Ahmed, F.; Khatri, M.; Kim, I.-S. Electrospun Zein nanofiber as a green and recyclable adsorbent for the removal of reactive black 5 from the aqueous phase. ACS Sustain. Chem. Eng. 2017, 5, 4340–4351. [Google Scholar] [CrossRef]
- Yang, Y.J.; Yang, Y.N.; He, C.L.; Wei, Y.Z.; Fujita, T.; Wei, Z.W.; Yang, W.C.; Fang, S. The adsorption and desorption behavior and mechanism research of cobalt, nickel and copper in nitrite—Sulfuric acid system. Sep. Sci. Technol. 2022, 57, 1848–1859. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.M.; Chen, X.J.; Fu, H.; Chen, Y.L.; Ning, S.Y.; Fujita, T.; Wei, Y.Z.; Wang, X.P. Layered ammonium vanadate nanobelt as efficient adsorbents for removal of Sr2+ and Cs+ from contaminated water. J. Colloid Interf. Sci. 2022, 615, 110–123. [Google Scholar] [CrossRef]
- Meng, J.J.; He, C.L.; Li, Y.J.; Zhou, J.; Li, J.; Zheng, C.H.; Zhao, J.; Fujita, T.; Ning, S.Y.; Wei, Y.Z. Enhanced adsorption and separation of gallium using silica-based P507-TBP/SiO2–P adsorbent from sulfuric acid solution. Micropor. Mesopor. Mat. 2021, 314, 110859. [Google Scholar] [CrossRef]
- Zheng, Q.; He, C.L.; Meng, J.J.; Fujita, T.; Zheng, C.H.; Dai, W.; Wei, Y.Z. Behaviours of adsorption and elution on amidoxime resin for gallium, vanadium and aluminium ions in alkaline aqueous solution. Solvent. Extr. Ion. Exc. 2021, 39, 373–398. [Google Scholar] [CrossRef]
- Zheng, C.H.; He, C.L.; Yang, Y.J.; Fujita, T.; Wang, G.F.; Yang, W.C. Characterization of Waste Amidoxime Chelating Resin and Its Reutilization Performance in Adsorption of Pb(II), Cu(II), Cd(II) and Zn(II) Ions. Metals 2022, 12, 149. [Google Scholar] [CrossRef]
- Long, C.; Lu, J.D.; Li, A.M.; Hu, D.B.; Liu, F.Q.; Zhang, Q.X. Adsorption of naphthalene onto the carbon adsorbent from waste ion exchange resin: Equilibrium and kinetic characteristics. J. Hazard. Mater. 2008, 150, 656–661. [Google Scholar] [CrossRef]
- Shi, Q.Q.; Li, A.M.; Zhou, Q.; Shuang, C.D.; Ma, Y.L. Utilization of waste cation exchange resin to prepare carbon/iron composites for the adsorption of contaminants in water. J. Ind. Eng. Chem. 2014, 20, 4256–4260. [Google Scholar] [CrossRef]
- Shi, Q.Q.; Li, A.M.; Zhu, Z.L.; Liu, B. Adsorption of naphthalene onto a high-surface-area carbon from waste ion exchange resin. J. Environ. Sci. 2013, 25, 188–194. [Google Scholar] [CrossRef]
- Wei, M.Q.; Yu, Q.B.; Duan, W.J.; Hou, L.M.; Liu, K.J.; Qin, Q.; Liu, S.H.; Dai, J.J. Equilibrium and kinetics analysis of CO2 adsorption on waste ion-exchange resin-based activated carbon. J. Taiwan Inst. Chem. Eng. 2017, 77, 161–167. [Google Scholar] [CrossRef]
- Wei, M.Q.; Yu, Q.B.; Mu, T.T.; Hou, L.M.; Zuo, Z.L.; Peng, J.Y. Preparation and characterization of waste ion-exchange resin-based activated carbon for CO2 capture. Adsorption 2016, 22, 385–396. [Google Scholar] [CrossRef]
- Wei, M.Q.; Yu, Q.B.; Duan, W.J.; Zuo, Z.L.; Hou, L.M.; Dai, J.J. CO2 adsorption and desorption performance of waste ion-exchange resin-based activated carbon. Environ. Prog. Sustain. Energy 2017, 37, 703–711. [Google Scholar] [CrossRef]
- Wei, M.Q.; Yu, Q.B.; Xie, H.Q.; Zuo, Z.L.; Hou, L.M.; Yang, F. Kinetics studies of CO2 adsorption and desorption on waste ion-exchange resin-based activated carbon. Int. J. Hydrogen Energy 2017, 42, 27122–27129. [Google Scholar] [CrossRef]
- Bratek, K.; Bratek, W.; Kułażyński, M. Carbon adsorbents from waste ion-exchange resin. Carbon 2002, 40, 2213–2220. [Google Scholar] [CrossRef]
- Bratek, W.; Bratek, K.; Kułażyński, M. Properties and structure of spherical sorbents from waste ion exchange resin. Fuel Process. Technol. 2003, 81, 87–102. [Google Scholar] [CrossRef]
- Bratek, W.; Bratek, K.; Kułażyński, M. The utilization of waste ion exchange resin in environmental protection. Fuel Process. Technol. 2002, 77–78, 431–436. [Google Scholar] [CrossRef]
- Gun’ko, V.M.; Leboda, R.; Skubiszewska-ZieBa, J.; Charmas, B.; Oleszczukc, P. Carbon adsorbents from waste ion-exchange resins. Carbon 2005, 43, 1143–1150. [Google Scholar] [CrossRef]
- Miura, K.; Nakagawa, H.; Watanabe, K. Production of porous carbon from ion exchange resin waste. Tanso 1999, 186, 25–29. [Google Scholar] [CrossRef]
- Lin, W.P.; Fu, R.W.; Lu, Y.; Zeng, H.M. Preparation of amidoxime group-containing chelating fibers and their gold absorption properties. II. A preliminary investigation of the absorption behavior of Au3+ onto chelating fibers containing amidoxime groups. React. Polym. 1994, 22, 1–8. [Google Scholar] [CrossRef]
- Melegy, A. Adsorption of lead (II) and zinc (II) from aqueous solution by bituminous coal. Geotech. Geol. Eng. 2010, 28, 549–558. [Google Scholar] [CrossRef]
- Salman, M.; Athar, M.; Farooq, U.; Rauf, S.; Habiba, U. A new approach to modification of an agro-based raw material for Pb(II) adsorption. Korean J. Chem. Eng. 2014, 31, 467–474. [Google Scholar] [CrossRef]
- Lin, W.P.; Lu, Y.; Zeng, H.M. Extraction of gold from Au(III) ion containing solution by a reactive fiber. J. Appl. Polym. Sci. 1993, 49, 1635–1638. [Google Scholar] [CrossRef]
- Mittal, H.; Ray, S.S.; Okamoto, M. Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification. Macromol. Mater. Eng. 2016, 301, 496–522. [Google Scholar] [CrossRef]
- Pandey, S.; Son, N.; Kang, M. Synergistic sorption performance of karaya gum crosslink poly(acrylamide-co-acrylonitrile) @ metal nanoparticle for organic pollutants. Int. J. Biol. Macromol. 2022, 210, 300–314. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, J.; Jiang, Y.; Teng, Q. Branched polyethyleneimine-functionalized polystyrene resin: Preparation and adsorption of Cu2+. J. Chem. Eng. Data. 2019, 64, 2618–2626. [Google Scholar] [CrossRef]
- Kongsuwan, A.; Patnukao, P.; Pavasant, P. Binary component sorption of Cu(II) and Pb(II) with activated carbon from Eucalyptus camaldulensis Dehn bark. J. Ind. Eng. Chem. 2009, 15, 465–470. [Google Scholar] [CrossRef]
- Donat, R.; Akdogan, A.; Erdem, E.; Cetisli, H. Thermodynamics of Pb2+ and Ni2+ adsorption onto natural bentonite from aqueous solutions—Sciencedirect. J. Colloid Interface Sci. 2005, 286, 43–52. [Google Scholar] [CrossRef]
- Quek, S.Y.; Wase, D.; Forster, C.F. The use of sago waste for the sorption of lead and copper. Water SA 1998, 24, 251–256. [Google Scholar] [CrossRef]
- Deng, S.B.; Bai, R.B.; Chen, J.P. Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir 2003, 19, 5058–5064. [Google Scholar] [CrossRef]
- Dupont, L.; Guillon, E.; Bouanda, J.; Dumonceau, J.; Aplincourt, M. EXAFS and XANES Studies of Retention of Copper and Lead by a Lignocellulosic Biomaterial. Environ. Sci. Technol. 2002, 36, 5062–5066. [Google Scholar] [CrossRef] [PubMed]
- Faur-Brasquet, C.; Reddad, Z.; Kadirvelu, K.; Cloirec, P.L. Modeling the adsorption of metal ions (Cu2+, Ni2+, Pb2+) onto ACCs using surface complexation models. Appl. Surf. Sci. 2002, 196, 356–365. [Google Scholar] [CrossRef]
- Kenawy, I.M.; Hafez, M.; Ismail, M.A.; Hashem, M.A. Adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) from aqueous single metal solutions by guanyl-modified cellulose. Int. J. Biol. Macromol. 2017, 107, 1538–1549. [Google Scholar] [CrossRef]
- Vergili, I.; Gülzada, S.; Kaya, Y.; Özçelep, Z.; Çavuş, S.; Guülten, G.R. Study of the removal of Pb(II) using a weak acidic cation resin: Kinetics, thermodynamics, equilibrium, and breakthrough curves. Ind. Eng. Chem. Res. 2013, 52, 9227–9238. [Google Scholar] [CrossRef]
- Ramana, D.; Reddy, D.; Yu, J.S.; Seshaiah, K. Pigeon peas hulls waste as potential adsorbent for removal of Pb(II) and Ni(II) from water. Chem. Eng. J. 2012, 197, 24–33. [Google Scholar] [CrossRef]
- Elaigwu, S.E.; Rocher, V.; Kyriakou, G.; Greenway, G.M. Removal of Pb2+ and Cd2+ from aqueous solution using chars from pyrolysis and microwave-assisted hydrothermal carbonization of Prosopis Africana shell. J. Ind. Eng. Chem. 2014, 20, 3467–3473. [Google Scholar] [CrossRef]
Element (%) | FAO | WAO |
---|---|---|
C | 46.07 | 46.04 |
O | 57.86 | 88.29 |
N | 23.96 | 8.240 |
H | 3.047 | 5.373 |
Metal Ion | T(K) | Langmuir Isotherm Model | Freundlich Isotherm Model | ||||
---|---|---|---|---|---|---|---|
Qm (mg/g) | KL | R2 | Kf | n | R2 | ||
298 | 79.85 | 0.0129 | 0.9995 | 15.26 | 4.772 | 0.8947 | |
Pb(II) | 308 | 82.24 | 0.0147 | 0.9991 | 17.5 | 5.135 | 0.9018 |
318 | 82.67 | 0.0194 | 0.9992 | 19.94 | 5.390 | 0.9246 |
Concentration of Pb2+ (mg/g) | ΔH (J/mol) | ΔS (J/mol) | ΔG (KJ/mol) | ||
---|---|---|---|---|---|
298 K | 309 K | 318 K | |||
50 | 21.15 | 94.16 | −6.21 | −6.42 | −6.63 |
100 | 54.01 | 177.48 | −52.83 | −54.61 | −56.38 |
200 | 26.07 | 83.73 | −24.93 | −25.76 | −26.60 |
300 | 10.46 | 25.66 | −7.64 | −7.89 | −8.15 |
400 | 10.01 | 22.55 | −6.71 | −6.94 | −7.16 |
Adsorbents | Adsorption Capacities (mg/g) | References |
---|---|---|
Pb2+ | ||
MT-WAO | 82.67 | This work |
Sago waste | 109.7 | [34] |
Aminated polyacrylonitrile fibers | 76.1 | [35] |
Lignocellulosic biomaterial | 62.1 | [36] |
Activated carbon | 30.4 | [37] |
Guanyl-modified cellulose | 52.0 | [38] |
Weak acidic cation resin | 58.1 | [39] |
Pigeon peas hulls | 20.8 | [40] |
Chars from Prosopis Africana | 45.3 | [41] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Liu, Y.; Zheng, C.; Jiang, Y.; Liao, Y.; Huang, J.; Fujita, T.; Wei, Y.; Ma, S. Utilization of Waste Amine-Oxime (WAO) Resin to Generate Carbon by Microwave and Its Removal of Pb(II) in Water. Toxics 2022, 10, 489. https://doi.org/10.3390/toxics10090489
He C, Liu Y, Zheng C, Jiang Y, Liao Y, Huang J, Fujita T, Wei Y, Ma S. Utilization of Waste Amine-Oxime (WAO) Resin to Generate Carbon by Microwave and Its Removal of Pb(II) in Water. Toxics. 2022; 10(9):489. https://doi.org/10.3390/toxics10090489
Chicago/Turabian StyleHe, Chunlin, Yun Liu, Chunhui Zheng, Yanming Jiang, Yan Liao, Jiaxin Huang, Toyohisa Fujita, Yuezhou Wei, and Shaojian Ma. 2022. "Utilization of Waste Amine-Oxime (WAO) Resin to Generate Carbon by Microwave and Its Removal of Pb(II) in Water" Toxics 10, no. 9: 489. https://doi.org/10.3390/toxics10090489
APA StyleHe, C., Liu, Y., Zheng, C., Jiang, Y., Liao, Y., Huang, J., Fujita, T., Wei, Y., & Ma, S. (2022). Utilization of Waste Amine-Oxime (WAO) Resin to Generate Carbon by Microwave and Its Removal of Pb(II) in Water. Toxics, 10(9), 489. https://doi.org/10.3390/toxics10090489