Performance and Mechanism of As(III/V) Removal from Aqueous Solution by Fe3O4-Sunflower Straw Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sunflower Straw Pretreatment
2.3. Synthesis of Fe3O4@SFBC Magnetic Nanoparticles
2.4. Characterization
2.5. Adsorption Experiments
2.6. Desorption and Regeneration Texts
3. Results
3.1. XRD and FTIR Spectroscopy Analysis
3.2. Arsenic Removal Experiments
3.2.1. Effect of pH of the Solution
3.2.2. Adsorption Kinetics
3.2.3. Adsorption Isotherm
Fe-Biochar-Based Sorbents | Object | Maximum Adsorption Capacity (mg/g) | Reference |
---|---|---|---|
Fe3O4@SFBC | As(III) | 121.374 | This study |
As(V) | 188.753 | ||
Fe3O4@CSAC | As(III) | 80.99 | [46] |
As(V) | 107.96 | ||
Iron-modified activated carbon | As(V) | 43.6 | [47] |
Iron(III) loaded orange waste | As(V) | 68.6 | [48] |
Bioinspired 2D-carbon flakes-Fe3O4 | As(III) | 57.47 | [49] |
Fe-Zr-BC | As(III) | 107.57 | [50] |
As(V) | 40.79 | ||
magneticgelatin-modified biochar | As(V) | 42.7 | [51] |
3.3. Discussion of Morphology and Adsorption Mechanism
3.3.1. Morphology
3.3.2. Magnetic Properties
3.3.3. Adsorption Mechanism
3.3.4. Regeneration and Reusability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, S.; Parihar, P.; Singh, V.P.; Prasad, S.M. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 2015, 112, 247–270. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Petersen, M.R. Detecting Arsenic Contamination Using Satellite Imagery and Machine Learning. Toxics 2021, 9, 333. [Google Scholar] [CrossRef] [PubMed]
- Nordstrom, D.K. Worldwide occurrences of arsenic in ground water. Science 2002, 296, 2143–2145. [Google Scholar] [CrossRef]
- Bissen, M.; Frimmel, F.H. Arsenic—A review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydroch. Hydrob. 2003, 31, 9–18. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011; ISBN 978-92-4-154815-1.
- He, Y.; Liu, J.; Han, G.; Chung, T.S. Novel thin-film composite nanofiltration membranes consisting of a zwitterionic co-polymer for selenium and arsenic removal. J. Membr. Sci. 2018, 555, 299–306. [Google Scholar] [CrossRef]
- Yadanaparthi, S.K.R.; Graybill, D.; von Wandruszka, R. Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. J. Hazard. Mater. 2009, 171, 1–15. [Google Scholar] [CrossRef]
- Alvarado, S.; Guédez, M.; Lué-Merú, M.P.; Nelson, G.; Alvaro, A.; Jesús, A.C.; Gyula, Z. Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth and Lesser Duckweed. Bioresour. Technol. 2008, 99, 8436–8440. [Google Scholar] [CrossRef]
- Gecol, H.; Ergican, E.; Fuchs, A. Molecular level separation of arsenic (V) from water using cationic surfactant micelles and ultrafiltration membrane. J. Membr. Sci. 2004, 241, 105–119. [Google Scholar] [CrossRef]
- Arcibar-Orozco, J.A.; Josue, D.B.; Rios-Hurtado, J.C.; Rangel-Mendez, J.R. Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons. Chem. Eng. J. 2014, 249, 201–209. [Google Scholar] [CrossRef]
- Matusik, J. Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chem. Eng. J. 2014, 246, 244–253. [Google Scholar] [CrossRef]
- Faria, M.C.; Rosemberg, R.S.; Bomfeti, C.A.; Monteiro, D.S.; Barbosa, F.; Oliveira, L.C.; Rodriguez, M.; Pereira, M.C.; Rodrigues, J.L. Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents. Chem. Eng. J. 2014, 237, 47–54. [Google Scholar] [CrossRef]
- Fox, D.I.; Pichler, T.; Yeh, D.H.; Alcantar, N.A. Removing heavy metals in water: The interaction of cactus mucilage and arsenate (As (V)). Environ. Sci. Technol. 2012, 46, 4553–4559. [Google Scholar] [CrossRef] [PubMed]
- Arora, R. Nano adsorbents for removing the arsenic from waste/ground water for energy and environment management—A review. Mater. Today Proc. 2021, 45, 4437–4440. [Google Scholar] [CrossRef]
- Lata, S.; Samadder, S.R. Removal of arsenic from water using nano adsorbents and challenges: A review. J. Environ. Manag. 2016, 166, 387–406. [Google Scholar] [CrossRef] [PubMed]
- Awual, M.R.; Hasan, M.M.; Asiri, A.M.; Rahman, M.M. Cleaning the arsenic(V) contaminated water for safe-guarding the public health using novel composite material. Compos. Part B 2019, 171, 294–301. [Google Scholar] [CrossRef]
- Shahat, A.; Hassan, H.M.; Azzazy, H.M.; Hosni, M.; Awual, M.R. Novel nano-conjugate materials for effective arsenic(V) and phosphate capturing in aqueous media. Chem. Eng. J. 2018, 331, 54–63. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, L.; Wang, H.; Yang, W.; Fu, Y.; Zhou, W.; Yu, W.; Xiang, K.; Su, Z.; Dai, S.; et al. Controllable synthesis of hierarchical porous Fe3O4 particles mediated by poly and their application in arsenic removal. ACS Appl. Mater. Interfaces 2013, 5, 12449–12459. [Google Scholar] [CrossRef]
- Zhan, H.; Bian, Y.; Yuan, Q.; Ren, B.; Hursthouse, A.; Zhu, G. Preparation and potential applications of super paramagnetic nano-Fe3O4. Processes 2018, 6, 33. [Google Scholar] [CrossRef]
- Maity, D.; Agrawal, D.C. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J. Magn. Magn. Mater. 2007, 308, 46–55. [Google Scholar] [CrossRef]
- Wang, C.; Chen, S.; Ye, C.; Wang, X. Research progress on monodisperse Fe3O4 magnetic nanoparticles. Chem. Ind. Eng. Pro. 2016, 35, 242–247. [Google Scholar]
- Chen, X.; Chen, G.; Chen, L.; Chen, Y.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wang, J.J.; Gaston, L.A.; Zhou, B.; Li, M.; Xiao, R.; Wang, Q.; Zhang, Z.; Huang, H.; Liang, W.; et al. An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon 2018, 129, 674–687. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, K.; Jiao, Z.; Zhan, W.; Ge, S.; Ning, S.; Ning, S.; Fang, S.; Ruan, X. Simultaneous Removal of Cu(Ⅱ), Cd(Ⅱ) and Pb(Ⅱ) by Modified Wheat Straw Biochar from Aqueous Solution: Preparation, Characterization and Adsorption Mechanism. Toxics 2022, 10, 316. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Wang, J.; Yu, S.; Chen, Z.; Hayat, T.; Wang, X. Magnetic porous carbonaceous material produced from tea waste for efficient removal of As (V), Cr (Ⅵ), humic acid, and dyes. ACS Sustain. Chem. Eng. 2017, 5, 4371–4380. [Google Scholar] [CrossRef]
- Wang, S.; Gao, B.; Li, Y.; Creamer, A.E.; He, F. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests. J. Hazard. Mater. 2017, 322, 172–181. [Google Scholar] [CrossRef]
- Koomson, B.; Asiam, E.K. Arsenic adsorption by some iron oxide minerals: Influence of interfacial chemistry. J. Gha. Min. 2020, 20, 43–48. [Google Scholar] [CrossRef]
- Lima, M.J.; Sampaio, M.J.; Silva, C.G.; Silva, A.M.; Faria, J.L. Magnetically recoverable Fe3O4/g-C3N4 composite for photocatalytic production of benzaldehyde under UV-led radiation. Catal. Today 2019, 328, 293–299. [Google Scholar] [CrossRef]
- He, J.; He, C.; Guo, H.; Ming, L. Adsorption of methylene blue by five straw biochars and its performance comparison. J. Nanjing Agric. Univ. 2019, 42, 382–388. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Saad, S.R.; El-Ghanam, A.M.; Mohamed, R.H.A. Developed magnetic Fe3O4–MoO3-AC nanocomposite for effective removal of ciprofloxacin from water. Mater. Chem. Phys. 2021, 257, 123454. [Google Scholar] [CrossRef]
- Malkoc, E.; Nuhoglu, Y. Fixed bed studies for the sorption of chromium(Ⅵ) onto tea factory waste. Chem. Eng. Sci. 2006, 61, 4363–4372. [Google Scholar] [CrossRef]
- Marriam, I.; Xu, F.; Tebyetekerwa, M.; Gao, Y.; Liu, W.; Liu, X.; Qiu, Y. Synergistic effect of CNT films impregnated with CNT modified epoxy solution towards boosted interfacial bonding and functional properties of the composites. Compos. Part A Appl. S. 2018, 110, 1–10. [Google Scholar] [CrossRef]
- Lin-Vien, D.; Colthup, N.B.; Fateley, W.G.; Grasselli, J.G. The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Baidya, K.S.; Kumar, U. Adsorption of brilliant green dye from aqueous solution onto chemically modified areca nut husk. S. Afr. J. Chem. Eng. 2021, 35, 33–43. [Google Scholar] [CrossRef]
- Chandra, V.; Park, J.; Chun, Y.; Lee, J.W.; Hwang, I.C.; Kim, K.S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 2010, 4, 3979–3986. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Ye, P.; Wang, J.; Fu, F.; Wu, Z. Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal. J. Hazard. Mater. 2015, 298, 28–35. [Google Scholar] [CrossRef]
- Zhu, H.; Jia, Y.; Wu, X.; Wang, H. Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 2009, 172, 1591–1596. [Google Scholar] [CrossRef]
- Cui, H.; Li, Q.; Gao, S.; Shang, J.K. Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J. Ind. Eng. Chem. 2012, 18, 1418–1427. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X. Critical review in adsorption kinetic models. J. Zhejing Univ. Sci. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Li, Y.; Kang, X.; Qiao, Y.; Chen, M. Preparation of clay biochar from spent bleaching earth and durian shell and its adsorption for Cr(Ⅵ). Fine. Chem. 2022, 39, 178–186. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon. Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Zhu, L. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ. Sci. Technol. 2014, 48, 3411–3419. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Li, J.H.; Lv, G.H.; Bai, W.B.; Liu, Q.; Zhang, Y.C.; Song, J.Q. Modification and use of biochar from wheat straw for nitrate and phosphate removal from water. Desalin. Water Treat. 2016, 57, 4681–4693. [Google Scholar] [CrossRef]
- Qian, K.; Kumar, A.; Zhang, H.; Bellmer, D.; Huhnke, R. Recent advances in utilization of biochar. Renew. Sustain. Energy Rev. 2015, 42, 1055–1064. [Google Scholar] [CrossRef]
- Sahu, U.K.; Sahu, S.; Mahapatra, S.S.; Patel, R.K. Cigarette soot activated carbon modified with Fe3O4 nanoparticles as an effective adsorbent for As(III) and As(V): Material preparation, characterization and adsorption mechanism study. J. Mol. Liq. 2017, 243, 395–405. [Google Scholar] [CrossRef]
- Chen, W.; Parette, R.; Zou, J.; Cannon, F.S.; Dempsey, B.A. Arsenic removal by iron-modified activated carbon. Water Res. 2007, 41, 1851–1858. [Google Scholar] [CrossRef] [PubMed]
- Ghimire, K.N.; Inoue, K.; Yamaguchi, H.; Makino, K.; Miyajima, T. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res. 2003, 37, 4945–4953. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Lee, D.; Yoon, M. Bioinspired 2D-carbon flakes and Fe3O4 nanoparticles composite for arsenite removal. ACS Appl. Mater. Interfaces 2016, 8, 23876–23885. [Google Scholar] [CrossRef]
- Peng, Y.; Azeem, M.; Li, R.; Xing, L.; Li, Y.; Zhang, Y.; Guo, Z.; Wang, Q.; Ngo, H.H.; Qu, G.; et al. Zirconium hydroxide nanoparticle encapsulated magnetic biochar composite derived from rice residue: Application for As (III) and As (V) polluted water purification. J. Hazard. Mater. 2022, 423, 127081. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, Y.G.; Liu, S.B.; Liu, H.Y.; Zeng, G.M.; Tan, X.F.; Yang, C.P.; Ding, Y.; Yan, Z.L.; Cai, X.X. Sorption performance and mechanisms of arsenic (V) removal by magnetic gelatin-modified biochar. Chem. Eng. J. 2017, 314, 223–231. [Google Scholar] [CrossRef]
- Hu, X.; Ding, Z.; Zimmerman, A.R.; Wang, S.; Gao, B. Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 2015, 68, 206–216. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, Q.; Li, H.; Wang, J.; Tai, G.; Wang, F.; Han, J.; Zhu, Y.; Wu, G. Waste-to-Resource Strategy to Fabricate Functionalized MOFs Composite Material Based on Durian Shell Biomass Carbon Fiber and Fe3O4 for Highly Efficient and Recyclable Dye Adsorption. Int. J. Mol. Sci. 2022, 23, 5900. [Google Scholar] [CrossRef] [PubMed]
- Alchouron, J.; Navarathna, C.; Chludil, H.D.; Dewage, N.B.; Perez, F.; Hassand, E.B.; Pittman Jr, C.U.; Vegaae, A.S.; Mlsna, T.E. Assessing South American Guadua chacoensis bamboo biochar and Fe3O4 nanoparticle dispersed analogues for aqueous arsenic (V) remediation. Sci. Total Environ. 2020, 706, 135943. [Google Scholar] [CrossRef]
- Yi, Y.; Tu, G.; Zhao, D.; Tsang, P.E.; Fang, Z. Key role of FeO in the reduction of Cr(Ⅵ) by magnetic biochar synthesised using steel pickling waste liquor and sugarcane bagasse. J. Clean. Prod. 2020, 245, 118886. [Google Scholar] [CrossRef]
- Baig, S.A.; Zhu, J.; Muhammad, N.; Sheng, T.; Xu, X. Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions. Biomass Bioenergy 2014, 71, 299–310. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Zhou, X.; Ren, J.; Zhong, C. Removal of mercury ions from aqueous solution by thiourea-functionalized magnetic biosorbent: Preparation and mechanism study. J. Colloid Interface Sci. 2017, 507, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Balint, R.; Bartoli, M.; Jagdale, P.; Tagliaferro, A.; Memon, A.S.; Rovere, M.; Martin, M. Defective bismuth oxide as effective adsorbent for arsenic removal from water and wastewater. Toxics 2021, 9, 158. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Huang, D.; Liu, X.; Meng, J.; Tang, C.; Xu, J. Remediation of As(III) and Cd(Ⅱ) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. J. Hazard. Mater. 2018, 348, 10–19. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, F.; Tong, M.; Hou, Y. Removal of arsenate by cetyltrimethylammonium bromide modified magnetic nanoparticles. J. Hazard. Mater. 2012, 227, 461–468. [Google Scholar] [CrossRef]
Object | First-Order Equation | Second-Order Equation | Conditions | |||||
---|---|---|---|---|---|---|---|---|
K1/min−1 | qe/(mg/g) | R2 | K2/(g/(mg·min)) | qe/(mg/g) | R2 | |||
Fe3O4@SFBC 350 | As(III) | 1.233 | 4.060 | 0.559 | 1.027 | 4.113 | 0.889 | SFBC/Fe mass ratio 1:5 |
Fe3O4@SFBC 450 | As(III) | 1.080 | 4.189 | 0.684 | 0.768 | 4.254 | 0.951 | |
Fe3O4@SFBC 550 | As(III) | 1.422 | 4.138 | 0.435 | 1.432 | 4.178 | 0.777 | |
Fe3O4@SFBC 650 | As(III) | 1.254 | 4.161 | 0.496 | 1.025 | 4.215 | 0.828 | |
Fe3O4@SFBC 350 | As(V) | 1.051 | 4.228 | 0.371 | 0.584 | 4.323 | 0.727 | |
Fe3O4@SFBC 450 | As(V) | 1.148 | 4.896 | 0.609 | 0.741 | 4.966 | 0.898 | |
Fe3O4@SFBC 550 | As(V) | 1.391 | 4.884 | 0.613 | 1.245 | 4.927 | 0.901 | |
Fe3O4@SFBC 650 | As(V) | 1.136 | 4.822 | 0.578 | 0.706 | 4.898 | 0.887 | |
Fe3O4@SFBC 1:2 | As(III) | 1.851 | 3.772 | 0.280 | 3.427 | 3.791 | 0.603 | calcination temperature of the SFBC is 450 °C |
Fe3O4@SFBC 1:3 | As(III) | 1.323 | 3.763 | 0.447 | 0.979 | 3.821 | 0.808 | |
Fe3O4@SFBC 1:4 | As(III) | 1.323 | 3.998 | 0.575 | 1.265 | 4.042 | 0.906 | |
Fe3O4@SFBC 1:5 | As(III) | 1.080 | 4.189 | 0.684 | 0.768 | 4.254 | 0.951 | |
Fe3O4@SFBC 1:6 | As(III) | 1.301 | 3.896 | 0.414 | 1.141 | 3.946 | 0.750 | |
Fe3O4@SFBC 1:2 | As(V) | 1.319 | 4.627 | 0.450 | 1.006 | 4.684 | 0.819 | |
Fe3O4@SFBC 1:3 | As(V) | 1.380 | 4.710 | 0.493 | 1.201 | 4.756 | 0.779 | |
Fe3O4@SFBC 1:4 | As(V) | 1.670 | 4.879 | 0.447 | 1.986 | 4.909 | 0.820 | |
Fe3O4@SFBC 1:5 | As(V) | 1.148 | 4.896 | 0.609 | 0.741 | 4.966 | 0.898 | |
Fe3O4@SFBC 1:6 | As(V) | 1.644 | 4.824 | 0.386 | 1.844 | 4.857 | 0.746 |
Object | Langmuir | Freundlich | Conditions | |||||
---|---|---|---|---|---|---|---|---|
qm/(mg/g) | KL/(L/mg) | R2 | 1/n | KF/(m/mg)(L/mg)1/n | R2 | |||
Fe3O4@SFBC 350 | As(III) | 86.565 | 0.00970 | 0.994 | 0.966 | 0.834 | 0.993 | SFBC/Fe mass ratio 1:5 |
Fe3O4@SFBC 450 | As(III) | 121.374 | 0.00759 | 0.999 | 0.960 | 0.944 | 0.999 | |
Fe3O4@SFBC 550 | As(III) | 109.061 | 0.00847 | 0.999 | 0.961 | 0.937 | 0.998 | |
Fe3O4@SFBC 650 | As(III) | 107.977 | 0.00855 | 0.999 | 0.960 | 0.935 | 0.998 | |
Fe3O4@SFBC 350 | As(V) | 138.059 | 0.00680 | 0.999 | 0.974 | 0.938 | 0.999 | |
Fe3O4@SFBC 450 | As(V) | 188.753 | 0.00542 | 0.999 | 0.971 | 1.041 | 0.999 | |
Fe3O4@SFBC 550 | As(V) | 172.638 | 0.00571 | 0.999 | 0.974 | 0.994 | 0.999 | |
Fe3O4@SFBC 650 | As(V) | 166.117 | 0.00592 | 0.999 | 0.973 | 0.992 | 0.999 | |
Fe3O4@SFBC 1:2 | As(III) | 101.761 | 0.00840 | 0.999 | 0.956 | 0.878 | 0.999 | calcination temperature of the SFBC is 450 °C |
Fe3O4@SFBC 1:3 | As(III) | 105.290 | 0.00826 | 0.999 | 0.957 | 0.892 | 0.999 | |
Fe3O4@SFBC 1:4 | As(III) | 109.382 | 0.00819 | 0.998 | 0.957 | 0.919 | 0.999 | |
Fe3O4@SFBC 1:5 | As(III) | 121.374 | 0.00759 | 0.999 | 0.960 | 0.944 | 0.999 | |
Fe3O4@SFBC 1:6 | As(III) | 116.837 | 0.00731 | 0.999 | 0.961 | 0.874 | 0.999 | |
Fe3O4@SFBC 1:2 | As(V) | 170.653 | 0.00582 | 0.999 | 0.969 | 1.012 | 0.999 | |
Fe3O4@SFBC 1:3 | As(V) | 171.149 | 0.00584 | 0.999 | 0.969 | 1.019 | 0.999 | |
Fe3O4@SFBC 1:4 | As(V) | 181.723 | 0.00561 | 0.999 | 0.970 | 1.039 | 0.999 | |
Fe3O4@SFBC 1:5 | As(V) | 188.753 | 0.00542 | 0.999 | 0.971 | 1.041 | 0.999 | |
Fe3O4@SFBC 1:6 | As(V) | 176.037 | 0.00571 | 0.999 | 0.969 | 1.024 | 0.999 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Shi, H.; Tang, X.; Kuang, D.; Zhou, J.; Yang, F. Performance and Mechanism of As(III/V) Removal from Aqueous Solution by Fe3O4-Sunflower Straw Biochar. Toxics 2022, 10, 534. https://doi.org/10.3390/toxics10090534
Zhao Y, Shi H, Tang X, Kuang D, Zhou J, Yang F. Performance and Mechanism of As(III/V) Removal from Aqueous Solution by Fe3O4-Sunflower Straw Biochar. Toxics. 2022; 10(9):534. https://doi.org/10.3390/toxics10090534
Chicago/Turabian StyleZhao, Yuling, Hao Shi, Xin Tang, Daihong Kuang, Jinlong Zhou, and Fangyuan Yang. 2022. "Performance and Mechanism of As(III/V) Removal from Aqueous Solution by Fe3O4-Sunflower Straw Biochar" Toxics 10, no. 9: 534. https://doi.org/10.3390/toxics10090534
APA StyleZhao, Y., Shi, H., Tang, X., Kuang, D., Zhou, J., & Yang, F. (2022). Performance and Mechanism of As(III/V) Removal from Aqueous Solution by Fe3O4-Sunflower Straw Biochar. Toxics, 10(9), 534. https://doi.org/10.3390/toxics10090534