Uranium Concentrations in Private Wells of Potable Groundwater, Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Geology of the Study Area
2.2. Field Measurements and Chemical Analyses
2.3. Correlation Analyses through PCA
3. Results
3.1. Hydrochemical Properties of Groundwater
3.1.1. The Results of Field Measurements
3.1.2. The Concentrations of Major and Minor Constituents
3.1.3. Hydrochemical Facies of Groundwater
3.2. Uranium Distribution According to Geology
3.3. U enrichment Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sasaki, T.; Koukami, T.; Kobayashi, T.; Kirishima, A.; Murakami, H.; Amano, Y.; Mizuno, T.; Iwatsuki, T.; Sasamoto, H.; Miyakawa, K. Determination of dissolved natural thorium and uranium in Horonobe and Mizunami Underground Research Laboratory groundwater and its thermodynamic analysis. J. Nucl. Sci. Technol. 2016, 54, 373–381. [Google Scholar] [CrossRef]
- Riedel, T.; Kübeck, C. Uranium in groundwater-A synopsis based on a large hydrogeochemical data set. Water Res. 2018, 129, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Bjørklund, G.; Christophersen, O.A.; Chirumbolo, S.; Selinus, O.; Aaseth, J. Recent aspects of uranium toxicology in medical geology. Environ. Res. 2017, 156, 526–533. [Google Scholar] [CrossRef]
- US EPA. National Primary Drinking Water Regulation; US EPA: Washington, DC, USA, 2009. [Google Scholar]
- WHO. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017; pp. 1–564. [Google Scholar]
- Vengosh, A.; Coyte, R.M.; Podgorski, J.; Johnson, T.M. A critical review on the occurrence and distribution of the uranium and thorium-decay nuclides and their effect on the quality of groundwater. Sci. Total Environ. 2022, 808, 151914. [Google Scholar] [CrossRef] [PubMed]
- Coyte, R.M.; Jain, R.C.; Srivastava, S.K.; Sharma, K.C.; Khalil, A.; Ma, L.; Vengosh, A. Large-scale uranium contamination of groundwater resources in India. Environ. Sci. Technol. Lett. 2018, 5, 341–347. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, Y.; Xie, X. Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China. Sci. Total Environ. 2014, 472, 809–817. [Google Scholar] [CrossRef]
- Cho, B.W.; Sung, I.H.; Cho, S.Y.; Park, S.K. A preliminary investigation of radon concentrations in groundwater of South Korea. J. Soil Groundwater Environ. 2007, 15, 98–104. [Google Scholar]
- Cho, B.W.; Choo, C.O.; Kim, M.S.; Lee, Y.J.; Yun, U.; Lee, B.D. Uranium and radon concentrations in groundwater near the Icheon granite. J. Eng. Geo. 2011, 21, 259–269. [Google Scholar] [CrossRef]
- NIER. Studies on the Naturally Occurring Radionuclides in Groundwater of Korea (I); KIGAM: Daejeon, Korea, 2008; pp. 1–293. [Google Scholar]
- Jeong, C.H.; Kim, M.S.; Lee, Y.J.; Han, J.S.; Jang, H.G.; Cho, B.W. Hydrochemistry and occurrence of natural radioactive materials within borehole groundwater in the Cheongwon Area. J. Eng. Geo. 2011, 21, 163–178. [Google Scholar] [CrossRef]
- Shin, W.; Oh, J.; Choung, S.; Cho, B.; Lee, K.; Yun, U.; Woo, N.; Kim, H.K. Distribution and potential health risk of groundwater uranium in Korea. Chemosphere 2016, 163, 108–115. [Google Scholar] [CrossRef]
- Lapworth, D.; Krishan, G.; MacDonald, A.; Rao, M. Groundwater quality in the alluvial aquifer system of northwest India: New evidence of the extent of anthropogenic and geogenic contamination. Sci. Total Environ. 2017, 599, 1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McArthur, J.; Sikdar, P.; Leng, M.; Ghosal, U.; Sen, I. Groundwater quality beneath an Asian megacity on a delta: Kolkata’s (Calcutta’s) disappearing arsenic and present manganese. Environ. Sci. Technol. 2018, 52, 5161–5172. [Google Scholar] [CrossRef] [PubMed]
- NIER. Study on the Radionuclide Concentrations in the Groundwater (IV); KIGAM: Daejeon, Korea, 2002; pp. 1–357. [Google Scholar]
- NIER. Study on Naturally Occurring Radioactive Materials (N.O.R.M.) in Groundwater in South Korea (2018); KIGAM: Daejeon, Korea, 2018; pp. 1–35. [Google Scholar]
- APHA (American Public Health Association); AWWA (American Water Works Association); WEF (Water Environment Federation). Method 2320 Alkalinity. In Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 2018. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. Royal Soc. A 2016, 114, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Meenu, M.; Verma, V.K.; Seth, A.; Sahoo, R.K.; Gupta, P.; Arya, D.S. Association of Monoamine Oxidase A with Tumor Burden and Castration Resistance in Prostate Cancer. Curr. Ther. Res. 2022, 93, 100610. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Lee, J.; Lee, S.; Lee, S.; Jeon, J.; Lee, S.; Kim, S. Revitalization of Total Petroleum Hydrocarbon Contaminated Soil Remediated by Landfarming. Toxics 2022, 10, 147. [Google Scholar] [CrossRef]
- Nandakumaran, P.; Balakrishnan, K. Groundwater quality variations in Precambrian hard rock aquifers: A case study from Kerala, India. Appl. Water Sci. 2020, 10, 2. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, D.; Zhou, P.; Qu, S.; Liao, F.; Wang, G. Hydrochemical characteristics of groundwater and dominant water–rock interactions in the Delingha Area, Qaidam Basin, Northwest China. Water 2020, 12, 836. [Google Scholar] [CrossRef]
- Lee, B.D.; Oh, Y.H.; Cho, B.W.; Yun, U.; Choo, C.O. Hydrochemical Properties of Groundwater used for Korea Bottled Waters in Relation to Geology. Water 2019, 11, 1043. [Google Scholar] [CrossRef]
- Chou, L.; Wollast, R. Steady-state kinetics and dissolution mechanisms of albite. Am. J. Sci. 1985, 285, 963–993. [Google Scholar] [CrossRef]
- Muir, I.J.; Bancroft, G.M.; Shotyk, W.; Nesbitt, H.W. A SIMS and XPS study of dissolving plagioclase. Geochim. Cosmochim. Acta 1990, 54, 2247–2256. [Google Scholar] [CrossRef]
- Yu, G.; Wang, J.; Liu, L.; Li, Y.; Zhang, Y.; Wang, S. The analysis of groundwater nitrate pollution and health risk assessment in rural areas of Yantai, China. BMC Public Health 2020, 20, 437. [Google Scholar] [CrossRef] [PubMed]
- Mercado, A. The Use of Hydrogeochemical Patterns in Carbonate, Sand and Sandstone Aquifers to Identify Intrusion and Flushing of Saline Water. Groundwater 1985, 23, 635–645. [Google Scholar] [CrossRef]
- Demetriades, A.; Reimann, C.; Birke, M. The geological atlas of European ground water with emphasis on Hellas. Bull. Geol. Soc. Greece 2012, 46, 39–80. [Google Scholar] [CrossRef]
- Hwang, J.; Moon, S.H.; Ripley, E.M.; Kim, Y.H. Determining uraniferous host rocks and minerals as a source of dissolved uranium in granite aquifers near the central Ogcheon metamorphic belt, Korea. Environ. Earth Sci. 2014, 72, 4035–4046. [Google Scholar] [CrossRef]
- Burow, K.R.; Nolan, B.T.; Rupert, M.G.; Dubrovsky, N.M. Nitrate in Groundwater of the United States, 1991–2003. Environ. Sci. Technol. 2010, 44, 4988–4997. [Google Scholar] [CrossRef]
- Cao, B.W.; Choo, C.O. Geochemical behavior of uranium and radon in groundwater of Jurassic Granite Area, Icheon, Middle Korea. Water 2019, 11, 1278. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Jha, V.N.; Patra, A.C.; Jha, S.K.; Kulkarni, M.S. Scientific background and methodology adopted on derivation of regulatory limit for uranium in drinking water-A global perspective. Environ. Adv. 2020, 2, 100020. [Google Scholar] [CrossRef]
- Hwang, J. Geological Review on the Distribution and Source of Uraniferous Groundwater in South Korea. J. Eng. Geo. 2018, 28, 593–603. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Kim, S.; Jeong, D.; Kim, M.; Kim, H.; Jeong, J.O. The Origin of Radioactive Elements Found in Groundwater Within the Chiaksan Gneiss Complex: Focusing on the Relationship with Minerals of the Surrounding Geology. Korean J. Mineral. Petrol. 2022, 35, 153–168. [Google Scholar] [CrossRef]
Geology | Depth (m) | Temperature (°C) | pH | Eh (mV) | EC (µS/cm) | DO (mg/L) | |
---|---|---|---|---|---|---|---|
Total (N = 7036) | Minimum | 3.0 | 6.7 | 4.5 | −300 | 5.2 | 0.0 |
Maximum | 326 | 20.9 | 9.4 | 790 | 6319 | 9.0 | |
Average | 69.4 | 16.3 | 6.8 | 220 | 255 | 5.1 | |
Median | 70.0 | 16.1 | 6.7 | 203 | 216 | 5.5 | |
Standard deviation | 42.5 | 1.9 | 0.7 | 113 | 176 | 2.4 | |
Precambrian metamorphic rock (PCm) (N = 1865) | Minimum | 8.0 | 7.1 | 4.9 | −241 | 6.3 | 0.0 |
Maximum | 300 | 20.9 | 9.4 | 767 | 6319 | 9.0 | |
Average | 71.4 | 16.1 | 6.9 | 220 | 232 | 4.9 | |
Median | 70.0 | 16.0 | 6.8 | 202 | 190 | 5.4 | |
Standard deviation | 42.1 | 1.9 | 0.7 | 119 | 203 | 2.5 | |
Precambrian sedimentary rock (PCs) (N = 53) | Minimum | 10.0 | 13.4 | 5.9 | 125 | 78.0 | 0.2 |
Maximum | 150 | 19.2 | 8.3 | 595 | 3477 | 8.9 | |
Average | 66.1 | 16.2 | 6.9 | 317 | 344 | 3.4 | |
Median | 60.0 | 15.9 | 7.0 | 318 | 250 | 3.0 | |
Standard deviation | 33.2 | 1.3 | 0.6 | 104 | 468 | 2.7 | |
Paleozoic sedimentary rock (Ps) (N = 99) | Minimum | 10.0 | 10.7 | 5.0 | −27.6 | 33.8 | 0.2 |
Maximum | 200 | 20.5 | 8.5 | 680 | 708 | 9.0 | |
Average | 89.0 | 15.0 | 7.4 | 215 | 351 | 5.6 | |
Median | 100 | 14.6 | 7.6 | 227 | 360 | 6.4 | |
Standard deviation | 32.8 | 2.1 | 0.6 | 115 | 144 | 2.4 | |
Mesozoic igneous rock (Mi) (N = 386) | Minimum | 6.0 | 12.0 | 5.6 | −110 | 6.8 | 0.1 |
Maximum | 300 | 20.9 | 9.4 | 724 | 1042 | 8.8 | |
Average | 83.8 | 17.0 | 7.0 | 261 | 214 | 5.1 | |
Median | 80.0 | 17.1 | 6.9 | 244 | 190 | 5.4 | |
Standard deviation | 41.8 | 1.8 | 0.6 | 128 | 121 | 2.1 | |
Mesozoic sedimentary rock (Ms) (N = 391) | Minimum | 12.0 | 11.4 | 5.5 | −150 | 40.0 | 0.0 |
Maximum | 300 | 20.8 | 9.4 | 677 | 1780 | 8.7 | |
Average | 83.7 | 17.4 | 7.3 | 250 | 287 | 4.6 | |
Median | 80.0 | 17.3 | 7.3 | 251 | 260 | 5.2 | |
Standard deviation | 40.3 | 1.7 | 0.5 | 139 | 173 | 2.2 | |
Jurassic granite (Jgr) (N = 3136) | Minimum | 5.0 | 6.7 | 4.5 | −300 | 5.2 | 0.1 |
Maximum | 320 | 20.9 | 9.0 | 790 | 1932 | 9.0 | |
Average | 63.6 | 16.0 | 6.5 | 217 | 263 | 5.5 | |
Median | 60.0 | 15.9 | 6.4 | 201 | 223 | 5.9 | |
Standard deviation | 41.3 | 1.8 | 0.6 | 97.3 | 163 | 2.3 | |
Cretaceous granite (Kgr) (N = 223) | Minimum | 10.0 | 10.5 | 5.5 | −50.0 | 26.2 | 0.1 |
Maximum | 326 | 20.9 | 9.1 | 642 | 638 | 8.8 | |
Average | 86.9 | 17.1 | 7.1 | 222 | 204 | 5.2 | |
Median | 90.0 | 17.2 | 7.1 | 199 | 173 | 5.5 | |
Standard deviation | 49.0 | 2.2 | 0.7 | 119 | 117 | 2.0 | |
Cenozoic igneous rock (Ci) (N = 4) | Minimum | 100 | 14.9 | 6.2 | 174 | 50.0 | 5.0 |
Maximum | 150 | 19.3 | 7.3 | 240 | 310 | 6.4 | |
Average | 125 | 16.9 | 6.8 | 221 | 195 | 5.6 | |
Median | 125 | 16.6 | 6.8 | 236 | 210 | 5.6 | |
Standard deviation | 28.9 | 1.9 | 0.5 | 31.7 | 130 | 0.6 | |
Quaternary alluvium (Qa) (N = 654) | Minimum | 6.0 | 8.5 | 5.0 | −200 | 8.1 | 0.0 |
Maximum | 300 | 20.9 | 8.9 | 701 | 1324 | 9.0 | |
Average | 65.9 | 16.8 | 6.7 | 207 | 287 | 4.7 | |
Median | 60.0 | 16.6 | 6.6 | 195 | 253 | 5.0 | |
Standard deviation | 44.1 | 1.7 | 0.7 | 116 | 155 | 2.5 | |
Okcheon belt (Og) (N = 99) | Minimum | 10.0 | 12.9 | 5.8 | −183 | 49.5 | 0.1 |
Maximum | 200 | 20.8 | 9.2 | 640 | 639 | 9.0 | |
Average | 54.7 | 16.2 | 7.1 | 183 | 214 | 4.8 | |
Median | 33.0 | 16.0 | 7.0 | 185 | 195 | 5.4 | |
Standard deviation | 38.9 | 1.8 | 0.7 | 122 | 105 | 2.6 | |
Era unknown (etc) (N = 136) | Minimum | 3.0 | 10.5 | 5.4 | −96.9 | 34.3 | 0.1 |
Maximum | 200 | 20.7 | 8.4 | 676 | 849 | 8.9 | |
Average | 73.0 | 16.9 | 7.1 | 153 | 265 | 4.7 | |
Median | 80.0 | 16.8 | 7.1 | 118 | 224 | 4.8 | |
Standard deviation | 42.2 | 1.9 | 0.6 | 124 | 145 | 2.1 |
Geology | Si | Na | K | Mg | Ca | F | Cl | SO4 | NO3 | HCO3 | |
---|---|---|---|---|---|---|---|---|---|---|---|
(mg/L) | |||||||||||
Total (N = 7036) | Minimum | 0.7 | 0.7 | ND | ND | 2.3 | ND | ND | ND | ND | 5.5 |
Maximum | 90.4 | 230 | 26.0 | 48.1 | 249 | 10.2 | 248 | 175 | 670 | 390 | |
Average | 11.3 | 14.4 | 1.6 | 5.4 | 27.6 | 0.3 | 17.5 | 13.0 | 23.0 | 84.0 | |
Median | 11.0 | 10.9 | 1.1 | 4.1 | 22.6 | 0.0 | 9.8 | 9.2 | 13.2 | 68.6 | |
Standard deviation | 5.1 | 13.4 | 2.0 | 4.7 | 20.0 | 0.9 | 24.1 | 14.2 | 38.8 | 56.8 | |
PCm (N = 1865) | Minimum | 0.7 | 1.9 | ND | 0.5 | 4.0 | ND | 0.7 | ND | ND | 5.5 |
Maximum | 19.7 | 99.6 | 26.0 | 38.4 | 105 | 8.4 | 194 | 60.0 | 458 | 311 | |
Average | 9.9 | 13.2 | 1.6 | 5.0 | 21.4 | 0.3 | 13.2 | 11.3 | 17.0 | 75.7 | |
Median | 9.9 | 9.3 | 1.2 | 3.8 | 18.7 | 0.0 | 7.4 | 9.0 | 8.8 | 61.5 | |
Standard deviation | 3.4 | 13.9 | 2.0 | 4.3 | 14.0 | 1.0 | 17.5 | 9.2 | 31.4 | 51.6 | |
PCs (N = 53) | Minimum | 11.9 | 11.4 | 1.2 | 5.4 | 16.6 | ND | 4.0 | 6.0 | ND | 95.3 |
Maximum | 27.1 | 26.1 | 3.6 | 20.4 | 50.9 | 0.2 | 20.6 | 64.0 | 136 | 224 | |
Average | 19.5 | 15.7 | 1.7 | 11.1 | 36.4 | 0.0 | 11.3 | 23.0 | 30.3 | 134 | |
Median | 19.0 | 14.1 | 1.4 | 9.3 | 36.9 | 0.0 | 10.2 | 17.0 | 13.0 | 118 | |
Standard deviation | 5.0 | 5.3 | 0.9 | 5.5 | 11.7 | 0.1 | 6.8 | 21.3 | 52.2 | 47.8 | |
Ps (N = 99) | Minimum | 5.3 | 3.5 | 0.2 | ND | 5.3 | ND | 0.8 | 2.0 | ND | 36.3 |
Maximum | 17.4 | 50.7 | 3.8 | 17.7 | 104 | 5.5 | 174 | 34.0 | 43.2 | 237 | |
Average | 8.9 | 13.9 | 1.4 | 6.7 | 27.5 | 0.5 | 23.2 | 13.0 | 13.1 | 94.7 | |
Median | 7.9 | 8.5 | 1.0 | 4.2 | 17.9 | 0.2 | 6.0 | 9.9 | 6.5 | 78.7 | |
Standard deviation | 3.5 | 11.4 | 1.1 | 5.5 | 23.2 | 1.2 | 48.8 | 8.3 | 14.1 | 51.2 | |
Mi (N = 386) | Minimum | 1.9 | 0.7 | 0.2 | 0.8 | 3.5 | ND | 1.8 | ND | ND | 6.1 |
Maximum | 14.6 | 14.5 | 7.7 | 27.8 | 112 | 1.0 | 20.9 | 38.7 | 48.4 | 317 | |
Average | 5.3 | 3.3 | 1.4 | 9.6 | 42.4 | 0.1 | 6.5 | 16.0 | 16.0 | 154 | |
Median | 4.3 | 2.5 | 1.0 | 6.6 | 42.5 | 0.0 | 5.1 | 13.6 | 12.2 | 161 | |
Standard deviation | 3.1 | 2.8 | 1.4 | 7.5 | 23.0 | 0.2 | 4.2 | 11.4 | 14.4 | 85.1 | |
Ms (N = 391) | Minimum | 5.3 | 4.7 | ND | 0.5 | 7.7 | ND | 2.3 | 0.1 | 0.1 | 19.8 |
Maximum | 90.4 | 71.1 | 6.4 | 15.3 | 66.2 | 2.6 | 47.0 | 25.7 | 36.9 | 215 | |
Average | 15.3 | 18.3 | 1.2 | 5.2 | 30.0 | 0.3 | 16.1 | 11.6 | 11.1 | 91.8 | |
Median | 10.9 | 13.6 | 0.9 | 4.8 | 29.5 | 0.1 | 11.0 | 10.7 | 9.4 | 87.7 | |
Standard deviation | 18.7 | 15.3 | 1.2 | 3.5 | 14.0 | 0.6 | 13.2 | 6.7 | 8.4 | 44.4 | |
Jgr (N = 3136) | Minimum | 3.4 | 3.1 | ND | 2.1 | 10.0 | ND | 2.5 | 2.8 | ND | 23.8 |
Maximum | 19.9 | 74.2 | 2.4 | 34.9 | 203 | 1.6 | 85.3 | 175 | 71.7 | 378 | |
Average | 9.0 | 17.8 | 1.0 | 8.2 | 45.6 | 0.2 | 17.1 | 27.2 | 15.9 | 150 | |
Median | 9.3 | 11.7 | 0.9 | 5.0 | 34.1 | 0.0 | 9.3 | 13.5 | 8.8 | 133 | |
Standard deviation | 3.2 | 18.0 | 0.6 | 7.2 | 36.8 | 0.3 | 18.6 | 34.4 | 17.8 | 98.1 | |
Kgr (N = 223) | Minimum | 1.2 | 2.0 | ND | 0.1 | 2.3 | ND | ND | ND | ND | 9.2 |
Maximum | 24.4 | 230 | 24.1 | 48.1 | 249 | 10.2 | 248 | 159 | 670 | 390 | |
Average | 11.8 | 15.1 | 1.7 | 5.0 | 27.9 | 0.3 | 19.2 | 13.1 | 27.1 | 78.0 | |
Median | 11.8 | 11.7 | 1.1 | 3.8 | 22.9 | 0.0 | 10.9 | 9.2 | 16.5 | 64.1 | |
Standard deviation | 4.3 | 13.9 | 2.2 | 4.5 | 20.5 | 0.9 | 25.5 | 15.0 | 43.2 | 52.6 | |
Ci (N = 4) | Minimum | 4.7 | 3.5 | 0.4 | 0.5 | 4.8 | 0.0 | 1.9 | 0.0 | 0.7 | 21.7 |
Maximum | 21.2 | 36.6 | 1.6 | 27.6 | 83.2 | 2.5 | 40.2 | 47.0 | 34.2 | 366 | |
Average | 14.0 | 14.1 | 0.9 | 7.0 | 28.9 | 0.4 | 12.5 | 14.3 | 12.2 | 105.4 | |
Median | 14.1 | 12.7 | 0.8 | 5.7 | 28.3 | 0.0 | 8.0 | 7.0 | 10.4 | 81.6 | |
Standard deviation | 5.1 | 8.5 | 0.4 | 7.1 | 21.9 | 0.6 | 11.3 | 13.9 | 9.8 | 83.2 | |
Qa (N = 654) | Minimum | 1.7 | 1.6 | ND | 0.4 | 3.0 | ND | 1.9 | ND | ND | 13.7 |
Maximum | 22.0 | 57.2 | 11.3 | 15.0 | 91.9 | 9.4 | 142 | 43.0 | 520 | 216 | |
Average | 12.3 | 14.8 | 1.5 | 5.3 | 26.3 | 0.3 | 18.9 | 11.3 | 22.1 | 85.8 | |
Median | 12.2 | 12.8 | 1.1 | 5.2 | 23.4 | 0.0 | 13.1 | 9.5 | 13.4 | 78.9 | |
Standard deviation | 4.0 | 9.3 | 1.7 | 3.0 | 15.3 | 0.9 | 20.3 | 8.3 | 47.3 | 42.9 | |
Og (N = 99) | Minimum | 4.0 | 1.3 | ND | 1.4 | 4.4 | ND | 4.0 | 0.6 | ND | 14.0 |
Maximum | 12.6 | 18.9 | 5.2 | 27.6 | 83.7 | 3.4 | 86.6 | 92.6 | 29.5 | 240 | |
Average | 8.4 | 6.1 | 1.4 | 5.1 | 26.9 | 0.2 | 11.8 | 14.6 | 11.1 | 87.3 | |
Median | 8.3 | 4.8 | 1.0 | 3.7 | 23.4 | 0.0 | 6.9 | 7.5 | 9.6 | 79.5 | |
Standard deviation | 2.0 | 3.9 | 1.2 | 5.0 | 18.9 | 0.6 | 15.2 | 19.0 | 7.6 | 52.5 | |
etc (N = 136) | Minimum | 3.3 | 6.0 | 0.5 | 1.7 | 9.9 | ND | 1.6 | ND | ND | 31.1 |
Maximum | 22.8 | 63.4 | 9.5 | 42.2 | 109 | 0.9 | 221 | 47.0 | 136 | 316 | |
Average | 14.1 | 17.3 | 1.8 | 7.7 | 36.7 | 0.1 | 23.8 | 12.9 | 28.9 | 109 | |
Median | 14.2 | 14.8 | 1.2 | 6.1 | 32.3 | 0.0 | 10.2 | 10.0 | 16.9 | 98.7 | |
Standard deviation | 3.8 | 10.4 | 1.6 | 6.6 | 21.6 | 0.2 | 41.7 | 12.0 | 31.0 | 58.8 |
Geology | Number of Wells | Ca-HCO3 | Ca-Cl | Ca-NO3 | Ca-SO4 | Na-HCO3 | Na-Cl | Na-NO3 | Na-SO4 | Mg-HCO3 | K-NO3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
N | % | N | % | N | % | N | % | N | % | N | % | N | % | N | % | N | % | N | % | ||
Total | 7036 | 5231 | 74.3 | 134 | 1.9 | 494 | 7.0 | 31 | 0.4 | 900 | 12.8 | 58 | 0.8 | 175 | 2.5 | 4 | 0.1 | 7 | 0.1 | 2 | 0.1 |
PCm | 1865 | 1472 | 78.9 | 36 | 1.9 | 68 | 3.7 | 2 | 0.1 | 249 | 13.4 | 11 | 0.6 | 23 | 1.2 | 0 | 0 | 4 | 0.2 | 0 | 0 |
PCs | 53 | 34 | 64.2 | 6 | 11.3 | 5 | 9.4 | 7 | 13.2 | 1 | 1.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Ps | 99 | 90 | 90.9 | 0 | 0 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mi | 386 | 318 | 82.4 | 4 | 1 | 11 | 2.9 | 3 | 0.8 | 47 | 12.2 | 1 | 0.3 | 2 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 |
Ms | 391 | 338 | 86.5 | 2 | 0.5 | 6 | 1.5 | 10 | 2.6 | 32 | 8.2 | 1 | 0.3 | 1 | 0.3 | 1 | 0.3 | 0 | 0 | 0 | 0 |
Jgr | 3136 | 2158 | 68.8 | 71 | 2.3 | 352 | 11.2 | 4 | 0.1 | 389 | 12.4 | 32 | 1 | 124 | 3.9 | 3 | 0.1 | 1 | 0.1 | 2 | 0.1 |
Kgr | 223 | 171 | 76.7 | 0 | 0 | 9 | 4 | 1 | 0.5 | 40 | 17.9 | 1 | 0.5 | 1 | 0.5 | 0 | 0 | 0 | 0 | 0 | 0 |
Ci | 4 | 1 | 25 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 75 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Qa | 654 | 467 | 71.4 | 11 | 1.7 | 32 | 4.9 | 1 | 0.2 | 106 | 16.2 | 11 | 1.7 | 24 | 3.7 | 0 | 0 | 2 | 0.3 | 0 | 0 |
Og | 89 | 81 | 91 | 0 | 0 | 1 | 1.1 | 1 | 1.1 | 6 | 6.7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
etc | 136 | 101 | 74.3 | 4 | 2.9 | 8 | 5.9 | 0 | 0 | 23 | 16.9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Geology | Number of Wells | Number of Wells Exceeding the Uranium Standard | Excess Rate (%) | Uranium Concentration (μg/L) | ||||
---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Average | Median | Standard Deviation | ||||
Total | 7036 | 148 | 2.1 | ND | 1450 | 0.4 | 4.0 | 28.3 |
PCm | 1865 | 24 | 1.3 | ND | 909 | 0.2 | 2.8 | 25.6 |
PCs | 53 | 0 | 0.0 | ND | 8.6 | 0.2 | 0.7 | 1.6 |
Ps | 99 | 0 | 0.0 | ND | 21.5 | 0.4 | 1.0 | 2.3 |
Mi | 386 | 2 | 0.5 | ND | 283 | 0.2 | 1.8 | 14.6 |
Ms | 391 | 1 | 0.3 | ND | 60.4 | 0.2 | 1.1 | 4.0 |
Jgr | 3136 | 107 | 3.4 | ND | 1450 | 0.7 | 6.0 | 36.5 |
Kgr | 223 | 3 | 1.3 | ND | 95.9 | 0.4 | 2.3 | 7.8 |
Ci | 4 | 0 | 0.0 | ND | 6.8 | 2.7 | 3.1 | 3.5 |
Qa | 654 | 10 | 1.5 | ND | 140 | 0.4 | 2.8 | 11.9 |
Og | 89 | 1 | 1.1 | ND | 37.5 | 0.2 | 1.1 | 4.2 |
etc | 136 | 0 | 0.0 | ND | 14.6 | 0.6 | 1.3 | 2.3 |
Group | Classification | Percentile Range of Uranium Concentration (%) | Range of Uranium Concentration (µg/L) | Number of Wells (%) |
---|---|---|---|---|
- | Good quality water | - | <1.0 | 4707 (66.9%) |
A | Slightly contaminated water | 0–20 | 1.0–1.5 | 465 (6.6%) |
B | Moderately contaminated water | 20–40 | 1.5–2.3 | 444 (6.3%) |
C | Injuriously contaminated water | 40–60 | 2.3–4.2 | 482 (6.9%) |
D | Highly contaminated water | 60–80 | 4.2–9.5 | 471 (6.7%) |
E | Severely contaminated water | 80–100 | 9.5–1450 | 467 (6.4%) |
Parameter | Jurassic Granite (Jgr) | Precambrian Metamorphic Rock (PCm) | Alluvial Layer (Qa) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | A | B | C | D | E | A | B | C | D | E | |
Number of wells | 221 | 263 | 272 | 271 | 325 | 119 | 82 | 87 | 77 | 72 | 57 | 46 | 44 | 43 | 32 |
Median of uranium concentration (μg/L) | 1.2 | 1.8 | 3.2 | 6.1 | 19.7 | 1.2 | 1.8 | 3.0 | 5.6 | 19.0 | 1.1 | 1.8 | 3.1 | 5.6 | 22.9 |
Depth (m) | 70 | 80 | 85 | 100 | 100 | 80 | 80 | 100 | 100 | 100 | 80 | 75 | 100 | 100 | 100 |
Temp (°C) | 15.8 | 15.8 | 15.9 | 15.9 | 16.1 | 15.8 | 15.9 | 15.7 | 16.0 | 15.1 | 16.9 | 16.5 | 16.1 | 16.2 | 16.5 |
pH | 6.5 | 6.5 | 6.7 | 6.7 | 7.0 | 6.9 | 7.1 | 7.3 | 7.1 | 7.5 | 6.6 | 6.7 | 6.8 | 7.0 | 7.2 |
Eh (mV) | 201 | 190 | 183 | 179 | 168 | 191 | 181 | 162 | 220 | 158 | 190 | 187 | 176 | 154 | 163 |
EC (µS/cm) | 203 | 209 | 221 | 233 | 252 | 217 | 237 | 230 | 204 | 198 | 280 | 214 | 279 | 286 | 341 |
DO (mg/L) | 6.1 | 6.0 | 5.7 | 5.3 | 5.0 | 5.1 | 4.4 | 4.9 | 4.4 | 4.2 | 4.8 | 5.0 | 4.5 | 4.6 | 4.9 |
Si (mg/L) | 12.5 | 13.3 | 12.4 | 12.8 | 11.4 | 10.1 | 9.9 | 9.2 | 9.9 | 8.8 | 11.7 | 12.4 | 13.4 | 13.3 | 12.7 |
Na (mg/L) | 10.6 | 12.0 | 12.3 | 11.9 | 12.9 | 10.3 | 9.7 | 10.5 | 10.8 | 9.9 | 14.2 | 14.2 | 13.6 | 14.0 | 17.1 |
K (mg/L) | 1.0 | 1.0 | 1.1 | 1.0 | 0.9 | 1.1 | 1.2 | 1.0 | 1.1 | 0.8 | 1.4 | 1.2 | 1.1 | 1.3 | 1.3 |
Mg (mg/L) | 3.7 | 3.5 | 3.7 | 3.3 | 3.3 | 4.8 | 5.9 | 4.4 | 5.2 | 3.3 | 5.0 | 4.3 | 5.9 | 5.9 | 4.8 |
Ca (mg/L) | 21.7 | 22.5 | 24.4 | 26.4 | 30.6 | 22.4 | 27.6 | 25.2 | 24.5 | 23.1 | 27.1 | 21.7 | 32.7 | 31.6 | 38.4 |
HCO3 (mg/L) | 65.9 | 72.5 | 74.6 | 83.4 | 96.4 | 85.4 | 106 | 105 | 102 | 86.5 | 83.9 | 79.4 | 109 | 103 | 104 |
Cl (mg/L) | 7.9 | 9.6 | 10.3 | 8.3 | 10.0 | 7.1 | 6.8 | 6.5 | 6.3 | 3.7 | 14.6 | 12.6 | 13.5 | 16.6 | 12.4 |
SO4 (mg/L) | 5.8 | 6.0 | 7.0 | 6.9 | 9.0 | 9.0 | 8.1 | 10.0 | 7.1 | 8.0 | 8.5 | 8.0 | 9.4 | 13.0 | 7.7 |
NO3 (mg/L) | 12.5 | 15.0 | 14.6 | 11.2 | 10.5 | 8.0 | 5.6 | 4.9 | 5.1 | 4.2 | 17.0 | 10.8 | 12.5 | 10.2 | 10.3 |
F (mg/L) | ND | ND | ND | ND | ND | ND | ND | 0.1 | 0.1 | 0.3 | ND | ND | ND | 0.2 | 0.3 |
Parameter | Total | Jurassic Granite (Jgr) | Precambrian Metamorphic Rock (PCm) | Alluvial Layer (Qa) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | A | B | C | D | E | A | B | C | D | E | ||
Depth | 0.34 | 0.03 | −0.12 | −0.15 | −0.07 | 0.11 | −0.23 * | 0.37 ** | 0.29 ** | 0.45 ** | 0.31 ** | 0.15 | 0.28 ** | 0.08 | −0.14 | −0.21 * |
Temp | 0.06 * | −0.31 ** | 0.19 * | 0.32 ** | 0.18 * | −0.02 | 0.24 ** | −0.33 ** | 0.47 ** | −0.04 | −0.02 | 0.09 | 0.37 ** | −0.05 | 0.07 | −0.18 * |
pH | 0.23 | 0.04 | 0.16 | 0.05 | −0.03 | 0.23 * | −0.03 | −0.06 | 0.23 * | −0.00 | 0.13 | 0.00 | 0.31 ** | 0.21 * | 0.15 | −0.28 ** |
Eh | −0.06 | 0.16 | −0.17 | 0.06 | 0.16 | −0.33 ** | 0.23 * | 0.01 | −0.33 * | −0.05 | −0.13 | 0.18 | −0.15 | −0.16 | −0.28 ** | −0.12 |
EC | 0.02 | −0.01 | −0.18 * | 0.04 | 0.10 | −0.14 | −0.00 | 0.12 | −0.10 | −0.15 | −0.10 | 0.11 | −0.03 | −0.11 | 0.15 | 0.02 |
DO | 0.09 | −0.26 ** | −0.00 | 0.19 * | −0.09 | −0.22 * | 0.09 | 0.22 | −0.18 | −0.18 | 0.19 * | 0.37 ** | −0.01 | 0.46 ** | −0.14 | 0.34 ** |
Si | −0.10 | 0.13 | 0.33 ** | 0.08 | −0.08 | −0.17 | −0.07 | 0.02 | 0.02 | −0.10 | −0.01 | 0.18 | −0.10 | 0.06 | −0.34 ** | −0.19 * |
Na | 0.07 | −0.03 | −0.07 | 0.18 * | −0.05 | −0.12 | −0.01 | −0.17 | −0.04 | −0.07 | 0.13 | 0.04 | −0.20 * | −0.42 ** | −0.03 | 0.16 |
K | −0.16 | −0.22 * | −0.17 | 0.17 | 0.07 | −0.02 | 0.09 | 0.06 | −0.28 ** | 0.03 | −0.21 * | −0.04 | −0.16 | −0.07 | −0.40 ** | 0.33 ** |
Mg | −0.03 | 0.08 | −0.14 | −0.03 | 0.05 | −0.08 | 0.03 | 0.24 ** | −0.09 | −0.12 | −0.11 | 0.07 | 0.01 | −0.08 | 0.03 | 0.00 |
Ca | 0.00 | 0.04 | −0.17 | −0.04 | 0.07 | −0.10 | 0.00 | 0.19 * | −0.09 | −0.12 | −0.17 | −0.05 | 0.13 | 0.11 | 0.24 ** | −0.04 |
HCO3 | 0.00 | 0.18 | 0.01 | −0.03 | 0.07 | −0.05 | 0.13 | 0.30 ** | −0.14 | 0.08 | −0.12 | −0.20 * | 0.16 | −0.14 | 0.43 ** | −0.01 |
Cl | 0.06 | 0.00 | −0.12 | 0.04 | −0.03 | −0.15 | 0.00 | 0.03 | 0.12 | −0.24 ** | −0.03 | 0.28 ** | −0.11 | −0.05 | −0.20 * | −0.18 * |
SO4 | 0.01 | −0.12 | −0.29 ** | 0.05 | −0.10 | 0.06 | 0.02 | 0.06 | −0.11 | 0.04 | −0.18 * | −0.26 ** | 0.06 | 0.07 | 0.12 | 0.41 ** |
NO3 | −0.17 | −0.24 ** | −0.25 ** | 0.16 | 0.12 | −0.15 | −0.24 ** | −0.26 ** | −0.25 ** | 0.10 | −0.03 | 0.30 ** | −0.20 * | −0.07 | −0.24 ** | 0.18 * |
F | 0.12 | −0.06 | −0.05 | 0.25 ** | 0.14 | 0.07 | −0.18 * | −0.23 * | 0.24 ** | 0.19 * | 0.46 ** | 0.04 | −0.05 | −0.26 * | 0.35 ** | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-C.; Lee, S.-W.; Jeon, J.-H.; Lee, J.-H.; Jeong, D.-H.; Kim, M.-S.; Kim, H.-K.; Kim, S.-O. Uranium Concentrations in Private Wells of Potable Groundwater, Korea. Toxics 2022, 10, 543. https://doi.org/10.3390/toxics10090543
Lee W-C, Lee S-W, Jeon J-H, Lee J-H, Jeong D-H, Kim M-S, Kim H-K, Kim S-O. Uranium Concentrations in Private Wells of Potable Groundwater, Korea. Toxics. 2022; 10(9):543. https://doi.org/10.3390/toxics10090543
Chicago/Turabian StyleLee, Woo-Chun, Sang-Woo Lee, Ji-Hoon Jeon, Jong-Hwan Lee, Do-Hwan Jeong, Moon-Su Kim, Hyun-Koo Kim, and Soon-Oh Kim. 2022. "Uranium Concentrations in Private Wells of Potable Groundwater, Korea" Toxics 10, no. 9: 543. https://doi.org/10.3390/toxics10090543
APA StyleLee, W. -C., Lee, S. -W., Jeon, J. -H., Lee, J. -H., Jeong, D. -H., Kim, M. -S., Kim, H. -K., & Kim, S. -O. (2022). Uranium Concentrations in Private Wells of Potable Groundwater, Korea. Toxics, 10(9), 543. https://doi.org/10.3390/toxics10090543