Chromium Contamination and Health Risk Assessment of Soil and Agricultural Products in a Rural Area in Southern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Processing
2.2. Plant Sample Analysis
2.3. Soil Sample Analysis
2.4. Evaluation Criteria
2.5. Evaluation Method for Pollution Risk
2.6. Nor-Carcinogenic Risk Assessment
2.7. Carcinogenic Risk Assessment
2.8. Statistical Methods
3. Results
3.1. Cr Content in Rhizosphere Soils of Different Crops
3.2. Rhizosphere Soil Nutrient Contents in Different Crops
3.3. Cr Concentration in Various Parts of Different Crops
3.4. Cr Concentration and Enrichment Characteristics in Edible Parts of Different Crops
3.5. Potential Health Risk Assessment
Species | EDI (mg·kg−1·day−1) | THQ | |
---|---|---|---|
Food crops | Rice | 6.59 × 10−3 | 0.37 |
Leafy crops | Cabbage | 1.92 × 10−3 | 0.11 |
Chinese cabbage | 2.62 × 10−3 | 0.15 | |
Water spinach | 6.05 × 10−2 | 3.36 | |
Lettuce | 3.71 × 10−3 | 0.21 | |
Mustard | 2.55 × 10−3 | 0.14 | |
Root-tuber crops | Carrot | 4.44 × 10−3 | 0.25 |
Taro | 2.03 × 10−3 | 0.11 | |
Radish | 1.46 × 10−3 | 0.08 | |
Legume crops | Edamame bean | 4.79 × 10−3 | 0.27 |
3.6. The Relationship between Soil Environmental Variables and Crops Indexes
4. Discussion
4.1. The Farmland Soil in the Area Was Contaminated with Cr
4.2. Crops Showed Different Enrichment and Transport Properties in Chrome-Contaminated Soils
4.3. Crops Produced on the Cr Contaminated Farmland Have Health Risks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López-Bucio, J.S.; Ravelo-Ortega, G.; López-Bucio, J. Chromium in plant growth and development: Toxicity, tolerance and hormesis. Environ. Pollut. 2022, 312, 120084. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, J.; McGrouther, K.; Huang, H.; Lu, K.; Guo, X.; He, L.; Lin, X.; Che, L.; Ye, Z.; et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Environ. Sci. Pollut. Res. Int. 2016, 23, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil–vegetable system: A multi-medium analysis. Sci. Total Environ. 2013, 463–464, 530–540. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China; Ministry of Land and Resources of the People’s Republic of China. Report on the national general survey of soil contamination. Natl. Land Resour. Inf. 2014, 26–29. Available online: https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/W020140417558995804588.pdf (accessed on 3 December 2022).
- Li, Z.; Su, H.; Wang, L.; Hu, D.; Zhang, L.; Fang, J.; Jin, M.; Fiati Kenston, S.S.; Song, X.; Shi, H.; et al. Epidemiological Study on Metal Pollution of Ningbo in China. Int. J. Environ. Res. Public Health 2018, 15, 424. [Google Scholar] [CrossRef]
- Qi, M.; Yang, S.; Wang, L.; Hong, L. Analysis of Heavy Metal Pollution in Real Estate Stem Vegetables in Haishu District, Ningbo City. Chin. J. Health Lab. Technol. 2021, 31, 3034–3036+3043. [Google Scholar]
- Chen, F.; Ma, J.; Akhtar, S.; Khan, Z.I.; Ahmad, K.; Ashfaq, A.; Nawaz, H.; Nadeem, M. Assessment of chromium toxicity and potential health implications of agriculturally diversely irrigated food crops in the semi-arid regions of South Asia. Agric. Water Manag. 2022, 272, 107833. [Google Scholar] [CrossRef]
- Tumolo, M.; Ancona, V.; De Paola, D.; Losacco, D.; Campanale, C.; Massarelli, C.; Uricchio, V.F. Chromium Pollution in European Water, Sources, Health Risk, and Remediation Strategies: An Overview. Int. J. Environ. Res. Public Health 2020, 17, 5438. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Anjum, S.A.; Ashraf, U.; Khan, I.; Tanveer, M.; Shahid, M.; Shakoor, A.; Wang, L. Phyto-Toxicity of Chromium in Maize: Oxidative Damage, Osmolyte Accumulation, Anti-Oxidative Defense and Chromium Uptake. Pedosphere 2017, 27, 262–273. [Google Scholar] [CrossRef]
- Ao, M.; Chen, X.; Deng, T.; Sun, S.; Tang, Y.; Morel, J.L.; Qiu, R.; Wang, S. Chromium biogeochemical behaviour in soil-plant systems and remediation strategies: A critical review. J. Hazard. Mater. 2022, 424, 127233. [Google Scholar] [CrossRef] [PubMed]
- Saud, S.; Wang, D.; Fahad, S.; Javed, T.; Jaremko, M.; Abdelsalam, N.R.; Ghareeb, R.Y. The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. Front. Plant Sci. 2022, 13, 994785. [Google Scholar] [CrossRef] [PubMed]
- Azeez, N.A.; Dash, S.S.; Gummadi, S.N.; Deepa, V.S. Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr (VI)]. Chemosphere 2021, 266, 129204. [Google Scholar] [CrossRef] [PubMed]
- Hamzah Saleem, M.; Afzal, J.; Rizwan, M.; Shah, Z.-U.-H.; Depar, N.; Usman, K. Chromium toxicity in plants: Consequences on growth, chromosomal behaviour and mineral nutrient status. Turk. J. Agric. For. 2022, 46, 371–389. [Google Scholar] [CrossRef]
- Srivastava, D.; Tiwari, M.; Dutta, P.; Singh, P.; Chawda, K.; Kumari, M.; Chakrabarty, D. Chromium Stress in Plants: Toxicity, Tolerance and Phytoremediation. Sustainability 2021, 13, 4629. [Google Scholar] [CrossRef]
- Sharma, N.; Sodhi, K.K.; Kumar, M.; Singh, D.K. Heavy metal pollution: Insights into chromium eco-toxicity and recent advancement in its remediation. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100388. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, M.; Tian, T.; Lin, S.; Xu, P.; Zhou, L.; Dai, C.; Hao, Q.; Wu, Y.; Zhai, Z.; et al. The Effect of Hexavalent Chromium on the Incidence and Mortality of Human Cancers: A Meta-Analysis Based on Published Epidemiological Cohort Studies. Front. Oncol. 2019, 9, 24. [Google Scholar] [CrossRef]
- Shanker, A.K.; Cervantes, C.; Loza-Tavera, H.; Avudainayagam, S. Chromium toxicity in plants. Environ. Int. 2005, 31, 739–753. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Leblebici, Z.; Kar, M.; Başaran, L. Assessment of the Heavy Metal Accumulation of Various Green Vegetables Grown in Nevşehir and their Risks Human Health. Environ. Monit. Assess. 2020, 192, 483. [Google Scholar] [CrossRef]
- Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final Office; US Environmental Protection Agency: Washington, DC, USA, 2004.
- Chen, Z.; Huang, B.; Hu, W.; Wang, W.; Muhammad, I.; Lu, Q.; Jing, G.; Zhang, Z. Ecological-health risks assessment and source identification of heavy metals in typical greenhouse vegetable production systems in Northwest China. Environ. Sci. Pollut. Res. Int. 2021, 28, 42583–42595. [Google Scholar] [CrossRef] [PubMed]
- Pelcová, P.; Ridošková, A.; Hrachovinová, J.; Grmela, J. Evaluation of mercury bioavailability to vegetables in the vicinity of cinnabar mine. Environ. Pollut. 2021, 283, 117092. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Fu, Y.; Shi, M.; Wang, H.; Guo, J. Pollution level and risk assessment of lead, cadmium, mercury, and arsenic in edible mushrooms from Jilin Province, China. J. Food Sci. 2021, 86, 3374–3383. [Google Scholar] [CrossRef]
- Adhikari, S.; Marcelo-Silva, J.; Beukes, J.P.; van Zyl, P.G.; Coetsee, Y.; Boneschans, R.B.; Siebert, S.J. Contamination of useful plant leaves with chromium and other potentially toxic elements and associated health risks in a polluted mining-smelting region of South Africa. Environ. Adv. 2022, 9, 100301. [Google Scholar] [CrossRef]
- Shishov, A.; Gerasimov, A.; Bulatov, A. Deep eutectic solvents based on carboxylic acids for metals separation from plant samples: Elemental analysis by ICP-OES. Food Chem. 2022, 366, 130634. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xie, X.; Zhu, Z.; Liu, K.; Liu, W.; Wang, J. Land use driven change in soil organic carbon affects soil microbial community assembly in the riparian of Three Gorges Reservoir Region. Appl. Soil Ecol. 2022, 176, 104467. [Google Scholar] [CrossRef]
- Hu, X.; Huang, X.; Zhao, H.; Liu, F.; Wang, L.; Zhao, X.; Gao, P.; Li, X.; Ji, P. Possibility of using modified fly ash and organic fertilizers for remediation of heavy-metal-contaminated soils. J. Clean. Prod. 2021, 284, 124713. [Google Scholar] [CrossRef]
- Sun, F.; Chen, J.; Chen, F.; Wang, X.; Liu, K.; Yang, Y.; Tang, M. Influence of biochar remediation on Eisenia fetida in Pb-contaminated soils. Chemosphere 2022, 295, 133954. [Google Scholar] [CrossRef]
- Cong, L.; Zhou, S.; Niyogi, D.; Wu, Y.; Yan, G.; Dai, L.; Liu, S.; Zhang, Z.; Hu, Y. Concentrations and isotopic analysis for the sources and transfer of lead in an urban atmosphere-plant-soil system. J. Environ. Manag. 2022, 311, 114771. [Google Scholar] [CrossRef]
- Qvarforth, A.; Lundgren, M.; Rodushkin, I.; Engström, E.; Paulukat, C.; Hough, R.L.; Moreno-Jiménez, E.; Beesley, L.; Trakal, L.; Augustsson, A. Future food contaminants: An assessment of the plant uptake of technology-critical elements versus traditional metal contaminants. Environ. Int. 2022, 169, 107504. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Wang, Y.; Tsang, D.C.W.; Yang, X.; Beiyuan, J.; Yin, M.; Xiao, T.; Jiang, Y.; Lin, W.; et al. Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. Environ. Int. 2021, 146, 106207. [Google Scholar] [CrossRef] [PubMed]
- Navaretnam, R.; Soong, A.C.; Goo, A.Q.; Isa, N.M.; Aris, A.Z.; Haris, H.; Looi, L.J. Human health risks associated with metals in paddy plant (Oryza sativa) based on target hazard quotient and target cancer risk. Environ. Geochem. Health 2022. Advance online publication. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiang, M.; Liu, C.; Theng, B.K.G. Chronic impact of an accidental wastewater spill from a smelter, China: A study of health risk of heavy metal(loid)s via vegetable intake. Ecotoxicol. Environ. Saf. 2019, 182, 109401. [Google Scholar] [CrossRef] [PubMed]
- Mokarram, M.; Amin, H.; Setoodeh, A. Assessment of heavy metals contamination and the risk of non-cancerous diseases in vegetable using electromagnetic-chemical. Environ. Sci. Pollut. Res. Int. 2020, 27, 36362–36376. [Google Scholar] [CrossRef]
- Khezerlou, A.; Dehghan, P.; Moosavy, M.H.; Kochakkhani, H. Assessment of Heavy Metal Contamination and the Probabilistic Risk via Salad Vegetable Consumption in Tabriz, Iran. Biol. Trace Elem. Res. 2021, 199, 2779–2787. [Google Scholar] [CrossRef] [PubMed]
- Regional Screening Level (RSL) Summary Table: November 2022; US Environmental Protection Agency: Washington, DC, USA, 2011.
- Peña-Fernández, A.; González-Muñoz, M.J.; Lobo-Bedmar, M.C. Establishing the importance of human health risk assessment for metals and metalloids in urban environments. Environ. Int. 2014, 72, 176–185. [Google Scholar] [CrossRef]
- Ugbede, F.O.; Osahon, O.D.; Akpolile, A.F.; Oladele, B.B. Assessment of heavy metals concentrations, soil-to-plant transfer factor and potential health risk in soil and rice samples from Ezillo rice fields in Ebonyi State, Nigeria. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100503. [Google Scholar] [CrossRef]
- Wu, A.; Luo, S.; Zhao, Y.; Zhao, J.; Lian, X. Survey and evaluation of heavy metal pollution of food in Chongqing by contamination index method. Chin. J. Food Hyg. 2021, 33, 175–180. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Cheng, J.; Li, Y.; Li, F.; Li, Y.; Shi, Z. Pollution Assessment and Source Apportionment of Soil Heavy Metals in a Coastal Industrial City, Zhejiang, Southeastern China. Int. J. Environ. Res. Public Health. 2022, 19, 3335. [Google Scholar] [CrossRef]
- Dhal, B.; Thatoi, H.N.; Das, N.N.; Pandey, B.D. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 250–251, 272–291. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zheng, S.; Li, X. Pollution threshold value of soil chromium (III) for leafy vegetables. Acta Sci. Circumstantiae 2012, 32, 3039–3044. [Google Scholar] [CrossRef]
- Edogbo, B.; Okolocha, E.; Maikai, B.; Aluwong, T.; Uchendu, C. Risk analysis of heavy metal contamination in soil, vegetables and fish around Challawa area in Kano state, Nigeria. Sci. Afr. 2020, 7, e00281. [Google Scholar] [CrossRef]
- Ranieri, E.; Moustakas, K.; Barbafieri, M.; Ranieri, A.C.; Herrera-Melián, J.A.; Petrella, A.; Tommasi, F. Phytoextraction technologies for mercury- and chromium-contaminated soil: A review. J. Chem. Technol. Biot. 2020, 95, 317–327. [Google Scholar] [CrossRef]
- Gomes, M.A.d.C.; Hauser-Davis, R.A.; Suzuki, M.S.; Vitória, A.P. Plant chromium uptake and transport, physiological effects and recent advances in molecular investigations. Ecotoxicol. Environ. Saf. 2017, 140, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Yadav, K.K.; Kumar, S.; Gupta, N.; Cabral-Pinto, M.M.S.; Rezania, S.; Radwan, N.; Alam, J. Chromium contamination and effect on environmental health and its remediation: A sustainable approaches. J. Environ. Manag. 2021, 285, 112174. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, L.M.; Lessl, J.T.; Gress, J.; Tisarum, R.; Guilherme, L.R.G.; Ma, L.Q. Chromate and phosphate inhibited each other’s uptake and translocation in arsenic hyperaccumulator Pteris vittata L. Environ. Pollut. 2015, 197, 240–246. [Google Scholar] [CrossRef]
- Wijeyaratne, W.; Kumari, E. Cadmium, Chromium, and Lead Uptake Associated Health Risk Assessment of Alternanthera sessilis: A Commonly Consumed Green Leafy Vegetable. J. Toxicol. 2021, 2021, 9936254. [Google Scholar] [CrossRef]
- Liao, H.; He, Z.; Xie, Y. Evaluation of the effect of chromium content in soil on the safety of agricultural products. J. Food Saf. Qual. 2021, 12, 5960–5966. [Google Scholar] [CrossRef]
- Nieves-Cordones, M.; Alemán, F.; Martínez, V.; Rubio, F. K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms. J. Plant Physiol. 2014, 171, 688–695. [Google Scholar] [CrossRef]
- Xu, Z.; Cai, M.; Chen, S.; Huang, X.; Zhao, F.; Wang, P. High-Affinity Sulfate Transporter Sultr1;2 Is a Major Transporter for Cr (VI) Uptake in Plants. Environ. Sci. Technol. 2021, 55, 1576–1584. [Google Scholar] [CrossRef] [PubMed]
- Ertani, A.; Mietto, A.; Borin, M.; Nardi, S. Chromium in Agricultural Soils and Crops: A Review. Water Air Soil Pollut. 2017, 228, 190. [Google Scholar] [CrossRef]
- Xu, T.; Nan, F.; Jiang, X.; Tang, Y.; Zeng, Y.; Zhang, W.; Shi, B. Effect of soil pH on the transport, fractionation, and oxidation of chromium (III). Ecotoxicol. Environ. Saf. 2020, 195, 110459. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Jeyakumar, P.; Rinklebe, J.; Ok, Y.S.; Bolan, N.; Wang, H. A critical review on bioremediation technologies for Cr (VI)-contaminated soils and wastewater. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1027–1078. [Google Scholar] [CrossRef]
Field | Species | Soil Cr Content (mg·kg−1) | Pi |
---|---|---|---|
F1 | Rice | 593.29 ± 209.54 b,c | 2.37 |
C1 | Carrot | 400.89 ± 16.93 b–d | 2.67 |
Taro | 381.39 ± 11.02 b–d | 2.54 | |
Radish | 338.05 ± 15.89 c,d | 2.25 | |
Cabbage | 414.04 ± 22.45 b–d | 2.76 | |
Chinese cabbage | 665.36 ± 63.80 b | 4.44 | |
C2 | Water spinach | 3883.77 ± 224.89 a | 25.89 |
Edamame bean | 3883.77 ± 224.89 a | 25.89 | |
C3 | Lettuce | 223.27 ± 8.18 c,d | 1.12 |
Mustard | 182.78 ± 11.62 d | 1.22 |
Field | Species | pH | TOC (g·kg−1) | TN (g·kg−1) | AP (mg·kg−1) | AK (mg·kg−1) | CEC (cmol+·kg−1) |
---|---|---|---|---|---|---|---|
F1 | Rice | 5.61 ± 0.05 d | 39.70 ± 2.17 a,b | 3.11 ± 0.40 b | 157.43 ± 6.70 e | 101.73 ± 29.97 d,e | 15.79 ± 0.23 d |
C1 | Carrot | 6.14 ± 0.04 c | 31.40 ± 2.94 c | 3.17 ± 0.33 b | 157.43 ± 6.70 a,b | 138.68 ± 12.52 c–e | 16.03 ± 2.30 d |
Taro | 5.31 ± 0.08 e | 41.64 ± 1.99 a | 4.08 ± 0.09 a | 143.33 ± 1.67 b | 244.14 ± 47.18 b | 25.80 ± 0.59 a | |
Ternip | 5.30 ± 0.15 e | 32.31 ± 1.20 c | 3.15 ± 0.13 b | 158.85 ± 3.94 a,b | 110.88 ± 1.01 d,e | 17.23 ± 0.32 c,d | |
Cabbage | 4.93 ± 0.11 f | 40.57 ± 3.18 a,b | 4.03 ± 0.35 a | 98.82 ± 2.43 c | 153.89 ± 21.46 c,d | 16.63 ± 1.63 c,d | |
Chinese cabbage | 5.43 ± 0.07 e | 37.26 ± 0.49 b | 3.49 ± 0.20 a,b | 177.74 ± 3.91 a | 94.64 ± 12.02 e | 19.54 ± 0.77 b,c | |
C2 | Water spinach | 6.40 ± 0.15 b | 29.18 ± 0.46 c | 2.22 ± 0.50 c | 171.96 ± 3.77 a | 443.29 ± 5.33 a | 18.97 ± 0.74 b,c |
Edamame bean | 6.40 ± 0.15 b | 29.18 ± 0.46 c | 2.22 ± 0.50 c | 171.96 ± 3.77 a | 443.29 ± 5.33 a | 18.97 ± 0.74 b,c | |
C3 | Lettuce | 7.07 ± 0.09 a | 23.27 ± 1.05 d | 1.76 ± 0.12 c | 48.02 ± 0.63 d,e | 232.48 ± 32.54 b | 20.62 ± 1.08 b |
Mustard | 5.22 ± 0.06 e | 30.66 ± 1.02 c | 3.20 ± 0.40 b | 55.35 ± 1.93 d | 180.30 ± 4.26 c | 18.51 ± 1.41 b–d |
Field | Species | Cr Content in Plant Parts (mg·kg−1, DW) | ||
---|---|---|---|---|
Root | Leaf or Stem | Seed | ||
F1 | Rice | 110.79 ± 25.54 a | 7.55 ± 2.59 c | 2.18 ± 0.42 |
C1 | Carrot | 6.03 ± 0.15 c | 8.93 ± 1.16 c | n.k. |
Taro | 39.64 ± 3.84 b | 2.38 ± 0.26 c | n.k. | |
Radish | 8.19 ± 0.07 c | 10.42 ± 0.84 c | n.k. | |
Cabbage | 44.51 ± 7.84 b | 7.51 ± 0.81 c | n.k. | |
Chinese cabbage | 25.95 ± 1.48 b,c | 9.63 ± 0.66 c | n.k. | |
C2 | Water spinach | 50.83 ± 4.89 b | 139.76 ± 10.57 a | n.k. |
Edamame bean | n.k. | n.k. | 2.85 ± 0.05 | |
C3 | Lettuce | 47.45 ± 6.70 b | 18.23 ± 1.21 b | n.k. |
Mustard | 11.65 ± 0.89 c | 7.99 ± 0.35 c | n.k. |
Species | TF | BCF (%) | Cr Content in EdiblePparts (mg·kg−1) | Quota of Cr (mg·kg−1) | |
---|---|---|---|---|---|
Food crops | Rice | 0.37 | 0.07 | 2.18 ± 0.42 | 1.0 |
Leafy crops | Cabbage | 0.10 | 0.17 | 0.41 ± 0.01 | 0.5 |
Chinese cabbage | 0.08 | 0.37 | 0.55 ± 0.01 | 0.5 | |
Water spinach | 0.33 | 2.75 | 12.80 ± 0.16 | 0.5 | |
Lettuce | 0.35 | 0.38 | 0.78 ± 0.00 | 0.5 | |
Mustard | 0.30 | 0.69 | 0.54 ± 0.01 | 0.5 | |
Root-tuber crops | Carrot | 0.23 | 1.48 | 0.94 ± 0.02 | 0.5 |
Taro | 0.11 | 0.06 | 0.43 ± 0.01 | 0.5 | |
Radish | 0.09 | 1.27 | 0.31 ± 0.00 | 0.5 | |
Legume crops | Edamame bean | 0.03 | n.k. | 1.01 ± 0.02 | 1.0 |
Species | Root | Leaf or Stem | Soil |
---|---|---|---|
Root | 1 | 0.145 | 0.207 |
Leaf or stem | 1 | 0.976 ** | |
Soil | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Yu, C.; Wang, Q.; Liao, J.; Liu, C.; Huang, L.; Liu, Q.; Wen, Z.; Feng, Y. Chromium Contamination and Health Risk Assessment of Soil and Agricultural Products in a Rural Area in Southern China. Toxics 2023, 11, 27. https://doi.org/10.3390/toxics11010027
Xu S, Yu C, Wang Q, Liao J, Liu C, Huang L, Liu Q, Wen Z, Feng Y. Chromium Contamination and Health Risk Assessment of Soil and Agricultural Products in a Rural Area in Southern China. Toxics. 2023; 11(1):27. https://doi.org/10.3390/toxics11010027
Chicago/Turabian StyleXu, Shun’an, Chao Yu, Qiong Wang, Jiayuan Liao, Chanjuan Liu, Lukuan Huang, Qizhen Liu, Zheyu Wen, and Ying Feng. 2023. "Chromium Contamination and Health Risk Assessment of Soil and Agricultural Products in a Rural Area in Southern China" Toxics 11, no. 1: 27. https://doi.org/10.3390/toxics11010027
APA StyleXu, S., Yu, C., Wang, Q., Liao, J., Liu, C., Huang, L., Liu, Q., Wen, Z., & Feng, Y. (2023). Chromium Contamination and Health Risk Assessment of Soil and Agricultural Products in a Rural Area in Southern China. Toxics, 11(1), 27. https://doi.org/10.3390/toxics11010027