Intrauterine and Neonatal Exposure to Opioids: Toxicological, Clinical, and Medico-Legal Issues
Abstract
:1. Introduction
2. Biological Matrices
2.1. Maternal Biological Matrices
2.1.1. Urine
2.1.2. Hair
2.1.3. Nails
2.1.4. Breast Milk
2.1.5. Blood
2.1.6. Sweat
2.1.7. Oral Fluid
2.2. Neonatal Biological Matrices
2.2.1. Urine
2.2.2. Meconium
2.2.3. Hair
2.2.4. Nails
2.2.5. Placenta
2.2.6. Vernix
2.2.7. Amniotic Fluid
3. Analytical Issues
3.1. Preanalytical Phase
3.2. Screening Test
3.3. Confirmation Methods
4. Clinical Issues
5. Medico-Legal Issues
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhuvaneswar, C.G.; Chang, G.; Epstein, L.A.; Stern, T.A. Cocaine and opioid use during pregnancy: Prevalence and management. Prim. Care Companion L Clin. Psychiatry 2008, 10, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrini, K.; Argo, A.; Borroni, C.; Catalano, D.; Dell’acqua, L.; Farè, F.; Procaccianti, P.; Roda, G.; Gambaro, V. Development and validation of a reliable method for studying the distribution pattern for opiates metabolites in brain. J. Pharm. Biomed Anal. 2013, 73, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stover, M.W.; Davis, J.M. Opioids in pregnancy and neonatal abstinence syndrome. Semin. Perinatol. 2015, 39, 561–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basilicata, P.; Pieri, M.; Simonelli, A.; Capasso, E.; Casella, C.; Noto, T.; Policino, F.; Di Lorenzo, P. Diquat Poisoning: Care Management and Medico-LegalImplications. Toxics 2022, 10, 166. [Google Scholar] [CrossRef]
- Wabuyele, S.L.; Colby, J.M.; McMillin, G.A. Detection of drug-exposed newborns. Ther. Drug Monit. 2018, 40, 166–185. [Google Scholar] [CrossRef]
- Wang, P.; Molina, C.P.; Maldonado, J.E.; Bernard, D.W. In utero drugs of abuse exposure testing for newborn twins. J. Clin. Pathol. 2010, 63, 259–261. [Google Scholar] [CrossRef]
- Behnke, M.; Smith, V.C. Prenatal substance abuse: Short- and long-term effects on the exposed fetus. Pediatrics 2013, 131, 1009–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano, J.; García-Algar, O.; Vall, O.; De La Torre, R.; Scaravelli, G.; Pichini, S. Biological matrices for the evaluation of in utero exposure to drugs of abuse. Ther. Drug Monit. 2007, 29, 711–734. [Google Scholar] [CrossRef]
- Knight, S.J.; Smith, A.D.; Wright, T.E.; Collier, A.C. Detection of opioids in umbilical cord lysates: An antibody-based rapid screening approach. Toxicol. Mech. Methods 2019, 29, 35–42. [Google Scholar] [CrossRef]
- Jones, J.T.; Jones, M.; Jones, B.; Sulaiman, K.; Plate, C.; Lewis, D. Detection of codeine, morphine, 6-monoacetylmorphine, and meconin in human umbilical cord tissue: Method validation and evidence of in utero heroin exposure. Ther. Drug Monit. 2015, 37, 45. [Google Scholar] [CrossRef]
- Mamillapalli, S.S.; Smith-Joyner, A.; Forbes, L.; McIntyre, K.; Poppenfuse, S.; Rushing, B.; Ravisankar, S. Screening for Opioid and Stimulant Exposure In Utero Through Targeted and Untargeted Metabolomics Analysis of Umbilical Cords. Ther. Drug Monit. 2020, 42, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.J.; Metcalf, A.; Krasowski, M.D.; Linert, B.S.; Clark, C.J.; Strathmann, F.G.; McMillin, G.A. Detection of neonatal drug exposure using umbilical cord tissue and liquid chromatography time-of-flight mass spectrometry. Ther. Drug Monit. 2014, 36, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Colmenero, E.; Concheiro-Guisán, A.; Lorenzo-Martínez, M.; Concheiro, M.; Lendoiro, E.; de-Castro-Ríos, A.; Fernández-Lorenzo, J.R. Drug testing in biological samples vs. maternal surveys for the detection of substance use during whole pregnancy. J. Addict. Dis. 2020, 39, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Colby, J.M. Comparison of umbilical cord tissue and meconium for the confirmation of in utero drug exposure. Clin. Biochem. 2017, 50, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Stabler, M.; Giacobbi, P., Jr.; Chertok, I.; Long, L.; Cottrell, L.; Yossuck, P. Comparison of Biological Screening and Diagnostic Indicators to Detect In Utero Opiate and Cocaine Exposure Among Mother–Infant Dyads. Ther. Drug Monit. 2017, 39, 640–647. [Google Scholar] [CrossRef]
- Falcon, M.; Pichini, S.; Joya, J.; Pujadas, M.; Sanchez, A.; Vall, O.; Pellegrini, M. Maternal hair testing for the assessment of fetal exposure to drug of abuse during early pregnancy: Comparison with testing in placental and fetal remains. Forensic Sci. Int. 2012, 218, 92–96. [Google Scholar] [CrossRef]
- Argo, A.; Zerbo, S.; Buscemi, R.; Trignano, C.; Bertol, E.; Albano, G.D.; Vaiano, F. A Forensic Diagnostic Algorithm for Drug-Related Deaths: A Case Series. Toxics 2022, 10, 152. [Google Scholar] [CrossRef]
- Barthwell, A.G.; Allgaier, J.; Egli, K. Definitive urine drug testing in office-based opioid treatment: A literature review. Crit. Rev. Toxicol. 2018, 48, 829–852. [Google Scholar] [CrossRef] [PubMed]
- Snyder, M.L.; Fantz, C.R.; Melanson, S. Immunoassay-Based Drug Tests Are Inadequately Sensitive for Medication Compliance Monitoring in PatientsTreated for Chronic Pain. Pain Physician 2017, 20, SE1–SE9. [Google Scholar]
- Carlier, J.; La Maida, N.; Di Trana, A.; Huestis, M.A.; Pichini, S.; Busardò, F.P. Testing unconventional matrices to monitor for prenatal exposure to heroin, cocaine, amphetamines, syntheticcathinones, and synthetic opioids. Ther. Drug. Monit. 2020, 42, 205–221. [Google Scholar] [CrossRef]
- Gray, T.; Huestis, M. Bioanalytical procedures for monitoring in utero drug exposure. Anal. Bioanal. Chem. 2007, 388, 1455–1465. [Google Scholar] [CrossRef] [PubMed]
- Płotka, J.; Narkowicz, S.; Polkowska, Ż.; Biziuk, M.; Namieśnik, J. Effects of addictive substances during pregnancy and infancy and their analysis in biological materials. Rev. Environ. Contam. Toxicol. 2014, 227, 55–77. [Google Scholar] [PubMed]
- Reece-Stremtan, S.; Marinelli, K.A.; Academy of Breastfeeding Medicine. ABM clinical protocol# 21: Guidelines for breastfeeding and substance use or substance use disorder, revised 2015. Breast Feed. Med. 2015, 10, 135–141. [Google Scholar]
- Kacinko, S.L.; Barnes, A.J.; Schwilke, E.W.; Cone, E.J.; Moolchan, E.T.; Huestis, M.A. Disposition of cocaine and its metabolites in human sweat after controlled cocaine administration. Clin. Chem. 2005, 51, 2085–2094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwilke, E.W.; Barnes, A.J.; Kacinko, S.L.; Cone, E.J.; Moolchan, E.T.; Huestis, M.A. Opioid disposition in human sweat after controlled oral codeine administration. Clin. Chem. 2006, 52, 1539–1545. [Google Scholar] [CrossRef]
- Saito, T.; Wtsadik, A.; Scheidweiler, K.B.; Fortner, N.; Takeichi, S.; Huestis, M.A. Validated gas chromatographic-negative ion chemical ionization mass spectrometric method for delta(9)-tetrahydrocannabinol in sweat patches. Clin. Chem. 2004, 50, 2083–2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortier, K.A.; Maudens, K.E.; Lambert, W.E.; Clauwaert, K.M.; Van Bocxlaer, J.F.; Deforce, D.L.; Van Peteghem, C.H.; De Leenheer, A.P. Simultaneous, quantitative determination of opiates, amphetamines, cocaine and benzoylecgonine in oral fluid by liquid chromatography quadrupole-time-of-flight mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002, 779, 321–330. [Google Scholar] [CrossRef]
- Kintz, P.; Cirimele, V.; Ludes, B. Detection of cannabis in oral fluid (saliva) and forehead wipes (sweat) from impaired drivers. J. Anal. Toxicol. 2000, 24, 557–561. [Google Scholar] [CrossRef] [Green Version]
- Toennes, S.W.; Kauert, G.F.; Steinmeyer, S.; Moeller, M.R. Driving under the influence of drugs—Evaluation of analytical data of drugs in oralfluid, serum and urine, and correlation with impairment symptoms. Forensic Sci. Int. 2005, 152, 149–155. [Google Scholar] [CrossRef]
- Concheiro, M.; Lendoiro, E.; de Castro, A.; Gónzalez-Colmenero, E.; Concheiro-Guisan, A.; Peñas-Silva, P.; Macias-Cortiña, M.; Cruz-Landeira, A.; López-Rivadulla, M. Bioanalysis for cocaine, opiates, methadone, and amphetamines exposure detection during pregnancy. Drug Test. Anal. 2017, 9, 898–904. [Google Scholar] [CrossRef] [Green Version]
- Marin, S.J.; Keith, L.; Merrell, M.; McMillin, G.A. Comparison of drugs of abuse detection in meconium by EMIT II and ELISA. J. Anal. Toxicol. 2009, 33, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gareri, J.; Klein, J.; Koren, G. Drugs of abuse testing in meconium. Clin. Chim. Acta 2006, 366, 101–111. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Bermejo, A.M.; Tabernero, M.J.; Fernández, P.; Alvarez, I. Determination of cocaine and heroin with their respective metabolites in meconium by gas chromatography-mass spectrometry. J. Appl. Toxicol. 2007, 27, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Strano-Rossi, S. Methods used to detect drug abuse in pregnancy: A brief review. Drug Alcohol. Depend. 1999, 53, 257–271. [Google Scholar] [CrossRef]
- Joya, X.; Marchei, E.; Salat-Batlle, J.; García-Algar, O.; Calvaresi, V.; Pacifici, R.; Pichini, S. Drugs of abuse in maternal hair and paired neonatal meconium: An objective assessment of fetal exposure to gestational consumption. Drug Test. Anal. 2016, 8, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Concheiro, M.; González-Colmenero, E.; Lendoiro, E.; Concheiro-Guisán, A.; de Castro, A.; Cruz-Landeira, A.; López-Rivadulla, M. Alternative matrices for cocaine, heroin, and methadone in utero drug exposure detection. Ther. Drug Monit. 2013, 35, 502–509. [Google Scholar] [CrossRef]
- Stolk, L.M.; Coenradie, S.M.; Smit, B.J.; van As, H.L. Analysis of methadone and its primary metabolite in meconium. J. Anal. Toxicol. 1997, 21, 154–159. [Google Scholar] [CrossRef] [Green Version]
- Marchei, E.; Pellegrini, M.; Pacifici, R.; Palmi, I.; Lozano, J.; García-Algar, O.; Pichini, S. Quantification of Delta9-tetrahydrocannabinol and its major metabolites in meconium by gas chromatographic-mass spectrometric assay: Assay validation and preliminary results of the “meconium project”. Ther. Drug Monit. 2006, 28, 700–706. [Google Scholar] [CrossRef]
- Lozano, J.; García-Algar, O.; Marchei, E.; Vall, O.; Monleon, T.; Giovannandrea, R.D.; Pichini, S. Prevalence of gestational exposure to cannabis in a Mediterranean city by meconium analysis. Acta Paediatr. 2007, 96, 1734–1737. [Google Scholar] [CrossRef]
- Ostrea, E.M., Jr.; Lynn, S.M.; Wayne, R.N.; Stryker, J.C. Tissue distribution of morphine in the newborns of addicted monkeys and humans. Dev. Pharmacol. Ther. 1980, 1, 163–170. [Google Scholar] [CrossRef]
- De Giovanni, N.; Marchetti, D. Cocaine and its metabolites in the placenta: A systematic review of the literature. Reprod. Toxicol. 2012, 33, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Szeto, H.H. Kinetics of drug transfer to the fetus. Clin. Obstet. Gynecol. 1993, 36, 246–254. [Google Scholar] [CrossRef] [PubMed]
- Silvestre, M.A.; Lucena, J.E.; Roxas, R., Jr.; Evangelista, E.S.; Ostrea, E.M., Jr. Effects of timing, dosage, and duration of morphine intake during pregnancy on the amount of morphine in meconiuminarat model. Biol. Neonate 1997, 72, 112–117. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Stanford, D.F.; Murphy, T.P.; Lester, B.M.; Wright, L.L.; Smeriglio, V.L.; Verter, J.; Bauer, C.R.; Shankaran, S.; Bada, H.S.; et al. Immunoassay and GC-MS procedures for the analysis of drugs of abuse in meconium. J. Anal. Toxicol. 1999, 23, 436–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Castro, A.; Concheiro, M.; Shakleya, D.M.; Huestis, M.A. Simultaneous quantification of methadone, cocaine, opiates, and metabolites in human placenta by liquid chromatography-mass spectrometry. J. Anal. Toxicol. 2009, 33, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Concheiro, M.; Jones, H.E.; Johnson, R.E.; Choo, R.; Shakleya, D.M.; Huestis, M.A. Maternal buprenorphine dose, placenta buprenorphine and metabolite concentrations and neonatal outcomes. Ther. Drug Monit. 2010, 32, 206. [Google Scholar] [CrossRef] [Green Version]
- Vinner, E.; Vignau, J.; Thibault, D.; Codaccioni, X.; Brassart, C.; Humbert, L.; Lhermitte, M. Hair analysis of opiates in mothers and newborns for evaluating opiate exposure during pregnancy. Forensic Sci. Int. 2003, 133, 57–62. [Google Scholar] [CrossRef]
- Bertol, E.; Argo, A.; Procaccianti, P.; Vaiano, F.; Di Milia, M.G.; Furlanetto, S.; Mari, F. Detection of gamma-hydroxybutyrate in hair: Validation of GC-MS and LC-MS/MS methods and application to a real case. J. Pharm. Biomed. Anal. 2012, 70, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Marin, S.J.; McMillin, G.A. Quantitation of Total Buprenorphine and Norbuprenorphine in Meconium by LC-MS/MS. Methods Mol. Biol. 2016, 1383, 59–68. [Google Scholar]
- Argo, A.; Spatola, G.F.; Zerbo, S.; Sortino, C.; Lanzarone, A.; Uzzo, M.L.; Pitruzzella, A.; Farè, F.; Roda, G.; Gambaro, V.; et al. A possible biomarker for methadonerelateddeaths. J. Forensic Leg. Med. 2017, 49, 8–14. [Google Scholar] [CrossRef]
- Kintz, P.; Mangin, P. Determination of gestational opiate, nicotine, benzodiazepine, cocaine and amphetamine exposure by hair analysis. J. Forensic Sci. Soc. 1993, 33, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Lester, B.M.; ElSohly, M.; Wright, L.L.; Smeriglio, V.L.; Verter, J.; Bauer, C.R.; Shankaran, S.; Bada, H.S.; Walls, H.H.; Huestis, M.A.; et al. The Maternal Lifestyle Study: Drug use by meconium toxicology and maternal self-report. Pediatrics 2001, 107, 309–317. [Google Scholar] [CrossRef]
- Gray, T.R.; Choo, R.E.; Concheiro, M.; Williams, E.; Elko, A.; Jansson, L.M.; Jones, H.E.; Huestis, M.A. Prenatal methadone exposure, meconium biomarker concentrations and neonatal abstinence syndrome. Addiction 2010, 105, 2151–2159. [Google Scholar] [CrossRef] [PubMed]
- Pichini, S.; Pacifici, R.; Pellegrini, M.; Marchei, E.; Pérez-Alarcón, E.; Puig, C.; Vall, O.; García-Algar, O. Development and validation of a liquid chromatography-mass spectrometry assay for the determination of opiates and cocaine in meconium. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 794, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.L.; Preston, K.L.; Stitzer, M.L.; Cone, E.J.; Bigelow, G.E. Clinical pharmacology of buprenorphine: Ceiling effects at high doses. Clin. Pharm. Therap. 1994, 55, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Casper, T.; Arbour, M.W. Identification of the pregnant woman who is using drugs: Implications for perinatal and neonatal care. J. Midwifery Womens Health 2013, 58, 697–701. [Google Scholar] [CrossRef] [PubMed]
- Joseph, H.; Stancliff, S.; Langrod, J. Methadone maintenance treatment (MMT): A review of historical and clinical issues. Mt. Sinai. J. Med. 2000, 67, 347–364. [Google Scholar] [PubMed]
- American College of Obstetricians and Gynecologists. Opioid abuse, dependence, and addiction in pregnancy. Committee Opinion No. 524. Obstet. Gynecol. 2012, 119, 1070–1076. [Google Scholar] [CrossRef]
- Bell, J.R.; Butler, B.; Lawrance, A.; Batey, R.; Salmelainen, P. Comparing overdose mortality associated with methadone and buprenorphine treatment. Drug Alcohol. Depend. 2009, 104, 73–77. [Google Scholar] [CrossRef]
- Kraft, W.K.; Dysart, K.; Greenspan, J.S.; Gibson, E.; Kaltenbach, K.; Ehrlich, M.E. Revised dose schema of sublingual buprenorphine in the treatment of the neonatal opioid abstinence syndrome. Addiction 2011, 106, 574–580. [Google Scholar] [CrossRef]
- Jones, H.E.; Kaltenbach, K.; Heil, S.H.; Stine, S.M.; Coyle, M.G.; Arria, A.M.; O’Grady, K.E.; Selby, P.; Martin, P.R.; Fischer, G. Neonatal abstinence syndrome after methadone or buprenorphine exposure. N. Engl. J. Med. 2010, 363, 2320–2331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velez, M.L.; Jordan, C.; Jansson, L.M. Reconceptualizing non-pharmacologic approaches to Neonatal Abstinence Syndrome (NAS) and Neonatal Opioid Withdrawal Syndrome (NOWS): A theoretical and evidence–based approach. Part II: The clinical application of nonpharmacologic care for NAS/NOWS. Neurotoxicol. Teratol. 2021, 88, 107032. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.E.; Heil, S.H.; Baewert, A.; Arria, A.M.; Kaltenbach, K.; Martin, P.R.; Coyle, M.G.; Selby, P.; Stine, S.M.; Fischer, G. Buprenorphine treatment of opioid-dependent pregnant women: A comprehensive review. Addiction 2012, 107, 5–27. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.E.; Jones, H.E.; Fischer, G. Use of buprenorphine in pregnancy: Patient management and effects on the neonate. Drug Alcohol. Depend. 2003, 70, 87–101. [Google Scholar] [CrossRef]
- D’Apolito, K. Neonatal opiate withdrawal: Pharmacologic management. Newborn Infant. Nurs. Rev. 2009, 9, 62–69. [Google Scholar] [CrossRef]
- Alipio, J.B.; Haga, C.; Fox, M.E.; Arakawa, K.; Balaji, R.; Cramer, N.; Lobo, M.K.; Keller, A. Perinatal fentanyl exposure leads to long-lasting impairments in somatosensory circuit function and behavior. J. Neurosci. 2021, 41, 3400–3417. [Google Scholar] [CrossRef]
- Nellhaus, E.M.; Murray, S.; Hansen, Z.; Loudin, S.; Davies, T.H. Novel withdrawal symptoms of a neonate prenatally exposed to a fentanyl analog. J. Pediatr. Health Care 2019, 33, 102–106. [Google Scholar] [CrossRef]
- Spencer, M.R.; Warner, M.; Bastian, B.A.; Trinidad, J.P.; Hedegaard, H. Drug overdose deaths involving fentanyl, 2011–2016. Natl. Vital Stat. Rep. 2019, 68, 1–19. [Google Scholar]
- Lind, J.N.; Interrante, J.D.; Ailes, E.C.; Gilboa, S.M.; Khan, S.; Frey, M.T.; Dawson, A.L.; Honein, M.A.; Dowling, N.F.; Razzaghi, H.; et al. Maternal use of opioids during pregnancy and congenital malformations: A systematic review. Pediatrics 2017, 139, e20164131. [Google Scholar] [CrossRef] [Green Version]
- Bailey, N.A.; Diaz-Barbosa, M. Effect of Maternal Substance Abuse on the Fetus, Neonate, and Child. Pediatr. Rev. 2018, 39, 550–559. [Google Scholar] [CrossRef]
- Krans, E.E.; Patrick, S.W. Opioid Use Disorder in Pregnancy: Health Policy and Practice in the Midst of an Epidemic. Obstet. Gynecol. 2016, 128, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Swift, R.M.; Dudley, M.; DePetrillo, P.; Camara, P.; Griffiths, W. Altered methadone pharmacokinetics in pregnancy: Implications for dosing. J. Subst. Abuse 1989, 1, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Haight, S.C.; Ko, J.Y.; Tong, V.T.; Bohm, M.K.; Callaghan, W.M. Opioid use disorder documented at delivery hospitalization—United States, 1999–2014. Morb. Mortal. Wkly. Rep. 2018, 67, 845. [Google Scholar] [CrossRef] [PubMed]
- Seib, C.A.; Daglish, M.; Heath, R.; Booker, C.; Reid, C.; Fraser, J. Screening for alcohol and drug use in pregnancy. Midwifery 2012, 28, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Winkelman, T.N.; Villapiano, N.; Kozhimannil, K.B.; Davis, M.M.; Patrick, S.W. Incidence and costs of neonatal abstinence syndrome among infants with Medicaid: 2004–2014. Pediatrics 2018, 141, e20173520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chasnoff, I.J.; McGourty, R.F.; Bailey, G.W.; Hutchins, E.; Lightfoot, S.O.; Pawson, L.L.; Fahey, C.; May, B.; Brodie, P.; McCulley, L.; et al. The 4P’s Plus screen for substance use in pregnancy: Clinical application and outcomes. J. Perinatol. 2005, 25, 368–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pahl, A.; Young, L.; Buus-Frank, M.E.; Marcellus, L.; Soll, R. Non-pharmacological care for opioid withdrawal in newborns. Cochrane Database Syst. Rev. 2020, 12, CD013217. [Google Scholar] [CrossRef]
- Seligman, N.S.; Salva, N.; Hayes, E.J.; Dysart, K.C.; Pequignot, E.C.; Baxter, J.K. Predicting length of treatment for neonatal abstinencesyn drome in methadone-exposed neonates. Am. J. Obstet. Gynecol. 2008, 199, 396-e1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborn, D.A.; Jeffery, H.E.; Cole, M.J. Opiate treatment for opiate withdrawal in new born infants. Cochrane Database Syst. Rev. 2010, 10. [Google Scholar] [CrossRef]
- Wiegand, S.L.; Stringer, E.M.; Stuebe, A.M.; Jones, H.; Seashore, C.; Thorp, J. Buprenorphine and naloxone compared with methadone treatment in pregnancy. Obstet. Gynecol. 2015, 125, 363–368. [Google Scholar] [CrossRef]
- Hudak, M.L.; Tan, R.C.; Committee on Drugs; Committee on Fetus and Newborn; Frattarelli, D.A.; Galinkin, J.L.; Green, T.P.; Neville, K.A.; Paul, I.M.; Van Den Anker, J.N.; et al. Neonatal drug withdrawal. Pediatrics 2012, 129, 540–560. [Google Scholar] [CrossRef] [Green Version]
- Velez, M.L.; Jansson, L.M.; Schroeder, J.; Williams, E. Prenatal methadone exposure and neonatal neuro behavioral functioning. Pediatr. Res. 2009, 66, 704–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fill, M.M.A.; Miller, A.M.; Wilkinson, R.H.; Warren, M.D.; Dunn, J.R.; Schaffner, W.; Jones, T.F. Educational disabilities among children born with neonatal abstinence syndrome. Pediatrics 2018, 142, e20180562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, B.S.; Rosen, T.; Dingman, S.; Toth, Z.R.; Sawardekar, S.; Hao, X.; Liu, F.; Xu, D.; Dong, Z.; Peterson, J.B.; et al. Associations of maternal prenatal drug abuse with measures of newborn brain structure, tissue organization, and metabolite concentrations. JAMA Pediatr. 2020, 174, 831–842. [Google Scholar] [CrossRef]
- Walhovd, K.B.; Moe, V.; Slinning, K.; Due-Tønnessen, P.; Bjørnerud, A.; Dale, A.M.; Van der Kouwe, A.; Quinn, B.T.; Kosofsky, B.; Greve, D.; et al. Volume triccerebral characteristics of children exposed to opiates and other substances in utero. Neuro Image 2007, 36, 1331–1344. [Google Scholar] [PubMed] [Green Version]
- Honein, M.A.; Boyle, C.; Redfield, R.R. Public health surveillance of prenatal opioid exposure in mothers and infants. Pediatrics 2019, 143, e20183801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terplan, M.; Minkoff, H. Neonatal abstinence syndrome and ethical approaches to the identification of pregnant women who use drugs. Obstet. Gynecol. 2017, 129, 164–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACOG Committee on Health Care for Underserved Women. ACOG Committee Opinion No. 524: Opioid abuse, dependence, and addiction in pregnancy. Obstet. Gynecol. 2012, 119, 1070–1076. [Google Scholar] [CrossRef]
- Wong, S.; Ordean, A.; Kahan, M. Substance use in pregnancy. J. Obstet. Gynaecol. Can. 2011, 33, 367–384. [Google Scholar] [CrossRef]
- Fricker, H.S.; Segal, S. Narcotic addiction, pregnancy, and the newborn. Am. J. Dis. Child. 1978, 132, 360–366. [Google Scholar] [CrossRef]
- Hein, S.; Clouser, B.; Tamim, M.M.; Lockett, D.; Brauer, K.; Cooper, L.; Cleveland, L. Eat, sleep, console and adjunctive buprenorphine improved outcomes in neonatal opioid withdrawal syndrome. Adv. Neonatal. Care 2021, 21, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.; Moyer, A.; Glait, M.; Yan, K.; Dasgupta, M.; Saudek, K.; Cabacungan, E. Correlating Scores but Contrasting Outcomes for Eat Sleep Console Versus Modified Finnegan. Hosp. Pediatr. 2021, 11, 350–357. [Google Scholar] [CrossRef] [PubMed]
- PCSAO. Available online: https://www.pcsao.org/perch/resources/downloads/opiateconfrogerwardspresentation.pdf (accessed on 15 November 2022).
- SAMHSA. Available online: https://www.samhsa.gov/data/sites/default/files/NSDUHresults 2010/NSDUH results 2010.htm (accessed on 15 November 2022).
- National Institute on Drug Abuse. Available online: https://nida.nih.gov/publications/drugs-brains-behavior-science-addiction/preface (accessed on 15 November 2022).
- Frey, M.T.; Meaney-Delman, D.; Bowen, V.; Yazdy, M.M.; Watkins, S.M.; Thorpe, P.G.; Honein, M.A. Surveillance for emerging threats to pregnant women and infants. J. Womens Health 2019, 28, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A.; Daka, L.; Goldzweig, G.; Gil, Y.; Mjen, L.; Levit, S.; Shufman, E.; Bar-Hamburger, R.; Greenbaum, C.W. Neurodevelopmental and psychological assessment of adolescents born to drug-addicted parents: Effects of SES and adoption. Child Abuse Negl. 2010, 34, 354–368. [Google Scholar] [CrossRef] [PubMed]
- Youth Today. Available online: https://youthtoday.org/ 2016/09/is-u-s-opioid-crisis-straining-state-child-welfare-systems/ (accessed on 15 November 2022).
- Falletta, L.; Hamilton, K.; Fischbein, R.; Aultman, J.; Kinney, B.; Kenne, D. Perceptions of child protective services among pregnant or recently pregnant, opioid-using women in substance abuse treatment. Child. Abuse Negl. 2018, 79, 125–135. [Google Scholar] [CrossRef]
- Nigri, P.; Corsello, G.; Nigri, L.; Bali, D.; Kuli-Lito, G.; Plesca, D.; Pop, T.L.; Carrasco-Sanz, A.; Namazova-Baranova, L.; Mestrovic, J.; et al. Prevention and contrast of child abuse and neglect in the practice of European paediatricians: A multi-national pilot study. Ital. J. Pediatr. 2021, 47, 1–8. [Google Scholar] [CrossRef]
- Green, B.L.; Rockhill, A.; Furrer, C. Does substance abuse treatment make a difference for child welfare case outcomes? A statewide longitudinal analysis. Child. Youth Serv. Rev. 2007, 29, 460–473. [Google Scholar] [CrossRef]
- Taplin, S.; Mattick, R.P. The nature and extent of child protection involvement among heroin-using mothers in treatment: High rates of reports, removals at birth and children in care. Drug Alcohol. Rev. 2015, 34, 31–37. [Google Scholar] [CrossRef]
- Albano, G.D.; Malta, G.; La Spina, C.; Rifiorito, A.; Provenzano, V.; Triolo, V.; Vaiano, F.; Bertol, E.; Argo, A. Toxicological Findings of Self-Poisoning Suicidal Deaths: A Systematic Review by Countries. Toxics 2022, 10, 654. [Google Scholar] [CrossRef]
- Di Nunno, N.; Esposito, M.; Argo, A.; Salerno, M.; Sessa, F. Pharmacogenetics and Forensic Toxicology: A New Step towards a Multidisciplinary Approach. Toxics 2021, 9, 292. [Google Scholar] [CrossRef]
- Basilicata, P.; Giugliano, P.; Vacchiano, G.; Simonelli, A.; Guadagni, R.; Silvestre, A.; Pieri, M. Forensic Toxicological and Medico-Legal Evaluation in a Case of Incongruous Drug Administration in Terminal Cancer Patients. Toxics 2021, 9, 356. [Google Scholar] [CrossRef] [PubMed]
- Buccelli, C.; Della Casa, E.; Paternoster, M.; Niola, M.; Pieri, M. Gender differences in drugabuse in the forensictoxicologicalapproach. Forensic Sci. Int. 2016, 265, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Triolo, V.; Spanò, M.; Buscemi, R.; Gioè, S.; Malta, G.; Čaplinskiene, M.; Vaiano, F.; Bertol, E.; Zerbo, S.; Albano, G.D.; et al. EtG Quantification in Hair and Different Reference Cut-Offs in Relation to Various Pathologies: A Scoping Review. Toxics 2022, 10, 682. [Google Scholar] [CrossRef] [PubMed]
Maternal Biological Matrices | Advantages | Disadvantages | Detection Window |
---|---|---|---|
URINE | Represents the most-used matrix; The collection is easy and non-invasive. | Restricted detection window; Easily adulterate. | Few days. |
HAIR | The collection is not invasive and is easy to carry out; It is a very stable matrix (even for years); It has turned out to be more sensitive than the other matrices. | Unable to detect recent drug use; Possible biases derived from the color of the hair; The detection of drugs depends on the length of the hair. | One year maximum. |
NAIL | The collection is simple and non-invasive; Long detection window; | Sebum and sweat can contaminate the sample; The detection of drugs depends on their length. | Few weeks. |
BREAST MILK | The collection is easy and non-invasive; Reflects postpartum exposure. | The collection can be performed only in women who are breastfeeding; High variability of proteins and lipids, which makes interpretation of results difficult; It is a matrix that changes during breastfeeding. | Few days. |
BLOOD | It is one of the most commonly used matrices; | The collection is invasive and requires qualified personnel. | Few days. |
SWEAT | The collection is easy and non-invasive; Longer urine detection window; | Harvesting can cause skin irritation; Individual variations within sweat production; Estimating the volume of sweat produced is complicated. | Few days. |
ORAL FLUID | Sample collection is simple, fast, and non-invasive; Availability of devices as collection points; | It is common to collect an inadequate sample volume; The collection procedure is not standardized; Possible unintentional contamination. | Few days. |
Neonatal Biological Matrices | Advantages | Disadvantages | Detection Window |
---|---|---|---|
URINE | Specimen of choice for the purposes of newborn drug testing. | The first void is frequently missed. | Few days. |
MECONIUM | The collection is not invasive; Detects drug exposure for the second and third trimesters. | This matrix is only available a few days after delivery; Easily contaminated by urine or milk stool; Identifies drugs administered during labor and delivery; Prolonged storage can alter the stability of the drugs. | Second and third trimester of pregnancy. |
UMBILICAL CORD (tissue or blood) | The collection is easily carried out and done so in a single time; It does not identify the drugs taken after birth. | Identifies the medications taken during labor and delivery; Maternal blood can contaminate this matrix. | Third trimester of pregnancy. |
HAIR | The sample can be stored at environmental temperature; It reflects drug exposure in the third trimester of pregnancy; Avoids the detection of drugs administered during labor and delivery. | It may be difficult or impossible to obtain; Inability to detect recent drug use; The detection of drugs depends on the length of the hair. | Few months. |
NAIL | Neonatal nail collected at birth accounts for second and third trimester exposure; Avoids the detection of drugs administered after birth. | It may be challenging to obtain enough nail samples from small newborns; The test is not widely available. | Few weeks. |
PLACENTA | Easy and noninvasive collection; Avoids the detection of drugs administered after birth. | Requires additional sample preparation and efficient cleanup; The test is not widely available. | Few days. |
VERNIX | Easy and noninvasive collection; Sample can be easily stored until analysis. | May be contaminated with urine or milk stool; Drugs administered during labor and delivery may be detected | Last 24 weeks of gestation. |
AMNIOTIC FLUID | Requires minimal sample cleanup. | Risk of possible complications is associated with collection procedure; Sampling procedure is highly invasive. | Few months. |
Biological Matrices | Authors, Year | Sample Preparation | Extraction–Separation | Analytical Methods | Opioids Identified |
---|---|---|---|---|---|
MECONIUM | Concheiro, 2017 [30] | /// | LLE | FPIA-EMIT/GC-MS | COD-MOR-6AM-METH |
Xavier Joya, 2016 [35] | Methanol | SPE | LC-MS | COD-MOR-6AM-METH | |
Lozano, 2007 [39] | /// | SPE | LC-MS | 6AM-MOR-COD | |
Vinner, 2003 [47] | /// | LLE | FPIA-EMIT/GC-MS | 6AM-MOR-COD– | |
Marin, 2016 [49] | Methanol | SPE | LC-MS e HPLC | COD-MOR-6AM-METH | |
Kintz, 1993 [51] | /// | LLE | FPIA-EMIT/GC-MS | COD-MOR-6AM | |
Pichini, 2003 [54] | /// | SPE | LC-MS | NBUP | |
UMBILICAL CORD | Xavier Joya, 2016 [35] | Formic acid | SPE | LC-MS | COD-MOR-6AM-METH |
Concheiro, 2013 [36] | Acetyl nitrile | SPE | LC-MS | COD-MOR-6AM | |
Stolk, 1997 [37] | Formic acid | SPE | LC-MS | MOR-METH | |
NEONATAL HAIR | Marchei, 2006 [38] | /// | LLE | GC-MS | 6AM-MOR-COD-METH |
Lozano, 2007 [39] | /// | /// | FPIA-EMIT/GC-MS | 6AM-MOR-COD-METH | |
Ostrea, 1980 [40] | /// | /// | FPIA-EMIT/GC-MS | COD-MOR-6AM-METH | |
NEONATAL URINE | Vinner, 2003 [47] | /// | LLE | FPIA-EMIT/GC-MS | 6AM-MOR-COD |
Kintz, 1993 [51] | /// | LLE | FPIA-EMIT/GC-MS | COD-MOR-6AM | |
MATERNAL HAIR | Kintz, 1993 [51] | /// | LLE | ELISA | /// |
MATERNAL URINE | Falcon, 2010 [16] | /// | /// | LC-MS | COD-MOR-6AM |
Vinner, 2003 [47] | /// | LLE | FPIA-EMIT/GC-MS | METH | |
Kintz, 1993 [51] | /// | LLE | FPIA-EMIT/GC-MS | 6AM-MOR-COD | |
MATERNAL BLOOD | Falcon, 2010 [16] | /// | /// | GC-MS | COD-MOR-6AM |
BREAST MILK | Falcon, 2010 [16] | /// | SPE | LC-MS-MS | COD-MOR-6AM |
Neonatal Opioid Withdrawal Syndrome (NOWS) | |
---|---|
Predictive factors |
|
Timing of onset of symptoms |
|
Symptoms |
|
Long-term outcomes |
|
Assessment |
|
Non-pharmacologic treatment |
|
Pharmacologic treatment |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albano, G.D.; La Spina, C.; Pitingaro, W.; Milazzo, V.; Triolo, V.; Argo, A.; Malta, G.; Zerbo, S. Intrauterine and Neonatal Exposure to Opioids: Toxicological, Clinical, and Medico-Legal Issues. Toxics 2023, 11, 62. https://doi.org/10.3390/toxics11010062
Albano GD, La Spina C, Pitingaro W, Milazzo V, Triolo V, Argo A, Malta G, Zerbo S. Intrauterine and Neonatal Exposure to Opioids: Toxicological, Clinical, and Medico-Legal Issues. Toxics. 2023; 11(1):62. https://doi.org/10.3390/toxics11010062
Chicago/Turabian StyleAlbano, Giuseppe Davide, Corinne La Spina, Walter Pitingaro, Vanessa Milazzo, Valentina Triolo, Antonina Argo, Ginevra Malta, and Stefania Zerbo. 2023. "Intrauterine and Neonatal Exposure to Opioids: Toxicological, Clinical, and Medico-Legal Issues" Toxics 11, no. 1: 62. https://doi.org/10.3390/toxics11010062
APA StyleAlbano, G. D., La Spina, C., Pitingaro, W., Milazzo, V., Triolo, V., Argo, A., Malta, G., & Zerbo, S. (2023). Intrauterine and Neonatal Exposure to Opioids: Toxicological, Clinical, and Medico-Legal Issues. Toxics, 11(1), 62. https://doi.org/10.3390/toxics11010062