Heavy Metals in Surface Sediment of Plateau Lakes in Tibet, China: Occurrence, Risk Assessment, and Potential Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Quality Assurance and Quality Control
2.4. Risk Assessment
2.4.1. Index of Potential Ecological Risk
2.4.2. Sediment Quality Guidelines
2.4.3. Index of Toxic Risk
2.4.4. Statistical Analysis
3. Results and Discussion
3.1. Distribution of Other Physical and Chemical Indicators
3.2. Concentration of Heavy Metals in Surface Sediment
As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|
Yamzho Yum Tso | 24.44 ± 2.47 | 0.05 ± 0.01 | 37.60 ± 10.90 | 26.17 ± 6.89 | 0.035 ± 0.001 | 17.31 ± 0.76 | 11.95 ± 1.64 | 39.43 ± 4.12 |
Nam Tso | 6.59 ± 1.79 | 0.13 ± 0.02 | 27.87 ± 1.84 | 8.48 ± 1.24 | 0.016 ± 0.001 | 11.05 ± 0.34 | 21.41 ± 0.87 | 29.67 ± 12.43 |
Siling Tso | 16.79 ± 2.64 | 0.13 ± 0.02 | 54.68 ± 3.13 | 14.74 ± 2.19 | 0.060 ± 0.005 | 20.20 ± 2.22 | 23.70 ± 0.11 | 58.67 ± 2.97 |
Co Ngoin Tso | 11.72 ± 1.26 | 0.05 ± 0.01 | 24.47 ± 0.53 | 6.20 ± 0.62 | 0.010 ± 0.001 | 9.91 ± 0.65 | 20.20 ± 1.04 | 39.13 ± 10.84 |
Tangra Yum Tso | 27.29 ± 0.92 | 0.18 ± 0.01 | 52.58 ± 4.99 | 19.55 ± 0.60 | 0.019 ± 0.001 | 19.96 ± 0.36 | 49.41 ± 2.63 | 91.01 ± 3.08 |
Peiku Tso | 15.34 ± 4.02 | 0.12 ± 0.01 | 49.66 ± 7.76 | 10.08 ± 0.92 | 0.033 ± 0.004 | 14.88 ± 0.14 | 21.36 ± 0.26 | 45.62 ± 6.49 |
Zhari Nam Tso | 28.79 ± 4.42 | 0.10 ± 0.01 | 17.25 ± 1.98 | 3.24 ± 1.64 | 0.019 ± 0.001 | 6.95 ± 1.06 | 18.11 ± 0.74 | 48.32 ± 3.40 |
Gongzhu Tso | 331.87 ± 21.63 | 0.09 ± 0.01 | 63.15 ± 8.35 | 20.39 ± 3.26 | 0.014 ± 0.001 | 22.61 ± 0.95 | 18.09 ± 0.17 | 40.79 ± 4.99 |
Rinchen Shup Tso | 38.16 ± 7.29 | 0.25 ± 0.02 | 22.35 ± 1.55 | 18.17 ± 5.02 | 0.011 ± 0.001 | 8.53 ± 0.46 | 38.44 ± 1.56 | 90.58 ± 20.03 |
Mapam Yum Tso | 28.69 ± 6.42 | 0.09 ± 0.01 | 142.96 ± 17.66 | 15.54 ± 5.26 | 0.028 ± 0.004 | 61.82 ± 8.07 | 29.17 ± 1.05 | 44.25 ± 7.93 |
Tuo ji Tso | 15.11 ± 4.02 | 0.32 ± 0.01 | 57.03 ± 7.76 | 23.39 ± 0.92 | 0.042 ± 0.004 | 28.68 ± 0.14 | 27.54 ± 0.26 | 81.74 ± 6.49 |
La’ ang Tso | 63.11 ± 3.71 | 0.04 ± 0.01 | 426.94 ± 11.72 | 11.74 ± 1.45 | 0.021 ± 0.002 | 211.86 ± 23.31 | 7.58 ± 0.36 | 33.42 ± 7.93 |
Maximum | 331.87 | 0.32 | 426.94 | 26.17 | 0.06 | 211.86 | 49.41 | 91.01 |
Minimum | 6.59 | 0.04 | 17.25 | 3.24 | 0.01 | 6.95 | 7.58 | 29.67 |
CV | 169.72% | 61.19% | 133.81% | 45.64% | 55.45% | 151.59% | 45.26% | 39.31% |
TEC | 9.79 | 0.99 | 43.4 | 31.6 | 0.18 | 22.7 | 35.5 | 121 |
PEC | 33 | 4.98 | 111 | 149 | 1.06 | 48.6 | 128 | 459 |
<TEC(%) | 8.33% | 100.00% | 41.67% | 100.00% | 100.00% | 75.00% | 83.33% | 100.00% |
≥TEC < PEC(%) | 66.67% | - | 41.67% | - | - | 8.33% | 16.67% | - |
>PEC(%) | 25.00% | - | 16.66% | - | - | 16.67% | - | - |
Soil background value in Tibet [48] | 16.8 | 0.078 | 68.1 | 19.6 | 0.02 | 28.7 | 27.9 | 71.1 |
China’s crustal abundance [52] | 1.90 | 0.05 | 63.00 | 38.00 | 0.02 | 57.00 | 15.00 | 86.00 |
Global crustal abundance [52] | 2.20 | 0.20 | 73.50 | 63.00 | 0.45 | 89.00 | 12.00 | 94.00 |
Average value of lake sediment in China [56] | 12.1 | 0.194 | 85 | 31.7 | 0.053 | 36.8 | 31 | 88 |
3.3. Spatial Distribution of Heavy Metals in Surface Sediments
3.4. Risk Assessment
3.4.1. Toxic Risk Index Assessment
3.4.2. Potential Ecological Risk Assessment
3.5. Source Identification of Heavy Metals in the Plateau Lakes in Tibet
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Y.-F.; Shi, Q.-Y.; Qu, J.-Y.; He, M.-X.; Liu, Q. A pollution risk assessment and source analysis of heavy metals in sediments: A case study of Lake Gehu, China. Chin. J. Anal. Chem. 2022, 50, 100077. [Google Scholar] [CrossRef]
- Qin, Y.; Tao, Y. Pollution status of heavy metals and metalloids in Chinese lakes: Distribution, bioaccumulation and risk assessment. Ecotox. Environ. Safe. 2022, 248, 114293. [Google Scholar] [CrossRef]
- Yu, G.B.; Liu, Y.; Yu, S.; Wu, S.C.; Leung, A.O.W.; Luo, X.S.; Xu, B.; Li, H.B.; Wong, M.H. Inconsistency and comprehensiveness of risk assessments for heavy metals in urban surface sediments. Chemosphere 2011, 85, 1080–1087. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Liu, M.; Wang, S.; Fang, H.; Xian, X.; Cao, W.; Ding, S.; Hou, L.; Wang, P.; Chen, J. Research progress and prospect of sediment environment and pollution control in China in recent 20 years. Adv. Earth. Sci. 2021, 36, 346–374. [Google Scholar]
- Wang, Y.; Yang, L.; Kong, L.; Liu, E.; Wang, L.; Zhu, J. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena 2015, 125, 200–205. [Google Scholar] [CrossRef]
- Rao, K.; Tang, T.; Zhang, X.; Wang, M.; Liu, J.; Wu, B.; Wang, P.; Ma, Y. Spatial-temporal dynamics, ecological risk assessment, source identification and interactions with internal nutrients release of heavy metals in surface sediments from a large Chinese shallow lake. Chemosphere 2021, 282, 131041. [Google Scholar] [CrossRef]
- Xiao, H.; Shahab, A.; Ye, F.; Wei, G.; Li, J.; Deng, L. Source-specific ecological risk assessment and quantitative source apportionment of heavy metals in surface sediments of Pearl River Estuary, China. Mar. Pollut. Bull. 2022, 179, 113726. [Google Scholar] [CrossRef] [PubMed]
- Shil, S.; Singh, U.K. Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecol. Indic. 2019, 106, 105455. [Google Scholar] [CrossRef]
- Li, Z.; Fu, Z.; Wang, S.; Zhang, Y.; Zhang, J.; Liu, Y.; Guo, H.; Yang, P. Spatial distribution, ecological risk, and human health assessment of heavy metals in lake surface sections—A case study of Qinghai Lake, China. Environ. Sci. Pollut. Res. 2022, 13, 5137–5149. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, X.; Chen, Z.; Zhou, X.; Lu, X.; Liu, J. Pollution characteristics and source analysis of heavy metals in surface sediments of Luoyuan Bay, Fujian. Environ. Res. 2022, 203, 111911. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Shou, Y.; Zhao, J.; Zhu, Y.; Qiao, J.; Shen, Z.; Zhang, W.; Han, N.; Nunez-Delgado, A. Heavy metals pollution characteristics and risk assessment in sediments and waters: The case of Tianjin, China. Environ. Res. 2022, 212, 113162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, S.; Chen, Y.; Chen, B.; Lei, T. Distribution characteristics, source identification, and risk assessment of heavy metals in surface sediments of the salt lakes in the Ordos Plateau, China. Environ. Sci. Pollut. Res. 2022, 29, 74772–74783. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, Z.; Liu, Y.; Shan, B.; Yu, W.; Li, H.; Sun, D. Heavy metal pollution and stable isotope ratios (δ13C and δ15N) in marine organisms from the Northern Beibu Gulf, South China Sea. Mar. Pollut. Bull. 2021, 166, 112230. [Google Scholar] [CrossRef]
- Rehman, U.U.; Khan, S.; Muhammad, S. Ingestion of Arsenic-Contaminated Drinking Water Leads to Health Risk and Traces in Human Biomarkers (Hair, Nails, Blood, and Urine), Pakistan. Expos. Health. 2019, 12, 243–254. [Google Scholar] [CrossRef]
- Shahab, A.; Hui, Z.; Rad, S.; Xiao, H.; Siddique, J.; Huang, L.L.; Ullah, H.; Rashid, A.; Taha, M.R.; Zada, N. A comprehensive review on pollution status and associated health risk assessment of human exposure to selected heavy metals in road dust across different cities of the world. Environ. Geochem. Health 2023, 45, 585–606. [Google Scholar] [CrossRef]
- Gu, Y.; Lin, Q.; Gao, Y. Metals in exposed-lawn soils from 18 urban parks and its human health implications in southern China’s largest city, Guangzhou. J. Clean. Prod. 2016, 115, 122–129. [Google Scholar] [CrossRef]
- Ullah, Z.; Rashid, A.; Ghani, J.; Talib, M.A.; Shahab, A.; Lun, L. Arsenic Contamination, Water Toxicity, Source Apportionment, and Potential Health Risk in Groundwater of Jhelum Basin, Punjab, Pakistan. Biol. Trace Elem. Res. 2023, 201, 514–524. [Google Scholar] [CrossRef]
- Chai, L.; Wang, Y.; Wang, X.; Ma, L.; Cheng, Z.; Su, L. Pollution characteristics, spatial distributions, and source apportionment of heavy metals in cultivated soil in Lanzhou, China. Ecol. Indic. 2021, 125, 107507. [Google Scholar] [CrossRef]
- Luo, X.; Ren, B.; Hursthouse, A.S.; Jiang, F.; Deng, R. Potentially toxic elements (PTEs) in crops, soil, and water near Xiangtan manganese mine, China: Potential risk to health in the foodchain. Environ. Geochem. Health 2020, 42, 1965–1976. [Google Scholar] [CrossRef]
- Adimalla, N.; Wang, H. Distribution, contamination, and health risk assessment of heavy metals in surface soils from northern Telangana, India. Arab. J. Geosci. 2018, 11, 684. [Google Scholar] [CrossRef]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Deng, L.; You, S.; Xiao, H.; Li, K.; Shahab, A. A comprehensive study of potentially toxic element contamination and source quantitative assessment by positive matrix factorization model: Risk from the fine road dust of Chehe mining area, China. Environ. Sci. Pollut. Res. 2023, 30, 1189–1200. [Google Scholar] [CrossRef] [PubMed]
- Qiao, D.; Wang, G.; Li, X.; Wang, S.; Zhao, Y. Pollution, sources and environmental risk assessment of heavy metals in the surface AMD water, sediments and surface soils around unexploited Rona Cu deposit, Tibet, China. Chemosphere 2020, 248, 125988. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.J.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef]
- Deng, L.; Shahab, A.; Xiao, H.; Li, J.; Rad, S.; Jiang, J.; Guo, Y.; Jiang, P.; Huang, H.; Li, X.; et al. Spatial and temporal variation of dissolved heavy metals in the Lijiang River, China: Implication of rainstorm on drinking water quality. Environ. Sci. Pollut. Res. 2021, 28, 68475–68486. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, K.; Yuan, Z.; Bi, J.; Huang, L. Ecological risk assessment of heavy metals in surface sediments of six major chinese freshwater lakes. J. Environ. Qual. 2013, 42, 341–350. [Google Scholar] [CrossRef]
- Ding, L.; Kapp, P.; Cai, F.; Garzione, C.N.; Xiong, Z.; Wang, H.; Wang, C. Timing and mechanisms of Tibetan Plateau uplift. Nat. Rev. Earth. Environ. 2022, 3, 652–667. [Google Scholar] [CrossRef]
- Li, W.P. Research of Nutrient Element Geochemistry Circulation and Heavy Metal Pollution in Plateau Typical Lakes in Inner Mongolia. Master Dissertation, Inner Mongolia Agricultural University, Hohhot, China, 2012. [Google Scholar]
- Liu, W.; Xie, C.; Zhao, L.; Li, R.; Liu, G.; Wang, W.; Liu, H.; Wu, T.; Yang, G.; Zhang, Y. Rapid expansion of lakes in the endorheic basin on the Qinghai-Tibet Plateau since 2000 and its potential drivers. Catena 2021, 197, 104942. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Gong, P.; Zhao, X.; Wu, G.; Turner, S.; Yao, T. One century sedimentary records of polycyclic aromatic hydrocarbons, mercury and trace elements in the Qinghai Lake, Tibetan Plateau. Environ. Pollut. 2010, 158, 3065–3070. [Google Scholar] [CrossRef]
- Li, C.; Kang, S.; Zhang, Q.; Gao, S.; Sharma, C.M. Heavy metals in sediments of the Yarlung Tsangbo and its connection with the arsenic problem in the Ganges–Brahmaputra Basin. Environ. Geochem. Health 2011, 33, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Battarbee, R.W.; Turner, S.D.; Rose, N.L.; Derwent, R.G.; Wu, G.; Yang, R. Historical reconstruction of mercury pollution across the Tibetan Plateau using lake sediments. Environ. Sci. Technol. 2010, 44, 2918–2924. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Duan, D.; Lu, J.; Luo, Y.; Wen, X.; Guo, X.; Boman, B.J. Inorganic pollution around the Qinghai-Tibet Plateau: An overview of the current observations. Sci. Total Environ. 2016, 550, 628–636. [Google Scholar] [CrossRef]
- Zhang, H.; Huo, S.; Yeager, K.M.; Xi, B.; Zhang, J.; He, Z.; Ma, C.; Wu, F. Accumulation of arsenic, mercury and heavy metals in lacustrine sediment in relation to eutrophication: Impacts of sources and climate change. Ecol. Indic. 2018, 93, 771–780. [Google Scholar] [CrossRef]
- Li, S.H.; Wang, M.G.; Yang, Q.; Wang, H.; Zhu, J.M.; Zheng, B.S.; Zheng, Y. Enrichment of arsenic in surface water, stream sediments and soils in Tibet. J. Geochem. Explor. 2013, 135, 104–116. [Google Scholar] [CrossRef]
- Li, L.; Wu, J.; Lu, J.; Li, K.; Zhang, X.; Min, X.; Gao, C.; Xu, J. Water quality evaluation and ecological-health risk assessment on trace elements in surface water of the northeastern Qinghai-Tibet Plateau. Ecotox. Environ. Safe. 2022, 241, 113775. [Google Scholar] [CrossRef]
- Liu, J.; Tapponnier, P.; Gaudemer, Y.; Ding, L. Quantifying landscape differences across the Tibetan plateau: Implications for topographic relief evolution. J. Geophys. Res. Earth. 2008, 113, F04018. [Google Scholar]
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Min, N.; Chang, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2016, 144, 264–272. [Google Scholar] [CrossRef]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Mahboobeh, K.H.; Sadeghi, S.H.; Asadi, H. Comparing grain size distribution of sediment and original soil under raindrop detachment and raindrop-induced and flow transport mechanism. Hydrol. Sci. J. 2018, 63, 312–323. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar]
- MacDonald, D.D.; Ingersoll, C.G.; Berger, T.A. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Con. Tox. 2000, 39, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Cao, Z.; Zhang, Z.; Li, R.; Hu, B. Spatial distribution and pollution assessment of heavy metals in the surface sediments of the Bohai and Yellow Seas. Mar. Pollut. Bull. 2016, 110, 596–602. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, J.; Zhao, Q.; Lu, Q.; Jia, J.; Wen, X. Heavy metals in wetland soils along a wetland-forming chronosequence in the Yellow River Delta of China: Levels, sources and toxic risks. Ecol. Indic. 2016, 69, 331–339. [Google Scholar] [CrossRef]
- Jaskuła, J.; Sojka, M. Assessment of spatial distribution of sediment contamination with heavy metals in the two biggest rivers in Poland. Catena 2022, 211, 105959. [Google Scholar] [CrossRef]
- Liu, P.; Wu, Z.; Luo, X.; Wen, M.; Huang, L.; Chen, B.; Zheng, C.; Zhu, C.; Liang, R. Pollution assessment and source analysis of heavy metals in acidic farmland of the karst region in southern China—A case study of Quanzhou County. Appl. Geochem. 2020, 123, 104764. [Google Scholar] [CrossRef]
- Wei, F.; Chen, J.; Wu, Y. Background Values of Soil Elements in China; China Environmental Science Presss: Beijing, China, 1990. [Google Scholar]
- Zhang, Q.; Kang, S.; Li, C.; Chen, F.; Boukalova, Z.; Černý, I. Assessment of elemental distribution and trace element contamination in surficial wetland sediments, Southern Tibetan Plateau. Environ. Monit. Assess. 2011, 177, 301–313. [Google Scholar] [CrossRef]
- Zang, Q.; Chen, L.; Yang, Y.; Zhang, W. Effects of urbanization on the pollution and ecological risk of heavy metals in surface sediments from lakes: Comparison of the plateau and urban lakes. Environ. Sci. Technol. 2020, 43, 43–50. [Google Scholar]
- Che, F.; Chen, J.; Zhang, B.; Jiang, X.; Wang, S. Distribution, risk and bioavailability of metals in sediments of Lake Yamdrok Basin on the Tibetan Plateau, China. J. Environ. Sci. 2020, 97, 169–179. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J.; Chen, H.; Li, Q.; Yu, C.; Huang, X.; Guo, H. Water environment in the Tibetan Plateau: Heavy metal distribution analysis of surface sediments in the Yarlung Tsangpo River Basin. Environ. Geochem. Health 2020, 42, 2451–2469. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Chen, J.; Jiang, X.; Zheng, B. Combined use of diffusive gradients in thin film, high-resolution dialysis technique and traditional methods to assess pollution and bioavailability of sediment metals of lake wetlands in Taihu Lake Basin. Sci. Total Environ. 2019, 671, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Yang, Z.; Filippelli, G.M.; Ji, J.; Ji, W.; Liu, X.; Wang, L.; Yu, T.; Wu, T.; Zhuo, X.; et al. Distribution and secondary enrichment of heavy metal elements in karstic soils with high geochemical background in Guangxi, China. Chem. Geol. 2021, 567, 120081. [Google Scholar] [CrossRef]
- Zhu, Y.B. Assessment of Surface Water Environmental Quality and Analysis of Main Pollutant Sources in Ali Area. Master Thesis, Kunming University of Science and Technology, Kunming, China, 2022. [Google Scholar]
- Cheng, H.; Li, M.; Zhao, C.; Yang, K.; Li, K.; Peng, M.; Yang, Z.; Liu, F.; Liu, Y.; Bai, R. Concentrations of toxic metals and ecological risk assessment for sediments of major freshwater lakes in China. J. Geochem. Explor. 2015, 157, 15–26. [Google Scholar] [CrossRef]
- GB15618-2018; MEEPRC, Soil Environment Quality-Risk Control Standard for Soil Contamination of Agriculture Land. China Environmental Publishing Group: Beijing, China, 2018.
- Li, C.L.; Kang, S.C.; Chen, P.F.; Zhang, Q.G.; Mi, J.; Gao, S.P.; Sillanpaa, M. Geothermal spring causes arsenic contamination in river waters of the southern Tibetan Plateau, China. Environ. Earth. Sci. 2014, 71, 4143–4148. [Google Scholar] [CrossRef]
- Dixit, S.; Tiwari, S. Impact assessment of heavy metal pollution of Shahpura lake, Bhopal, India. Int. J. Environ. Res. Public Health 2008, 2, 37–42. [Google Scholar]
- Xie, C.; Huang, X.; Mu, H.; Yin, W. Impacts of land-use changes on the lakes across the Yangtze floodplain in China. Environ. Sci. Technol. 2017, 51, 3669–3677. [Google Scholar] [CrossRef]
- Li, D.; Yu, R.; Chen, J.; Leng, X.; Zhao, D.; Jia, H.; An, S. Ecological risk of heavy metals in lake sediments of China: A national-scale integrated analysis. J. Clean. Prod. 2022, 334, 130206. [Google Scholar] [CrossRef]
- Li, D.; Jiang, J.; Yan, C.; Zhang, M.; Zhao, Y.; Xiang, Y.; Ma, W.; Jia, H.; Zhao, X. Ecological heavy metals risk of saline lake sediments in Northwestern China. Pol. J. Environ. Stud. 2020, 29, 1–12. [Google Scholar] [CrossRef]
- Vu, C.T.; Lin, C.; Shern, C.C.; Yeh, G.; Le, V.G.; Tran, H.T. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecol. Indic. 2017, 82, 32–42. [Google Scholar] [CrossRef]
- Zhuang, Q.; Li, G.; Liu, Z. Distribution, source and pollution level of heavy metals in river sediments from South China. Catena 2018, 170, 386–396. [Google Scholar] [CrossRef]
- Ashayeri, S.Y.; Keshavarzi, B.; Moore, F.; Ahmadi, A.; Hooda, P.S. Risk assessment, geochemical speciation, and source apportionment of heavy metals in sediments of an urban river draining into a coastal wetland. Mar. Pollut. Bull. 2023, 186, 114389. [Google Scholar] [CrossRef] [PubMed]
- Qu, W.; Mike, D.; Wang, S. Multivariate analysis of heavy metal and nutrient concentrations in sediments of Taihu Lake, China. Hydrobiologia 2001, 450, 83–89. [Google Scholar]
- Zhang, Z.; Lu, Y.; Li, H.; Tu, Y.; Liu, B.; Yang, Z. Assessment of heavy metal contamination, distribution and source identification in the sediments from the Zijiang River, China. Sci. Total Environ. 2018, 645, 235–243. [Google Scholar] [CrossRef]
- Sheng, J.; Wang, X.; Gong, P.; Tian, L.; Yao, T. Heavy metals of the Tibetan top soils. Environ. Sci. Pollut. Res. 2012, 19, 3362–3370. [Google Scholar] [CrossRef]
- Wang, G.; Zeng, C.; Zhang, F.; Zhang, Y.; Scott, C.A.; Yan, X. Traffic-related trace elements in soils along six highway segments on the Tibetan Plateau: Influence factors and spatial variation. Sci. Total Environ. 2017, 581, 811–821. [Google Scholar] [CrossRef]
- Cong, Z.; Kang, S.; Zhang, Y.; Gao, S.; Wang, Z.; Liu, B.; Wan, X. New insights into trace element wet deposition in the Himalayas: Amounts, seasonal patterns, and implications. Environ. Sci. Pollut. Res. 2015, 22, 2735–2744. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, P.; Hu, Z.; Shu, Q.; Chen, Y. Identification of the sources and influencing factors of the spatial variation of heavy metals in surface sediments along the northern Jiangsu coast. Ecol. Indic. 2022, 137, 108716. [Google Scholar] [CrossRef]
- Hu, C.; Yang, X.; Dong, J.; Zhang, X. Heavy metal concentrations and chemical fractions in sediment from Swan Lagoon, China: Their relation to the physiochemical properties of sediment. Chemosphere 2018, 209, 848–856. [Google Scholar] [CrossRef]
- Fendorf, S.; Michael, H.A.; Van, G.A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 2010, 328, 1123–1127. [Google Scholar] [CrossRef]
- Yang, P.; Shu, Q.; Liu, Q.; Hu, Z.; Zhang, S.; Ma, Y. Distribution and factors influencing organic and inorganic carbon in surface sediments of tidal flats in northern Jiangsu, China. Ecol. Indic. 2021, 126, 107633. [Google Scholar] [CrossRef]
- An, S.; Liu, N.; Li, X.; Zeng, S.; Wang, X.; Wang, D. Understanding heavy metal accumulation in roadside soils along major roads in the Tibet Plateau. Sci. Total Environ. 2022, 802, 149865. [Google Scholar] [CrossRef] [PubMed]
- Bing, H.; Wu, Y.; Zhou, J.; Li, R.; Luo, J.; Yu, D. Vegetation and cold trapping modulating elevation-dependent distribution of trace metals in soils of a high mountain in eastern Tibetan Plateau. Sci. Rep. 2016, 6, 24081. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Gao, S. Upper crustal abundances of trace elements: A revision and update. Chem. Geol. 2008, 253, 205–221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Q.; Shahab, A.; Huang, L.; Ubaid Ali, M.; Cheng, Y.; Yang, J.; Xu, H.; Sun, Z.; Zou, Q.; Chen, Z.; et al. Heavy Metals in Surface Sediment of Plateau Lakes in Tibet, China: Occurrence, Risk Assessment, and Potential Sources. Toxics 2023, 11, 804. https://doi.org/10.3390/toxics11100804
Su Q, Shahab A, Huang L, Ubaid Ali M, Cheng Y, Yang J, Xu H, Sun Z, Zou Q, Chen Z, et al. Heavy Metals in Surface Sediment of Plateau Lakes in Tibet, China: Occurrence, Risk Assessment, and Potential Sources. Toxics. 2023; 11(10):804. https://doi.org/10.3390/toxics11100804
Chicago/Turabian StyleSu, Qiongyuan, Asfandyar Shahab, Liangliang Huang, Muhammad Ubaid Ali, Yanan Cheng, Jiahuan Yang, Hao Xu, Zhicheng Sun, Qi Zou, Zhongbing Chen, and et al. 2023. "Heavy Metals in Surface Sediment of Plateau Lakes in Tibet, China: Occurrence, Risk Assessment, and Potential Sources" Toxics 11, no. 10: 804. https://doi.org/10.3390/toxics11100804
APA StyleSu, Q., Shahab, A., Huang, L., Ubaid Ali, M., Cheng, Y., Yang, J., Xu, H., Sun, Z., Zou, Q., Chen, Z., & Kang, B. (2023). Heavy Metals in Surface Sediment of Plateau Lakes in Tibet, China: Occurrence, Risk Assessment, and Potential Sources. Toxics, 11(10), 804. https://doi.org/10.3390/toxics11100804