Evaluation and Comparison of Multi-Satellite Aerosol Optical Depth Products over East Asia Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Satellite Data
2.2. AERONET Data
2.3. Method
3. Results
3.1. Overall Assessment of Satellite Data Products
3.2. Regional Scale Evaluation
3.3. Spatial and Temporal Distribution Characteristics of the AOD in East Asian Seas
4. Discussion
4.1. Effect of AOD Magnitude on Satellite Inversion of the AOD
4.2. Effects of AE and Precipitation Water on Satellite Inversion of the AOD
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Region | AERONET | R/EE within | |||||
---|---|---|---|---|---|---|---|
MODIS | VIIRS | MISR | OMAERO | OMAERUV | CALIPSO | ||
Bohai-Yellow Sea | Yousei Anmyon Gosan | 0.84/0.59 | 0.86/0.67 | 0.87/0.79 | 0.74/0.41 | 0.63/0.58 | 0.57/0.43 |
East China Sea | Ieodo Taipei CWB Okinawa | 0.81/0.64 | 0.83/0.67 | 0.86/0.72 | 0.60/0.37 | 0.57/0.50 | 0.12/0.22 |
South China Sea | Dongsha_Island | 0.84/0.66 | 0.84/0.68 | 0.84/0.67 | 0.67/0.40 | 0.59/0.34 | 0.67/0.28 |
Tai Ping | |||||||
Hong Kong | |||||||
NGHIA DO | |||||||
Chen-Kung | |||||||
Sea of Japan | Noto | 0.83/0.64 | 0.85/0.73 | 0.85/0.81 | 0.72/0.46 | 0.64/0.63 | 0.44/0.46 |
Osaka | |||||||
Fukuoka | |||||||
Ussuriysk | |||||||
Hokkaido | |||||||
Western Pacific Ocean | Manila | 0.45/0.64 | 0.47/0.73 | 0.63/0.81 | 0.63/0.46 | 0.18/0.63 | / |
RMSE/MB | |||||||
---|---|---|---|---|---|---|---|
Region | AERONET | MODIS | VIIRS | MISR | OMAERO | OMAERUV | CALIPSO |
Bohai-Yellow Sea | Yousei Anmyon Gosan | 0.17/0.06 | 0.14/0.03 | 0.11/−0.02 | 0.23/0.10 | 0.14/−0.03 | 0.16/−0.12 |
East China Sea | Ieodo Taipei CWB Okinawa | 0.15/0.01 | 0.13/−0.001 | 0.11/−0.02 | 0.23/0.13 | 0.20/0.03 | 0.14/−0.09 |
South China Sea | Dongsha_Island | 0.16/−0.01 | 0.16/−0.03 | 0.17/−0.09 | 0.28/0.10 | 0.23/−0.04 | 0.25/−0.20 |
Tai Ping | |||||||
Hong Kong | |||||||
NGHIA DO | |||||||
Chen-Kung | |||||||
Sea of Japan | Noto | 0.11/0.05 | 0.09/0.03 | 0.08/−0.01 | 0.17/0.08 | 0.10/0.01 | 0.10/−0.06 |
Osaka | |||||||
Fukuoka | |||||||
Ussuriysk | |||||||
Hokkaido | |||||||
Western Pacific Ocean | Manila | 0.13/−0.02 | 0.14/−0.03 | 0.11/−0.03 | 0.26/0.15 | 0.16/0.03 | / |
References
- Li, J.; Carlson, B.E.; Lacis, A.A. Application of spectral analysis techniques in the intercomparison of aerosol data: 1. An EOF approach to analyze the spatial-temporal variability of aerosol optical depth using multiple remote sensing data sets. J. Geophys. Res. Atmos. 2013, 118, 8640–8648. [Google Scholar] [CrossRef]
- Mehta, M.; Singh, N.; Anshumali. Global trends of columnar and vertically distributed properties of aerosols with emphasis on dust, polluted dust and smoke—Inferences from 10-year long CALIOP observations. Remote Sens. Environ. 2018, 208, 120–132. [Google Scholar] [CrossRef]
- Chen, C.; Dubovik, O.; Schuster, G.L.; Chin, M.; Henze, D.K.; Lapyonok, T.; Li, Z.; Derimian, Y.; Zhang, Y. Multi-angular polarimetric remote sensing to pinpoint global aerosol absorption and direct radiative forcing. Nat. Commun. 2022, 13, 7459. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.I.; Stier, P.; Dagan, G.; Watson-Parris, D. Strong control of effective radiative forcing by the spatial pattern of absorbing aerosol. Nat. Clim. Chang. 2022, 12, 735–742. [Google Scholar] [CrossRef]
- Qu, B.; Gabric, A.J.; Zhao, L.; Sun, W.; Li, H.; Gu, P.; Jiang, L.; Zeng, M. The relationships among aerosol optical depth, ice, phytoplankton and dimethylsulfide and the implication for future climate in the Greenland Sea. Acta Oceanol. Sin. 2018, 37, 13–21. [Google Scholar] [CrossRef]
- Bilal, M.; Ali, M.A.; Nichol, J.E.; Bleiweiss, M.P.; de Leeuw, G.; Mhawish, A.; Shi, Y.; Mazhar, U.; Mehmood, T.; Kim, J.; et al. AEROsol generic classification using a novel Satellite remote sensing Approach (AEROSA). Front. Environ. Sci. 2022, 10, 981522. [Google Scholar] [CrossRef]
- Prasad, A.; Singh, S.; Chauhan, S.; Srivastava, M.; Singh, R.; Singh, R. Aerosol radiative forcing over the Indo-Gangetic plains during major dust storms. Atmos. Environ. 2007, 41, 6289–6301. [Google Scholar] [CrossRef]
- Koch, D.; Bond, T.C.; Streets, D.; Unger, N.; van der Werf, G.R. Global impacts of aerosols from particular source regions and sectors. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J. Variability of Major Aerosol Types in China Classified Using AERONET Measurements. Remote Sens. 2019, 11, 2334. [Google Scholar] [CrossRef]
- Pei, Q.; Saikawa, E.; Kaspari, S.; Widory, D.; Zhao, C.; Wu, G.; Loewen, M.; Wan, X.; Kang, S.; Wang, X.; et al. Sulfur aerosols in the Arctic, Antarctic, and Tibetan Plateau: Current knowledge and future perspectives. Earth-Sci. Rev. 2021, 220, 103753. [Google Scholar] [CrossRef]
- Ahn, S.H.; Yoon, Y.J.; Choi, T.J.; Lee, J.Y.; Kim, Y.P.; Lee, B.Y.; Ritter, C.; Aas, W.; Krejci, R.; Ström, J.; et al. Relationship between cloud condensation nuclei (CCN) concentration and aerosol optical depth in the Arctic region. Atmos. Environ. 2021, 267, 118748. [Google Scholar] [CrossRef]
- Remer, L.; Kaufman, Y.; Levin, Z. Uncertainties in Remote Sensing of Aerosol Radiative Forcing. 2000. Available online: https://ntrs.nasa.gov/citations/20000080268 (accessed on 1 January 2000).
- Jung, C.; Lee, J.; Um, J.; Lee, S.; Yoon, Y.; Kim, Y. Estimation of Source-Based Aerosol Optical Properties for Polydisperse Aerosols from Receptor Models. Appl. Sci. 2019, 9, 1443. [Google Scholar] [CrossRef]
- Mei, L.; Xue, Y.; de Leeuw, G.; von Hoyningen-Huene, W.; Kokhanovsky, A.A.; Istomina, L.; Guang, J.; Burrows, J.P. Aerosol optical depth retrieval in the Arctic region using MODIS data over snow. Remote Sens. Environ. 2013, 128, 234–245. [Google Scholar] [CrossRef]
- Wei, X.; Chang, N.-B.; Bai, K.; Gao, W. Satellite remote sensing of aerosol optical depth: Advances, challenges, and perspectives. Crit. Rev. Environ. Sci. Technol. 2019, 50, 1640–1725. [Google Scholar] [CrossRef]
- Chatterjee, A.; Michalak, A.M.; Kahn, R.A.; Paradise, S.R.; Braverman, A.J.; Miller, C.E. A geostatistical data fusion technique for merging remote sensing and ground-based observations of aerosol optical thickness. J. Geophys. Res. 2010, 115, D013765. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Lyapustin, A.; Sun, L.; Peng, Y.; Xue, W.; Su, T.; Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: Spatiotemporal variations and policy implications. Remote Sens. Environ. 2021, 252, 112136. [Google Scholar] [CrossRef]
- Xia, X.; Che, H.; Shi, H.; Chen, H.; Zhang, X.; Wang, P.; Goloub, P.; Holben, B. Advances in sunphotometer-measured aerosol optical properties and related topics in China: Impetus and perspectives. Atmos. Res. 2021, 249, 105286. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Z.; Li, L.; Wagener, R.; Abboud, I.; Li, K.; Li, D.; Zhang, Y.; Chen, X.; Xu, H. Aerosol optical, microphysical, chemical and radiative properties of high aerosol load cases over the Arctic based on AERONET measurements. Sci. Rep. 2018, 8, 9376. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Zhang, H.; Goswami, B.N.; Cui, Z.-l.; Yin, Y.; Yatagai, A. A simulation study of the aerosol optical depth over China in 2006 and its validation with observations. In Proceedings of the Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions II, Noumea, New Caledonia, 19–20 November 2008. [Google Scholar] [CrossRef]
- Khatri, P.; Takamura, T.; Nakajima, T.; Estellés, V.; Irie, H.; Kuze, H.; Campanelli, M.; Sinyuk, A.; Lee, S.M.; Sohn, B.J.; et al. Factors for inconsistent aerosol single scattering albedo between SKYNET and AERONET. J. Geophys. Res. Atmos. 2016, 121, 1859–1877. [Google Scholar] [CrossRef]
- Rahul, P.R.C.; Sonbawne, S.M.; Devara, P.C.S. Unusual high values of aerosol optical depth evidenced in the Arctic during summer 2011. Atmos. Environ. 2014, 94, 606–615. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Kleidman, R.G.; Mattoo, S.; Ichoku, C.; Kahn, R.; Eck, T.F. Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 2010, 10, 10399–10420. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Sun, L.; Peng, Y.; Liu, L.; He, L.; Qin, W.; Cribb, M. MODIS Collection 6.1 3 km resolution aerosol optical depth product: Global evaluation and uncertainty analysis. Atmos. Environ. 2020, 240, 117768. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhang, H.; Choi, M.; Li, S.; Kondragunta, S.; Kim, J.; Holben, B.; Levy, R.C.; Liu, Y. Evaluation of VIIRS, GOCI, and MODIS Collection 6 AOD retrievals against ground sunphotometer observations over East Asia. Atmos. Chem. Phys. 2016, 16, 1255–1269. [Google Scholar] [CrossRef]
- Anoruo, C.M. Validation of OMI seasonal and spatio-temporal variations in aerosol-cloud interactions over Banizoumbou using AERONET data. J. Atmos. Sol.-Terr. Phys. 2020, 211, 105457. [Google Scholar] [CrossRef]
- Sogacheva, L.; de Leeuw, G.; Rodriguez, E.; Kolmonen, P.; Georgoulias, A.K.; Alexandri, G.; Kourtidis, K.; Proestakis, E.; Marinou, E.; Amiridis, V.; et al. Spatial and seasonal variations of aerosols over China from two decades of multi-satellite observations—Part 1: ATSR (1995–2011) and MODIS C6.1 (2000–2017). Atmos. Chem. Phys. 2018, 18, 11389–11407. [Google Scholar] [CrossRef]
- Luan, K.; Cao, Z.; Hu, S.; Qiu, Z.; Wang, Z.; Shen, W.; Hong, Z. Aerosol Characterization of Northern China and Yangtze River Delta Based on Multi-Satellite Data: Spatiotemporal Variations and Policy Implications. Sustainability 2023, 15, 2029. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J.; Holben, B.N.; Zhang, J. Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS. Atmos. Meas. Tech. 2012, 5, 1761–1778. [Google Scholar] [CrossRef]
- Odell, A.P.; Weinman, J.A. The effect of atmospheric haze on images of the Earth’s surface. J. Geophys. Res. 1975, 80, 5035–5040. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Chishtie, F.; Bibi, S.; Shahid, I.; Blaschke, T. Intercomparison of MODIS, MISR, OMI, and CALIPSO aerosol optical depth retrievals for four locations on the Indo-Gangetic plains and validation against AERONET data. Atmos. Environ. 2015, 111, 113–126. [Google Scholar] [CrossRef]
- Liu, C.; Shen, X.; Gao, W. Intercomparison of CALIOP, MODIS, and AERONET aerosol optical depth over China during the past decade. Int. J. Remote Sens. 2018, 39, 7251–7275. [Google Scholar] [CrossRef]
- Su, Y.; Xie, Y.; Tao, Z.; Hu, Q.; Yu, T.; Gu, X. Validation and inter-comparison of MODIS and VIIRS aerosol optical depth products against data from multiple observation networks over East China. Atmos. Environ. 2021, 247, 118205. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Lee, J.; Kim, W.V.; Dutcher, S.T. Validation, Stability, and Consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue Aerosol Data Over Land. J. Geophys. Res. Atmos. 2019, 124, 4658–4688. [Google Scholar] [CrossRef]
- Wang, W.; Mao, F.; Pan, Z.; Du, L.; Gong, W. Validation of VIIRS AOD through a Comparison with a Sun Photometer and MODIS AODs over Wuhan. Remote Sens. 2017, 9, 403. [Google Scholar] [CrossRef]
- Mölders, N.; Friberg, M. Using MAN and Coastal AERONET Measurements to Assess the Suitability of MODIS C6.1 Aerosol Optical Depth for Monitoring Changes from Increased Arctic Shipping. Open J. Air Pollut. 2020, 9, 77–104. [Google Scholar] [CrossRef]
- Li, W.; Su, X.; Feng, L.; Wu, J.; Zhang, Y.; Cao, M. Comprehensive Validation and Comparison of Three VIIRS Aerosol Products over the Ocean on a Global Scale. Remote Sens. 2022, 14, 2544. [Google Scholar] [CrossRef]
- Wei, J.; Peng, Y.; Mahmood, R.; Sun, L.; Guo, J. Intercomparison in spatial distributions and temporal trends derived from multi-source satellite aerosol products. Atmos. Chem. Phys. 2019, 19, 7183–7207. [Google Scholar] [CrossRef]
- Gupta, P.; Remer, L.A.; Levy, R.C.; Mattoo, S. Validation of MODIS 3 km land aerosol optical depth from NASA’s EOS Terra and Aqua missions. Atmos. Meas. Tech. 2018, 11, 3145–3159. [Google Scholar] [CrossRef]
- Ajtai, N.; Mereuta, A.; Stefanie, H.; Radovici, A.; Botezan, C.; Zawadzka-Manko, O.; Stachlewska, I.; Stebel, K.; Zehner, C. SEVIRI Aerosol Optical Depth Validation Using AERONET and Intercomparison with MODIS in Central and Eastern Europe. Remote Sens. 2021, 13, 844. [Google Scholar] [CrossRef]
- Gassó, S.; Torres, O. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean. Atmos. Meas. Tech. 2016, 9, 3031–3052. [Google Scholar] [CrossRef]
- Ettehadi Osgouei, P.; Roberts, G.; Kaya, S.; Bilal, M.; Dash, J.; Sertel, E. Evaluation and comparison of MODIS and VIIRS aerosol optical depth (AOD) products over regions in the Eastern Mediterranean and the Black Sea. Atmos. Environ. 2022, 268, 118784. [Google Scholar] [CrossRef]
- de Meij, A.; Pozzer, A.; Lelieveld, J. Trend analysis in aerosol optical depths and pollutant emission estimates between 2000 and 2009. Atmos. Environ. 2012, 51, 75–85. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Wald, A.E.; Remer, L.A.; Bo-Cai, G.; Rong-Rong, L.; Flynn, L. The MODIS 2.1-/spl mu/m channel-correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans. Geosci. Remote Sens. 1997, 35, 1286–1298. [Google Scholar] [CrossRef]
- Misra, A.; Jayaraman, A.; Ganguly, D. Validation of Version 5.1 MODIS Aerosol Optical Depth (Deep Blue Algorithm and Dark Target Approach) over a Semi-Arid Location in Western India. Aerosol Air Qual. Res. 2015, 15, 252–262. [Google Scholar] [CrossRef]
- Chen, Q.-X.; Han, X.-L.; Gu, Y.; Yuan, Y.; Jiang, J.H.; Yang, X.-B.; Liou, K.-N.; Tan, H.-P. Evaluation of MODIS, MISR, and VIIRS daily level-3 aerosol optical depth products over land. Atmos. Res. 2022, 265, 105810. [Google Scholar] [CrossRef]
- Hsu, N.C.; Lee, J.; Sayer, A.M.; Kim, W.; Bettenhausen, C.; Tsay, S.C. VIIRS Deep Blue Aerosol Products Over Land: Extending the EOS Long-Term Aerosol Data Records. J. Geophys. Res. Atmos. 2019, 124, 4026–4053. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Kahn, R.A. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Garay, M.J.; Diner, D.J.; Eck, T.F.; Smirnov, A.; Holben, B.N. Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Liu, L.; Mishchenko, M.I. Toward unified satellite climatology of aerosol properties: Direct comparisons of advanced level 2 aerosol products. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 2376–2385. [Google Scholar] [CrossRef]
- Koch, D.; Schulz, M.; Kinne, S.; McNaughton, C.; Spackman, J.R.; Balkanski, Y.; Bauer, S.; Berntsen, T.; Bond, T.C.; Boucher, O.; et al. Evaluation of black carbon estimations in global aerosol models. Atmos. Chem. Phys. 2009, 9, 9001–9026. [Google Scholar] [CrossRef]
- Boersma, K.F.; Eskes, H.J.; Dirksen, R.J.; Van Der A, R.J.; Veefkind, J.P.; Stammes, P.; Huijnen, V.; Kleipool, Q.L.; Sneep, M.; Claas, J.; et al. An improved tropospheric NO2 column retrieval algorithm for the Ozone Monitoring Instrument. Atmos. Meas. Tech. 2011, 4, 1905–1928. [Google Scholar] [CrossRef]
- Curier, R.L.; Veefkind, J.P.; Braak, R.; Veihelmann, B.; Torres, O.; de Leeuw, G. Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Levelt, P.F.; Hilsenrath, E.; Leppelmeier, G.W.; van den Oord, G.H.J.; Bhartia, P.K.; Tamminen, J.; de Haan, J.F.; Veefkind, J.P. Science objectives of the ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1199–1208. [Google Scholar] [CrossRef]
- Winker, D.M.; Hunt, W.H.; McGill, M.J. Initial performance assessment of CALIOP. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Pan, H.; Huang, J.; Kumar, K.R.; An, L.; Zhang, J. The CALIPSO retrieved spatiotemporal and vertical distributions of AOD and extinction coefficient for different aerosol types during 2007–2019: A recent perspective over global and regional scales. Atmos. Environ. 2022, 274, 118986. [Google Scholar] [CrossRef]
- Gui, L.; Tao, M.; Wang, Y.; Wang, L.; Chen, L.; Lin, C.; Tao, J.; Wang, J.; Yu, C. Climatology of aerosol types and their vertical distribution over East Asia based on CALIPSO lidar measurements. Int. J. Climatol. 2022, 42, 6042–6054. [Google Scholar] [CrossRef]
- Wei, L.; Lu, Z.; Wang, Y.; Liu, X.; Wang, W.; Wu, C.; Zhao, X.; Rahimi, S.; Xia, W.; Jiang, Y. Black carbon-climate interactions regulate dust burdens over India revealed during COVID-19. Nat. Commun. 2022, 13, 1839. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Wang, Q.; Cong, Z.; Yang, X.; Fan, H. Aerosol characteristics at the three poles of the Earth as characterized by Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations. Atmos. Chem. Phys. 2021, 21, 4849–4868. [Google Scholar] [CrossRef]
- Abadi, A.R.S.; Hamzeh, N.H.; Shukurov, K.; Opp, C.; Dumka, U.C. Long-Term Investigation of Aerosols in the Urmia Lake Region in the Middle East by Ground-Based and Satellite Data in 2000–2021. Remote Sens. 2022, 14, 3827. [Google Scholar] [CrossRef]
- Li, J.; Carlson, B.E.; Dubovik, O.; Lacis, A.A. Recent trends in aerosol optical properties derived from AERONET measurements. Atmos. Chem. Phys. 2014, 14, 12271–12289. [Google Scholar] [CrossRef]
- Sioris, C.E.; McLinden, C.A.; Shephard, M.W.; Fioletov, V.E.; Abboud, I. Assessment of the aerosol optical depths measured by satellite- 1 based passive remote sensors in the alberta oil sands region. Atmos. Chem. Phys. 2017, 17, 1931–1943. [Google Scholar] [CrossRef]
- Mangla, R.; Indu, J.; Chakra, S.S. Inter-comparison of multi-satellites and Aeronet AOD over Indian Region. Atmos. Res. 2020, 240, 104950. [Google Scholar] [CrossRef]
- Habib, A.; Chen, B.; Khalid, B.; Tan, S.; Che, H.; Mahmood, T.; Shi, G.; Butt, M.T. Estimation and inter-comparison of dust aerosols based on MODIS, MISR and AERONET retrievals over Asian desert regions. J. Environ. Sci. 2019, 76, 154–166. [Google Scholar] [CrossRef]
- Han, X.; Zou, X.; Song, Z.; Fu, D.; Xia, X.; Che, H. Comparison of AVHRR aerosol optical depth production against CARSNET data in China. Atmos. Res. 2019, 218, 12–24. [Google Scholar] [CrossRef]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- He, L.; Wang, L.; Lin, A.; Zhang, M.; Bilal, M.; Wei, J. Performance of the NPP-VIIRS and aqua-MODIS Aerosol Optical Depth Products over the Yangtze River Basin. Remote Sens. 2018, 10, 117. [Google Scholar] [CrossRef]
- Fan, R.; Ma, Y.; Jin, S.; Gong, W.; Liu, B.; Wang, W.; Li, H.; Zhang, Y. Validation, analysis, and comparison of MISR V23 aerosol optical depth products with MODIS and AERONET observations. Sci. Total Environ. 2023, 856, 159117. [Google Scholar] [CrossRef]
- Remer, L.A.; Kleidman, R.G.; Levy, R.C.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Martins, J.V.; Ichoku, C.; Koren, I.; Yu, H.; et al. Global aerosol climatology from the MODIS satellite sensors. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Ali, A.; Amin, S.E.; Ramadan, H.H.; Tolba, M.F. Ozone Monitoring Instrument aerosol products: A comparison study with ground-based airborne sun photometer measurements over Europe. Int. J. Remote Sens. 2012, 33, 6321–6341. [Google Scholar] [CrossRef]
- Kacenelenbogen, M.; Vaughan, M.A.; Redemann, J.; Hoff, R.M.; Rogers, R.R.; Ferrare, R.A.; Russell, P.B.; Hostetler, C.A.; Hair, J.W.; Holben, B.N. An accuracy assessment of the CALIOP/CALIPSO version 2/version 3 daytime aerosol extinction product based on a detailed multi-sensor, multi-platform case study. Atmos. Chem. Phys. 2011, 11, 3981–4000. [Google Scholar] [CrossRef]
- Torres, O.; Ahn, C.; Zhong, C. Improvements to the OMI near UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmos. Meas. Tech. 2013, 6, 3257–3270. [Google Scholar] [CrossRef]
- Hsu, N.C.; Lee, J.; Sayer, A.M.; Carletta, N.; Chen, S.H.; Tucker, C.J.; Holben, B.N.; Tsay, S.C. Retrieving near-global aerosol loading over land and ocean from AVHRR. J. Geophys. Res. Atmos. 2017, 122, 9968–9989. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Nazeer, M. Validation of Aqua-MODIS C051 and C006 Operational Aerosol Products Using AERONET Measurements Over Pakistan. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2074–2080. [Google Scholar] [CrossRef]
- Wen, G.; Marshak, A.; Remer, L.; Levy, R.; Loeb, N.; Várnai, T.; Cahalan, R.F. Correction of MODIS aerosol retrieval for 3D radiative effects in broken cloud fields. Am. Inst. Phys. 2013, 1531, 280–283. [Google Scholar]
- Mao, Q.; Huang, C.; Zhang, H.; Chen, Q.; Yuan, Y. Performance of MODIS aerosol products at various timescales and in different pollution conditions over eastern Asia. Sci. China Technol. Sci. 2020, 64, 774–784. [Google Scholar] [CrossRef]
- Farahat, A. Comparative analysis of MODIS, MISR, and AERONET climatology over the Middle East and North Africa. Ann. Geophys. 2019, 37, 49–64. [Google Scholar] [CrossRef]
- Butler, J.J.; Diner, D.J.; Xiong, J.; Mischna, M.; Chipman, R.A.; Davis, A.; Cairns, B.; Davies, R.; Kahn, R.A.; Muller, J.-P.; et al. WindCam and MSPI: Two cloud and aerosol instrument concepts derived from Terra/MISR heritage. In Proceedings of the Earth Observing Systems XIII, San Diego, CA, USA, 11–13 August 2008. [Google Scholar]
- Yang, Y.; Russell, L.M.; Lou, S.; Liao, H.; Guo, J.; Liu, Y.; Singh, B.; Ghan, S.J. Dust-wind interactions can intensify aerosol pollution over eastern China. Nat. Commun. 2017, 8, 15333. [Google Scholar] [CrossRef]
- Livingston, J.M.; Redemann, J.; Russell, P.B.; Torres, O.; Veihelmann, B.; Veefkind, P.; Braak, R.; Smirnov, A.; Remer, L.; Bergstrom, R.W. Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B. Atmos. Chem. Phys. 2009, 9, 6743–6765. [Google Scholar] [CrossRef]
- Hammer, M.S.; Martin, R.V.; Li, C.; Torres, O.; Manning, M.; Boys, B.L. Insight into global trends in aerosol composition from 2005 to 2015 inferred from the OMI Ultraviolet Aerosol Index. Atmos. Chem. Phys. 2018, 18, 8097–8112. [Google Scholar] [CrossRef]
- Shikwambana, L.; Sivakumar, V. Global distribution of aerosol optical depth in 2015 using CALIPSO level 3 data. J. Atmos. Sol.-Terr. Phys. 2018, 173, 150–159. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Ahmad, Z.; Holben, B.N.; Smirnov, A.; Thomas, G.E.; Zhang, J. SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lahav, R.; Khain, A.; Pinsky, M. The Role of Sea Spray in Cleansing Air Pollution over Ocean via Cloud Processes. Science 2002, 297, 1667–1670. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.K.; Bates, T.S.; Schulz, K.S.; Coffman, D.J.; Frossard, A.A.; Russell, L.M.; Keene, W.C.; Kieber, D.J. Contribution of sea surface carbon pool to organic matter enrichment in sea spray aerosol. Nat. Geosci. 2014, 7, 228–232. [Google Scholar] [CrossRef]
- Wang, H. Radiative forcing due to dust aerosol over east Asia-north Pacific region during spring, 2001. Chin. Sci. Bull. 2004, 49, 2212. [Google Scholar] [CrossRef]
- Kai, Z.; Huiwang, G. The characteristics of Asian-dust storms during 2000–2002: From the source to the sea. Atmos. Environ. 2007, 41, 9136–9145. [Google Scholar] [CrossRef]
- Jiang, X.; Rotily, L.; Villermaux, E.; Wang, X. Submicron drops from flapping bursting bubbles. Proc. Natl. Acad. Sci. USA 2022, 119, e2112924119. [Google Scholar] [CrossRef]
- Tomasi, C.; Kokhanovsky, A.A.; Lupi, A.; Ritter, C.; Smirnov, A.; O’Neill, N.T.; Stone, R.S.; Holben, B.N.; Nyeki, S.; Wehrli, C.; et al. Aerosol remote sensing in polar regions. Earth-Sci. Rev. 2015, 140, 108–157. [Google Scholar] [CrossRef]
- Jun, Z.; Xiangao, X.; Jun, W.; Huizheng, C.; Hongbin, C.; Jinqiang, Z.; Xiaoguang, X.; Robert, L.; Min, O.; Robert, H. Evaluation of Aerosol Optical Depth and Aerosol Models from VIIRS Retrieval Algorithms over North China Plain. Remote Sens. 2017, 9, 432. [Google Scholar] [CrossRef]
- Ansari, J.A.; Umar, R. Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the “Deep Blue” Aerosol Project. J. Geophys. Res. Atmos. 2018, 123, 380–400. [Google Scholar]
- Zhang, W.; Gu, X.; Xu, H.; Yu, T.; Zheng, F. Assessment of OMI near-UV aerosol optical depth over Central and East Asia. J. Geophys. Res. Atmos. 2016, 121, 382–398. [Google Scholar] [CrossRef]
- Jääskeläinen, E.; Manninen, T.; Tamminen, J.; Laine, M. The Aerosol Index and Land Cover Class Based Atmospheric Correction Aerosol Optical Depth Time Series 1982–2014 for the SMAC Algorithm. Remote Sens. 2017, 9, 1095. [Google Scholar] [CrossRef]
- Long, L.; Shi, R.; Lu, Z.; Jie, Z.; Wei, G. The data fusion of aerosol optical thickness using universal kriging and stepwise regression in East China. In Proceedings of the Remote Sensing and Modeling of Ecosystems for Sustainability XI, San Diego, CA, USA, 18–20 August 2014. [Google Scholar]
- Sabetghadam, S.; Alizadeh, O.; Khoshsima, M.; Pierleoni, A. Aerosol properties, trends and classification of key types over the Middle East from satellite-derived atmospheric optical data. Atmos. Environ. 2021, 246, 118100. [Google Scholar] [CrossRef]
- Pierce, J.R.; Kahn, R.A.; Davis, M.R.; Comstock, J.M. Detecting thin cirrus in Multiangle Imaging Spectroradiometer aerosol retrievals. J. Geophys. Res. 2010, 115, D08201. [Google Scholar] [CrossRef]
- Ahn, C.; Torres, O.; Bhartia, P.K. Comparison of Ozone Monitoring Instrument UV Aerosol Products with Aqua/Moderate Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer observations in 2006. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Samset, B.H. Aerosol absorption has an underappreciated role in historical precipitation change. Commun. Earth Environ. 2022, 3, 242. [Google Scholar] [CrossRef]
Character of Sensor | Sensor-Satellite | Product Name | Product Algorithm | The Band Used in This Paper (nm) | Spatial Resolution |
---|---|---|---|---|---|
Spectral instrument | MODIS | MOD08_D3 | Dark_Target_Deep_Blue_Combined | 550 | 1° × 1° |
VIIRS | AERDB_D3 | Deep Blue | 550 | 1° × 1° | |
OMAERO | OMI-Aura_L3-OMAEROe | Multi-Wavelength method | 342.5, 442, 483.5 | 0.25° × 0.25° | |
OMAERUV | OMI-Aura_L3-OMAERUVd | Near-Ultraviolet | 354, 388, 500 | 1° × 1° | |
Multi-view angular sensor | MISR | MIL3DAEN_4 | Multi-view angle | 558 | 0.5° × 0.5° |
Active lidar sensor | CALIPSO | CAL_LID_L3_Tropospheric_APro_CloudFree | Lidar | 532 | 2° × 5° |
Site Name | Longitude | Latitude | Elevation (m) | AOD Effective Monitoring Period | Dusty Marine OF | Clean Marine OF |
---|---|---|---|---|---|---|
Ieodo Station | 125.182 | 32.123 | 29 | 2013–2019 | 0.23 | 0.30 |
Chen-Kung Univ | 120.205 | 22.993 | 50 | 2002–2020 | 0.08 | 0.46 |
Dongsha Island | 116.729 | 20.699 | 5 | 2003–2020 | 0.06 | 0.53 |
Gosan SNU | 126.161 | 33.292 | 72 | 2001–2016 | 0.24 | 0.29 |
Okinawa Hedo | 128.249 | 26.867 | 60 | 2019–2020 | 0.12 | 0.54 |
Anmyon | 126.33 | 36.54 | 47 | 1999–2020 | 0.22 | 0.11 |
Fukuoka | 130.47 | 33.52 | 30 | 2012–2020 | 0.15 | 0.19 |
Hong Kong Sheung | 114.12 | 22.483 | 40 | 2012–2018 | 0.08 | 0.36 |
Manila Observatory | 121.08 | 14.64 | 63 | 2009–2020 | 0.03 | 0.58 |
NGHIA DO | 105.80 | 21.05 | 40 | 2010–2019 | 0.04 | 0.10 |
Noto | 137.14 | 37.33 | 200 | 2001–2020 | 0.14 | 0.18 |
Osaka | 135.59 | 34.65 | 50 | 2000–2020 | 0.16 | 0.21 |
Tai Ping | 114.36 | 10.38 | 4 | 2012–2020 | 0.03 | 0.81 |
Taipei CWB | 121.54 | 25.01 | 26 | 2000–2020 | 0.12 | 0.39 |
Ussuriysk | 132.16 | 43.70 | 280 | 2004–2019 | 0.02 | 0.01 |
Yonsei University | 126.93 | 37.56 | 97 | 2011–2020 | 0.18 | 0.08 |
Hokkaido University | 141.34 | 43.08 | 59 | 2015–2020 | 0.18 | 0.22 |
MB | ||||||
---|---|---|---|---|---|---|
AOD Range | MODIS | VIIRS | MISR | OMAERO | OMAERUV | CALIPSO |
0–0.1 | 0.0542 | 0.0449 | 0.0166 | 0.1026 | 0.0681 | −0.0037 |
0.1–0.2 | 0.0539 | 0.0358 | 0.0060 | 0.1137 | 0.0267 | −0.0443 |
0.2–0.3 | 0.0455 | 0.0226 | −0.0076 | 0.0994 | −0.0266 | −0.0792 |
0.3–0.4 | 0.0277 | 0.0049 | −0.0367 | 0.1114 | −0.0777 | −0.1321 |
0.4–0.5 | 0.0134 | −0.0189 | −0.0784 | 0.0978 | −0.1397 | −0.2178 |
EE within | ||||||
---|---|---|---|---|---|---|
AOD Range | MODIS | VIIRS | MISR | OMAERO | OMAERUV | CALIPSO |
0–0.1 | 0.6387 | 0.7212 | 0.8857 | 0.4221 | 0.5982 | 0.8261 |
0.1–0.2 | 0.6567 | 0.7554 | 0.8810 | 0.4303 | 0.6988 | 0.5469 |
0.2–0.3 | 0.6232 | 0.7058 | 0.7874 | 0.4011 | 0.5550 | 0.4322 |
0.3–0.4 | 0.6174 | 0.6907 | 0.6498 | 0.4691 | 0.3902 | 0.2586 |
0.4–0.5 | 0.5600 | 0.6026 | 0.6160 | 0.4274 | 0.2872 | 0.1341 |
RMSE | ||||||
---|---|---|---|---|---|---|
AOD Range | MODIS | VIIRS | MISR | OMAERO | OMAERUV | CALIPSO |
0–0.1 | 0.0870 | 0.0688 | 0.0405 | 0.1702 | 0.1217 | 0.0560 |
0.1–0.2 | 0.1024 | 0.0773 | 0.0528 | 0.2081 | 0.1063 | 0.0765 |
0.2–0.3 | 0.1236 | 0.1011 | 0.0790 | 0.2242 | 0.1123 | 0.1164 |
0.3–0.4 | 0.1370 | 0.1145 | 0.1108 | 0.2418 | 0.1537 | 0.1759 |
0.4–0.5 | 0.1738 | 0.1499 | 0.1300 | 0.2561 | 0.2003 | 0.2409 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Luan, K.; Zhou, P.; Shen, W.; Wang, Z.; Zhu, W.; Qiu, Z.; Wang, J. Evaluation and Comparison of Multi-Satellite Aerosol Optical Depth Products over East Asia Ocean. Toxics 2023, 11, 813. https://doi.org/10.3390/toxics11100813
Cao Z, Luan K, Zhou P, Shen W, Wang Z, Zhu W, Qiu Z, Wang J. Evaluation and Comparison of Multi-Satellite Aerosol Optical Depth Products over East Asia Ocean. Toxics. 2023; 11(10):813. https://doi.org/10.3390/toxics11100813
Chicago/Turabian StyleCao, Zhaoxiang, Kuifeng Luan, Peng Zhou, Wei Shen, Zhenhua Wang, Weidong Zhu, Zhenge Qiu, and Jie Wang. 2023. "Evaluation and Comparison of Multi-Satellite Aerosol Optical Depth Products over East Asia Ocean" Toxics 11, no. 10: 813. https://doi.org/10.3390/toxics11100813
APA StyleCao, Z., Luan, K., Zhou, P., Shen, W., Wang, Z., Zhu, W., Qiu, Z., & Wang, J. (2023). Evaluation and Comparison of Multi-Satellite Aerosol Optical Depth Products over East Asia Ocean. Toxics, 11(10), 813. https://doi.org/10.3390/toxics11100813