Photocatalytic Degradation and Toxicity Analysis of Sulfamethoxazole using TiO2/BC
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Biochar
2.3. Preparation of Titanium Dioxide Biochar Composites
2.4. Composite Material Characterization
2.5. Photocatalytic Degradation of SMX
2.6. Adsorption Experiment
2.7. Stability and Reusability
3. Results and Discussion
3.1. Characterization Analysis of Composite Material
3.1.1. XRD Analysis
3.1.2. SEM-EDS Analysis
3.1.3. Pore Size Analysis of Composite Materials
3.2. Photocatalytic Degradation of Antibiotic Experiments
3.2.1. Photocatalytic Degradation Effect of Different Catalysts on SMX
3.2.2. Adsorption Experiments
3.2.3. Effects of Different Initial SMX Concentrations, Solution pH, and Composite Material Addition on SMX Removal
3.2.4. Analysis of Photocatalytic Degradation Mechanism of SMX by TiO2/BC
3.3. Analysis of SMX Toxicity
3.4. Stability and Reusability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saravanan, A.; Kumar, P.S.; Vo, D.N.; Yaashikaa, P.R.; Karishma, S.; Jeevanantham, S.; Gayathri, B.; Bharathi, V.D. Photocatalysis for removal of environmental pollutants and fuel production: A review. Environ. Chem. Lett. 2021, 19, 441–463. [Google Scholar] [CrossRef]
- Xu, B.; Mao, D.; Luo, Y.; Xu, L. SMX biodegradation and biotransformation in the water-sediment system of a naturalriver. Bioresour. Technol. 2011, 102, 7069–7076. [Google Scholar] [CrossRef] [PubMed]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R. Preparation of Magnetic Graphitized Biochar and Its Adsorption of Sulfamethoxazole in Water; South China University of Technology: Guangzhou, China, 2020. [Google Scholar]
- Huang, J.X.; Li, D.G.; Li, R.B.; Chen, P.; Zhang, Q.X.; Liu, H.J.; Lv, W.Y.; Liu, G.G.; Feng, Y.P. One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin. J. Hazard. Mater. 2020, 386, 121634. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Ashraf, S.S.; Barceló, D.; Iqbal, H.M. Biocatalytic degradation/redefining “removal” fate of pharmaceutically active compounds and antibiotics in the aquatic environment. Sci. Total Environ. 2019, 691, 1190–1211. [Google Scholar] [CrossRef] [PubMed]
- Kanan, S.; Moyet, M.A.; Arthur, R.B.; Patterson, H.H. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catal Rev. 2020, 62, 1–65. [Google Scholar] [CrossRef]
- Yuan, Q.; Wu, Z.; Jin, Y.; Xiong, F.; Huang, W. Surface chemistry of formaldehyde on rutile TiO2 (110) surface: Photocatalysis vs thermal-catalysis. J. Phys. Chem. C 2014, 118, 20420–20428. [Google Scholar] [CrossRef]
- Dong, H.; Zeng, G.; Tang, L.; Fan, C. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 2015, 79, 128–146. [Google Scholar] [CrossRef]
- Afzal, M.Z.; Sun, X.F.; Liu, J.; Song, C.; Wang, S.G.; Javed, A. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. Sci. Total Environ. 2018, 639, 560–569. [Google Scholar] [CrossRef]
- Bilias, F.; Nikoli, T.; Kalderis, D.; Gasparatos, D. Towards a soil remediation strategy using biochar: Effects on soil chemical properties and bioavailability of potentially toxic elements. Toxics 2021, 9, 184. [Google Scholar] [CrossRef]
- Kim, J.R.; Kan, E. Heterogeneous photocatalytic degradation of SMX in water using a biochar-supported TiO2 photocatalyst. J. Environ. Manag. 2016, 180, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Avramiotis, E.; Frontistis, Z.; Manariotis, I.D.; Vakros, J.; Mantzavinos, D. Oxidation of sulfamethoxazole by rice husk biochar-activated persulfate. Catalysts 2021, 11, 850. [Google Scholar] [CrossRef]
- Liu, Z.; Hu, W.; Zhang, H.; Wang, H.; Sun, P. Enhanced degradation of sulfonamide antibiotics by UV irradiation combined with prsulfate. Processes 2021, 9, 226. [Google Scholar] [CrossRef]
- Feng, X.; Li, X.; Su, B.; Ma, J. Solid-phase fabrication of TiO2/Chitosan-biochar composites with superior UV–vis light driven photocatalytic degradation performance. Colloid Surf. A 2022, 648, 129114. [Google Scholar] [CrossRef]
- Kotp, Y.H. Fabrication of cerium titanate cellulose fiber nanocomposite materials for the removal of methyl orange and methylene blue from polluted water by photocatalytic degradation. Environ. Sci. Pollut. Res. 2022, 29, 81583–81608. [Google Scholar] [CrossRef] [PubMed]
- Alahl AA, S.; Ezzeldin, H.A.; Al-Kahtani, A.A.; Pandey, S.; Kotp, Y.H. Synthesis of a Novel Photocatalyst Based on Silicotitanate Nanoparticles for the Removal of Some Organic Matter from Polluted Water. Catalysts 2023, 136, 981. [Google Scholar] [CrossRef]
- Wang, W.S.; Wang, D.H.; Qu, W.G.; Lu, L.Q.; Xu, A.W. Large ultrathin anatase TiO2 nanosheets with exposed {001} facets on graphene for enhanced visible light photocatalytic photocatalytic activity. J. Phys. Chem. C 2012, 116, 19893–19901. [Google Scholar] [CrossRef]
- Thamaphat, K.; Limsuwan, P.; Ngotawornchai, B. Phase characterization of TiO2 powder by XRD and TEM. Agric. Nat. Resour. 2008, 42, 357–361. [Google Scholar]
- Osmieri, L.; Monteverde, V.; Specchia, S. Activity of Co-N multi walled carbon nanotubes electrocatalysts for oxygen reduction reaction in acid conditions. J. Power Sources 2015, 278, 296–307. [Google Scholar] [CrossRef]
- Yaseen, R.; Kotp, Y.H.; Eissa, D. The impact of production of silver nanoparticles using soil fungi and its applications for reducing irrigation water salinity. J. Water Land Dev. 2020, 46, 216–228. [Google Scholar]
- An, M.; Xue, B.; Yang, Z.; Zhang, B.; Wang, S.; Chen, W.; Ding, X.; Lou, J.; Xu, G.; Huang, A.; et al. Photocatalytic degradation of tetracycline and photolysis of water to hydrogen production by TiO2/biochar composites. Guangdong Chem. Ind. 2022, 49, 4–9. [Google Scholar]
- Abodif, A.M.; Meng, L.; Ma, S.; Ahmed, A.S.; Belvett, N.; Wei, Z.Z.; Ning, D. Mechanisms and models of adsorption: TiO2-supported biochar for removal of 3, 4-dimethylaniline. ACS Omega 2020, 5, 13630–13640. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Tan, X.; Liu, S.; Liu, Y.; Zeng, G.; Ye, S.; Yin, Z.; Hu, X.; Liu, N. Catalytic degradation of estrogen by persulfate activated with iron-doped graphitic biochar: Process variables effects and matrix effects. Chem. Eng. J. 2019, 378, 122141. [Google Scholar] [CrossRef]
- Liang, S.; An, M.; Xia, S.; Zhang, B.; Xue, B.; Xu, G. Enhanced photocatalytic degradation of methyl orange by TiO2/biochar composites under simulated sunlight irradiation. Opt. Mater. 2023, 142, 114105. [Google Scholar] [CrossRef]
- Sun, H.; Guo, F.; Pan, J.; Huang, W.; Wang, K.; Shi, W. One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process. Chem. Eng. J. 2021, 406, 126844. [Google Scholar] [CrossRef]
- Chandra, S.; Pravin, J. Biochar-Supported TiO2-Based Nanocomposites for the Photocatalytic Degradation of SMX in Water-A Review. Toxics 2021, 9, 313. [Google Scholar] [CrossRef] [PubMed]
- Bems, B.; Jentoft, F.C.; Schlögl, R. Photoinduced decomposition of nitrate in drinking water in the presence of titania and humic acids. Appl. Catal. B Environ. 1999, 20, 155–163. [Google Scholar] [CrossRef]
- Hassani, A.; Khataee, A.; Karaca, S.; Karaca, C.; Gholami, P. Sonocatalytic degradation of ciprofloxacin using synthesized TiO2 nanoparticles on montmorillonite. Ultrason. Sonochem. 2017, 35, 251–262. [Google Scholar] [CrossRef]
- Song, C.; Wang, L.; Ren, J.; Lv, B.; Sun, Z.; Yan, J.; Li, X.; Liu, J. Comparative study of diethyl phthalate degradation by UV/H2O2 and UV/TiO2: Kinetics, mechanism, and effects of operational parameters. Environ. Sci. Pollut. Res. 2016, 23, 2640–2650. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Li, R.; Guo, J.; Li, Y.; Zhu, J.; Xie, X. TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. Chemosphere 2017, 185, 351–360. [Google Scholar] [CrossRef]
- Yu, D.; He, J.; Xie, T.; Xu, Q.; Zhu, Q.; Yang, J.; An, J.; Ye, F.; Wang, J.; Xiang, B. New insights into Sr-O bonds enhances Co/Fe catalytic activity in SrCoFe perovskite for boosted peroxymonosulfate activation. Chem. Eng. J. 2021, 426, 131525. [Google Scholar] [CrossRef]
Material | BET Surface Area (m2/g) | BJH Adsorption Volume Pores (cm3/g) | Adsorption Mean Pore Diameter (nm) |
---|---|---|---|
BC-500 | 63.435 | 0.5573 | 25.967 |
TiO2/BC-5-500 | 36.726 | 9.8499 | 3.5567 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, J.; Pei, W.; Hu, F.; Yu, Z.; Zhao, S.; Hu, J.; Liu, J.; Zhang, D.; Jing, Z.; Lei, X. Photocatalytic Degradation and Toxicity Analysis of Sulfamethoxazole using TiO2/BC. Toxics 2023, 11, 818. https://doi.org/10.3390/toxics11100818
Dang J, Pei W, Hu F, Yu Z, Zhao S, Hu J, Liu J, Zhang D, Jing Z, Lei X. Photocatalytic Degradation and Toxicity Analysis of Sulfamethoxazole using TiO2/BC. Toxics. 2023; 11(10):818. https://doi.org/10.3390/toxics11100818
Chicago/Turabian StyleDang, Jiatao, Wenjun Pei, Fumeng Hu, Zaihui Yu, Shuheng Zhao, Jianjun Hu, Jiuli Liu, Dongliang Zhang, Zhixuan Jing, and Xuan Lei. 2023. "Photocatalytic Degradation and Toxicity Analysis of Sulfamethoxazole using TiO2/BC" Toxics 11, no. 10: 818. https://doi.org/10.3390/toxics11100818
APA StyleDang, J., Pei, W., Hu, F., Yu, Z., Zhao, S., Hu, J., Liu, J., Zhang, D., Jing, Z., & Lei, X. (2023). Photocatalytic Degradation and Toxicity Analysis of Sulfamethoxazole using TiO2/BC. Toxics, 11(10), 818. https://doi.org/10.3390/toxics11100818