Micronuclei, Pesticides, and Element Mixtures in Mining Contexts: The Hormetic Effect of Selenium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Mining Contexts
2.2. Participants and Data Collection
2.3. Pesticides in Blood and Urine
2.4. Element Mixtures in Hair
2.5. Cytogenetic Analysis
2.6. Statistical Methods
3. Results
3.1. Mean Characteristics of Participants
3.2. Pesticide Exposure
3.3. Element Mixtures in Hair
3.4. Micronuclei Frequency
3.5. Bivariate Analysis
3.6. Multiple Analysis
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Pesticide | Lineal Range (ppb) | Detection Limit (ppb) | Quantification Limit (ppb) |
---|---|---|---|
Aldicarb (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
Propoxur (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
Carbofuran (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
α-endosulfan (ppb) | 5.00 to 50.00 | 1.00 | 5.00 |
β-endosulfan (ppb) | 5.00 to 50.00 | 1.00 | 5.00 |
Endosulfan sulfate (ppb) | 2.00 to 75.00 | 0.05 | 2.00 |
Malathion (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
hexachlorobenzene (ppb) | 0.125 to 75.00 | 0.025 | 0.125 |
ethyl paraoxon (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
methyl paraoxon (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
ethyl parathion (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
methyl parathion (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
Pesticide | Lineal Range (ppb) | Detection Limit (ppb) | Quantification Limit (ppb) |
---|---|---|---|
Aldicarb (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
Propoxur (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
Carbofuran (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
α-endosulfan (ppb) | 5.00 to 50.00 | 1.00 | 5.00 |
β-endosulfan (ppb) | 5.00 to 50.00 | 1.00 | 5.00 |
Endosulfan sulfate (ppb) | 2.00 to 75.00 | 0.05 | 2.00 |
Malathion (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
hexachlorobenzene (ppb) | 0.125 to 75.00 | 0.025 | 0.125 |
ethyl paraoxon (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
methyl paraoxon (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
ethyl parathion (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
methyl parathion (ppb) | 0.075 to 15.00 | 0.01 | 0.075 |
Variable | Comp1 | Comp2 | Unexplained |
---|---|---|---|
Li7ppm | 0.1500 | 0.0191 | 0.52 |
Be9ppm | 0.0473 | 0.0327 | 0.9327 |
B11ppm | 0.1305 | 0.0220 | 0.63 |
Na23ppm | 0.0662 | −0.0063 | 0.9131 |
Mg24ppm | 0.1870 | −0.0380 | 0.3187 |
Al27ppm | 0.0742 | 0.0091 | 0.8829 |
Si28ppm | 0.1413 | −0.0416 | 0.6132 |
P31ppm | 0.2082 | 0.0145 | 0.09689 |
S34ppm | 0.2107 | 0.0026 | 0.09373 |
K39ppm | 0.0639 | 0.0067 | 0.9136 |
Ca44ppm | 0.1978 | −0.0258 | 0.2299 |
Sc45ppm | 0.0012 | −0.0089 | 0.9992 |
Ti47ppm | 0.1200 | 0.0388 | 0.6604 |
V51ppm | 0.1932 | −0.0285 | 0.2674 |
Cr52ppm | 0.1895 | 0.0186 | 0.2429 |
Mn55ppm | 0.1549 | −0.0064 | 0.5178 |
Fe57ppm | 0.1885 | 0.0145 | 0.2573 |
Co59ppm | 0.0504 | 0.0342 | 0.9244 |
Ni60ppm | 0.1947 | −0.0113 | 0.2421 |
Cu65ppm | 0.2097 | 0.0007 | 0.1052 |
Zn66ppm | 0.1931 | 0.0067 | 0.2328 |
Ga69ppm | 0.1342 | 0.0188 | 0.6137 |
Ge74ppm | 0.1828 | −0.0469 | 0.3514 |
As75ppm | 0.2112 | −0.0023 | 0.09576 |
Br79ppm | 0.0475 | −0.0033 | 0.9551 |
Se82ppm | 0.2097 | 0.0057 | 0.09745 |
Rb85ppm | 0.0761 | −0.0035 | 0.8838 |
Sr88ppm | 0.1905 | −0.0503 | 0.2963 |
Y89ppm | −0.0160 | 0.2961 | 0.06107 |
Zr90ppm | −0.0002 | 0.0105 | 0.9988 |
Nb93ppm | 0.0153 | 0.0024 | 0.9949 |
Mo98ppm | 0.2059 | −0.0278 | 0.1661 |
Ru102ppm | 0.0243 | −0.0237 | 0.9856 |
Rh103ppm | 0.0215 | −0.0223 | 0.9882 |
Pd105ppm | 0.1568 | 0.0694 | 0.3767 |
Ag107ppm | 0.0215 | −0.0223 | 0.9882 |
Cd114ppm | 0.1610 | −0.0487 | 0.4974 |
In115ppm | 0.0162 | 0.0020 | 0.9944 |
Sn118ppm | 0.0167 | −0.0215 | 0.9916 |
Sb121ppm | 0.1809 | −0.0231 | 0.3559 |
I127ppm | 0.0471 | −0.0154 | 0.957 |
Cs133ppm | 0.1414 | −0.0053 | 0.5982 |
Ba137ppm | 0.1245 | 0.0183 | 0.6661 |
La139ppm | 0.0366 | 0.2215 | 0.3809 |
Ce140ppm | 0.0761 | 0.2036 | 0.3263 |
Pr141ppm | 0.0914 | 0.0952 | 0.6742 |
Nd143ppm | 0.0930 | 0.0656 | 0.7374 |
Sm147ppm | −0.0111 | 0.2836 | 0.1337 |
Eu153ppm | 0.0492 | 0.2336 | 0.2762 |
Gd157ppm | 0.0561 | 0.2459 | 0.1821 |
Tb159ppm | −0.0142 | 0.3002 | 0.03225 |
Dy163ppm | −0.0265 | 0.3027 | 0.03045 |
Ho165ppm | 0.0436 | 0.2556 | 0.1711 |
Er166ppm | −0.0390 | 0.2938 | 0.09388 |
Tm169ppm | −0.0274 | 0.2887 | 0.1194 |
Yb172ppm | 0.0159 | 0.2768 | 0.1242 |
Lu175ppm | −0.0468 | 0.2851 | 0.1482 |
Ta181ppm | 0.1006 | 0.0208 | 0.7759 |
W182ppm | −0.0107 | −0.0288 | 0.9866 |
Re185ppm | 0.1857 | 0.0421 | 0.2286 |
Pt194ppm | −0.0017 | 0.0101 | 0.9989 |
Au197ppm | 0.0089 | −0.0077 | 0.9982 |
Hg202ppm | 0.1397 | −0.0477 | 0.621 |
Tl205ppm | 0.1923 | −0.0274 | 0.2741 |
Pb208ppm | 0.0280 | −0.0081 | 0.9848 |
Bi209ppm | 0.0389 | −0.0043 | 0.97 |
Th232ppm | 0.0463 | 0.0276 | 0.9398 |
U238ppm | −0.0153 | 0.0667 | 0.9529 |
Component rotation matrix | |||
Comp1 | 0.9545 | 0.2982 | |
Comp2 | −0.2982 | 0.9545 |
Variable | Comp1 | Comp2 | Comp3 | Unexplained |
---|---|---|---|---|
Li7ppm | −0.0115 | 0.0063 | 0.2322 | 0.668 |
Be9ppm | 0.1641 | 0.0943 | 0.0676 | 0.428 |
B11ppm | −0.0730 | −0.0993 | 0.1918 | 0.6905 |
Na23ppm | −0.0492 | 0.2026 | 0.0141 | 0.6789 |
Mg24ppm | −0.0579 | 0.3185 | −0.0070 | 0.2158 |
Al27ppm | 0.0292 | −0.0349 | 0.2480 | 0.5471 |
Si28ppm | 0.0614 | −0.0603 | 0.0216 | 0.9232 |
P31ppm | 0.0210 | −0.1330 | 0.0652 | 0.8326 |
S34ppm | −0.0232 | −0.1452 | 0.0180 | 0.8187 |
K39ppm | −0.0366 | 0.1778 | 0.0907 | 0.7146 |
Ca44ppm | −0.0331 | 0.3095 | −0.0346 | 0.256 |
Ti47ppm | 0.0354 | −0.0302 | 0.2649 | 0.4755 |
V51ppm | 0.0194 | −0.0054 | 0.2402 | 0.5968 |
Cr52ppm | −0.0241 | 0.0426 | 0.1676 | 0.8227 |
Mn55ppm | 0.0832 | 0.1594 | 0.1615 | 0.4053 |
Fe57ppm | 0.0088 | 0.0143 | 0.0925 | 0.9365 |
Co59ppm | 0.1617 | 0.0669 | 0.1027 | 0.4149 |
Ni60ppm | 0.0119 | 0.2265 | 0.0548 | 0.5576 |
Cu65ppm | −0.0485 | 0.0411 | 0.1353 | 0.8828 |
Zn66ppm | −0.0424 | 0.1659 | −0.0004 | 0.7825 |
Ga69ppm | 0.0612 | 0.2940 | 0.0238 | 0.2001 |
Ge74ppm | −0.0107 | 0.0976 | 0.2001 | 0.6738 |
As75ppm | −0.0443 | −0.0311 | 0.2606 | 0.6023 |
Br79ppm | 0.0044 | −0.0016 | −0.0314 | 0.9943 |
Se82ppm | −0.0081 | −0.0209 | −0.0087 | 0.9942 |
Rb85ppm | −0.0186 | 0.1297 | 0.1449 | 0.7437 |
Sr88ppm | −0.0344 | 0.3195 | −0.0553 | 0.1947 |
Y89ppm | 0.2702 | −0.0120 | −0.0440 | 0.1154 |
Zr90ppm | 0.0062 | −0.0070 | 0.1009 | 0.9305 |
Nb93ppm | 0.0274 | −0.0513 | 0.1370 | 0.8336 |
Mo98ppm | −0.0339 | −0.0011 | 0.2230 | 0.7128 |
Ru102ppm | −0.0402 | 0.3249 | −0.0172 | 0.1875 |
Rh103ppm | −0.0585 | −0.0429 | 0.1548 | 0.8387 |
Pd105ppm | 0.1690 | 0.1871 | −0.0274 | 0.2792 |
Ag107ppm | −0.0585 | −0.0429 | 0.1548 | 0.8387 |
Cd114ppm | −0.0324 | 0.0052 | 0.2684 | 0.5776 |
Sn118ppm | −0.0175 | 0.0126 | 0.1077 | 0.9321 |
Sb121ppm | 0.0264 | −0.0518 | 0.2278 | 0.6098 |
I127ppm | 0.1067 | 0.1061 | 0.0060 | 0.7229 |
Cs133ppm | 0.0865 | 0.0496 | 0.1696 | 0.5898 |
Ba137ppm | 0.0545 | 0.3004 | −0.0011 | 0.2019 |
La139ppm | 0.2261 | 0.0191 | 0.0360 | 0.2558 |
Ce140ppm | 0.1444 | −0.0180 | 0.1492 | 0.4578 |
Pr141ppm | 0.0817 | −0.0595 | 0.0962 | 0.7948 |
Nd143ppm | 0.0515 | −0.0620 | 0.0744 | 0.8882 |
Sm147ppm | 0.2375 | −0.0029 | 0.0403 | 0.1947 |
Eu153ppm | 0.2467 | 0.0513 | 0.0218 | 0.107 |
Gd157ppm | 0.2404 | −0.0383 | 0.0542 | 0.1628 |
Tb159ppm | 0.2629 | −0.0297 | 0.0305 | 0.05878 |
Dy163ppm | 0.2765 | −0.0237 | −0.0136 | 0.03806 |
Ho165ppm | 0.2456 | −0.0470 | 0.0194 | 0.1984 |
Er166ppm | 0.2728 | −0.0181 | −0.0349 | 0.09089 |
Tm169ppm | 0.2717 | −0.0177 | −0.0377 | 0.1013 |
Yb172ppm | 0.2706 | −0.0207 | −0.0560 | 0.13 |
Lu175ppm | 0.2661 | −0.0185 | −0.0436 | 0.1461 |
Ta181ppm | 0.0219 | 0.0252 | 0.1231 | 0.8716 |
W182ppm | −0.0100 | 0.1034 | 0.0185 | 0.916 |
Re185ppm | −0.0068 | −0.0379 | −0.0067 | 0.9866 |
Pt194ppm | −0.0261 | 0.0131 | 0.1446 | 0.8793 |
Au197ppm | −0.0408 | −0.0434 | 0.0348 | 0.9597 |
Hg202ppm | −0.0631 | −0.1192 | 0.1304 | 0.7625 |
Tl205ppm | −0.0717 | 0.1403 | 0.1189 | 0.7638 |
Pb208ppm | −0.0367 | −0.0415 | 0.1321 | 0.885 |
Bi209ppm | 0.0371 | 0.1073 | 0.0109 | 0.8753 |
Th232ppm | −0.0311 | −0.0263 | 0.1933 | 0.7794 |
U238ppm | 0.0228 | 0.0653 | 0.0465 | 0.9332 |
Component rotation matrix | ||||
Comp1 | 0.9102 | 0.2221 | 0.3497 | |
Comp2 | −0.1539 | 0.9650 | −0.2122 | |
Comp3 | −0.3845 | 0.1393 | 0.9125 |
Variable | Comp1 | Comp2 | Unexplained |
---|---|---|---|
Li7ppm | 0.1282 | 0.1476 | 0.4032 |
Be9ppm | 0.1615 | −0.0780 | 0.6992 |
B11ppm | 0.0763 | 0.0005 | 0.9241 |
Na23ppm | −0.0588 | 0.2748 | 0.2883 |
Mg24ppm | −0.0468 | 0.2847 | 0.2233 |
Al27ppm | 0.2177 | −0.0328 | 0.4314 |
Si28ppm | 0.0929 | −0.0485 | 0.8996 |
P31ppm | −0.0800 | 0.0166 | 0.9247 |
S34ppm | 0.0755 | 0.0064 | 0.9215 |
K39ppm | −0.0603 | 0.2665 | 0.3328 |
Ca44ppm | 0.0432 | 0.2435 | 0.2644 |
Ti47ppm | 0.1547 | 0.0238 | 0.6532 |
V51ppm | 0.2220 | −0.0831 | 0.4365 |
Cr52ppm | 0.1002 | −0.0045 | 0.8731 |
Mn55ppm | 0.1143 | 0.0114 | 0.8184 |
Fe57ppm | 0.1626 | 0.0175 | 0.6304 |
Co59ppm | 0.1233 | 0.0255 | 0.77 |
Ni60ppm | 0.1389 | 0.0307 | 0.7051 |
Cu65ppm | 0.1355 | −0.0199 | 0.7793 |
Zn66ppm | 0.1358 | 0.0027 | 0.7577 |
Ga69ppm | 0.0198 | 0.2537 | 0.2743 |
Ge74ppm | 0.0849 | 0.1918 | 0.3856 |
As75ppm | 0.0877 | −0.0314 | 0.912 |
Br79ppm | 0.0488 | −0.0019 | 0.9698 |
Se82ppm | −0.0894 | −0.0231 | 0.8737 |
Rb85ppm | −0.0483 | 0.2360 | 0.4736 |
Sr88ppm | 0.0024 | 0.2806 | 0.1626 |
Y89ppm | 0.2415 | −0.0064 | 0.2545 |
Zr90ppm | 0.0019 | 0.1568 | 0.738 |
Nb93ppm | 0.1582 | 0.0610 | 0.5575 |
Mo98ppm | 0.1197 | −0.0525 | 0.8358 |
Ru102ppm | −0.0322 | 0.2846 | 0.2052 |
Rh103ppm | 0.1125 | 0.0636 | 0.735 |
Pd105ppm | −0.0263 | 0.1554 | 0.7689 |
Ag107ppm | 0.1125 | 0.0636 | 0.735 |
Cd114ppm | 0.1717 | 0.0207 | 0.5838 |
In115ppm | 0.0733 | −0.0367 | 0.9379 |
Sn118ppm | 0.1385 | 0.0131 | 0.7344 |
Sb121ppm | 0.0901 | 0.0179 | 0.8783 |
I127ppm | 0.0012 | −0.0047 | 0.9998 |
Cs133ppm | 0.0212 | 0.1844 | 0.6031 |
Ba137ppm | 0.0124 | 0.2555 | 0.2828 |
La139ppm | 0.1589 | −0.0109 | 0.6848 |
Ce140ppm | 0.1520 | −0.0003 | 0.7003 |
Pr141ppm | 0.1014 | 0.1068 | 0.6583 |
Nd143ppm | 0.0410 | 0.0606 | 0.9192 |
Sm147ppm | 0.1897 | 0.0352 | 0.4652 |
Eu153ppm | 0.0707 | 0.2241 | 0.276 |
Gd157ppm | 0.0545 | 0.2279 | 0.312 |
Tb159ppm | 0.2235 | 0.0222 | 0.306 |
Dy163ppm | 0.2364 | 0.0241 | 0.2221 |
Ho165ppm | 0.1325 | 0.0871 | 0.5982 |
Er166ppm | 0.2470 | 0.0025 | 0.2027 |
Tm169ppm | 0.2213 | −0.0317 | 0.4104 |
Yb172ppm | 0.2237 | −0.1070 | 0.4231 |
Lu175ppm | 0.1777 | −0.0688 | 0.6391 |
Ta181ppm | 0.0220 | −0.0088 | 0.9945 |
W182ppm | 0.0982 | 0.0779 | 0.7488 |
Re185ppm | 0.0937 | −0.0567 | 0.8952 |
Pt194ppm | 0.0062 | 0.1416 | 0.7806 |
Au197ppm | 0.0734 | 0.0080 | 0.9246 |
Hg202ppm | −0.0141 | 0.0413 | 0.9841 |
Tl205ppm | −0.0535 | 0.1120 | 0.8788 |
Pb208ppm | −0.0062 | 0.0018 | 0.9996 |
Bi209ppm | −0.0086 | 0.0077 | 0.999 |
Th232ppm | 0.0674 | −0.0158 | 0.947 |
U238ppm | 0.1072 | 0.0069 | 0.8444 |
Component rotation matrix | |||
Comp1 | 0.8020 | ||
Comp2 | 0.5974 | −0.8020 |
References
- Kaur, K.; Kaur, R. Occupational Pesticide Exposure, Impaired DNA Repair, and Diseases. Indian J. Occup. Environ. Med. 2018, 22, 74. [Google Scholar] [CrossRef] [PubMed]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar] [CrossRef]
- Damalas, C.; Koutroubas, S. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Cotton, J.; Edwards, J.; Rahman, M.A.; Brumby, S. Cholinesterase Research Outreach Project (CROP): Point of Care Cholinesterase Measurement in an Australian Agricultural Community. Environ. Health 2018, 17, 31. [Google Scholar] [CrossRef] [PubMed]
- Imran, I.; Ansari, A.; Saleem, S.; Azhar, A.; Zehra, S. Insights of OPs and PYR Cytotoxic Potential In Vitro and Genotoxic Impact on PON1 Genetic Variant among Exposed Workers in Pakistan. Sci. Rep. 2022, 12, 9498. [Google Scholar] [CrossRef] [PubMed]
- Marcelino, A.F.; Wachtel, C.C.; Ghisi, N.d.C. Are Our Farm Workers in Danger? Genetic Damage in Farmers Exposed to Pesticides. Int. J. Environ. Res. Public Health 2019, 16, 358. [Google Scholar] [CrossRef]
- Mostafalou, S.; Abdollahi, M. Pesticides: An Update of Human Exposure and Toxicity. Arch. Toxicol. 2017, 91, 549–599. [Google Scholar] [CrossRef]
- Fenech, M.; Holland, N.; Kirsch-Volders, M.; Knudsen, L.E.; Wagner, K.-H.; Stopper, H.; Knasmueller, S.; Bolognesi, C.; El-Zein, R.; Bonassi, S. Micronuclei and Disease—Report of HUMN Project Workshop at Rennes 2019 EEMGS Conference. Mutat. Res. Toxicol. Environ. Mutagen. 2020, 850–851, 503133. [Google Scholar] [CrossRef]
- Ofosu, G.; Dittmann, A.; Sarpong, D.; Botchie, D. Socio-Economic and Environmental Implications of Artisanal and Small-Scale Mining (ASM) on Agriculture and Livelihoods. Environ. Sci. Pol. 2020, 106, 210–220. [Google Scholar] [CrossRef]
- Valbuena, D.; Cely-Santos, M.; Obregón, D. Agrochemical Pesticide Production, Trade, and Hazard: Narrowing the Information Gap in Colombia. J. Environ. Manag. 2021, 286, 112141. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, A.; Chaparro-Narváez, P.; Morales-Plaza, C.D.; Alzate, A.; Padilla, J.; Arévalo, M.; Herrera, S. Malaria in Gold-Mining Areas in Colombia. Mem. Inst. Oswaldo Cruz. 2016, 111, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza-Bastida, A.; Valladares-Carranza, B.; Ortega-Santana, C.; Zamora-Espinosa, J.; Velázquez-Ordoñez, V.; Aparicio-Burgos, J. Repercusiones del Uso de los Organoclorados sobre el Ambiente y Salud Pública. AbanicoVet 2016, 6, 43–55. [Google Scholar]
- Varona, M.E.; Díaz-Criollo, S.M.; Lancheros-Bernal, A.R.; Murcia-Orjuela, A.M.; Henao-Londoño, G.L.; Idrovo, A.J. Organochlorine Pesticide Exposure among Agricultural Workers in Colombian Regions with Illegal Crops: An Exploration in a Hidden and Dangerous World. Int. J. Environ. Health Res. 2010, 20, 407–414. [Google Scholar] [CrossRef] [PubMed]
- García Ubaque, C.A.; García Ubaque, J.C.; Vaca Bohórquez, M.L. Compuestos Orgánicos Persistentes en Colombia: Cuantificación y Diagnóstico para Pesticidas Organoclorados. Tecnura 2015, 19, 163. [Google Scholar] [CrossRef]
- FAOSTAT. Organización de las Naciones Unidas Para la Alimentación y la Agricultura. Plaguicidas. 2019. Available online: http://www.fao.org/faostat/es/#data/EP/metadata (accessed on 31 May 2023).
- Castro Cely, Y. Relación entre la Exposición a Plaguicidas con el Intento Suicida y Suicidio en Colombia durante el Periodo 2009–2018. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2023. [Google Scholar]
- Idrovo, A.J. Plaguicidas usados en la Fumigación de Cultivos Ilícitos y Salud Humana: ¿Una Cuestión de Ciencia o Política? Rev. Salud Pública 2004, 6, 199–211. [Google Scholar] [CrossRef] [PubMed]
- Varona, M.; Henao, G.L.; Diaz, S.; Lancheros, A.; Murcia, A.; Rodriguez, N.; Alvarez, V.H. Effects of Aerial Applications of the Herbicide Glyphosate and Insecticides on Human Health. Biomedica 2009, 29, 456–475. [Google Scholar] [CrossRef]
- Gillezeau, C.; van Gerwen, M.; Shaffer, R.M.; Rana, I.; Zhang, L.; Sheppard, L.; Taioli, E. The Evidence of Human Exposure to Glyphosate: A Review. Environ. Health 2019, 18, 2. [Google Scholar] [CrossRef]
- Idrovo, A.J.; Rodríguez-Villamizar, L.A. Moving Back in Policy Banning Glyphosate Use in Colombia. Lancet 2018, 392, 1194. [Google Scholar] [CrossRef]
- Ancizar-Sordo, J. Occurrence of Selenium in Soils and Plants of Colombia, South America. Soil Sci. 1947, 63, 437–438. [Google Scholar] [CrossRef]
- Spiller, H.A.; Hays, H.L.; Casavant, M.J. Rethinking Treatment of Mercury Poisoning: The Roles of Selenium, Acetylcysteine, and Thiol Chelators in the Treatment of Mercury Poisoning: A Narrative Review. Toxicol. Commun. 2021, 5, 19–59. [Google Scholar] [CrossRef]
- Rodriguez-Villamizar, L.A.; Medina, O.M.; Flórez-Vargas, O.; Vilanova, E.; Idrovo, A.J.; Araque-Rodriguez, S.A.; Henao, J.A.; Sánchez-Rodríguez, L.H. Chemical Element Mixtures and Kidney Function in Mining and Non-Mining Settings in Northern Colombia. Int. J. Environ. Res. Public Health 2023, 20, 2321. [Google Scholar] [CrossRef] [PubMed]
- Florez-Vargas, O.; Vilanova, E.; Alcaide, C.; Henao, J.A.; Villarreal-Jaimes, C.A.; Medina-Pérez, O.M.; Rodriguez-Villamizar, L.A.; Idrovo, A.J.; Sánchez-Rodríguez, L.H. Geological Context and Human Exposures to Element Mixtures in Mining and Agricultural Settings in Colombia. Sci. Total. Environ. 2023, 898, 165632. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Gennings, C.; Hauser, R.; Webster, T.F. What Can Epidemiological Studies Tell Us about the Impact of Chemical Mixtures on Human Health? Environ. Health Perspect. 2016, 124, A6–A9. [Google Scholar] [CrossRef] [PubMed]
- Martin-Reina, J.; Casanova, A.G.; Dahiri, B.; Fernández, I.; Fernández-Palacín, A.; Bautista, J.; Morales, A.I.; Moreno, I. Adverse Health Effects in Women Farmers Indirectly Exposed to Pesticides. Int. J. Environ. Res. Public Health 2021, 18, 5909. [Google Scholar] [CrossRef] [PubMed]
- Idrovo, A.J.; Rivero-Rubio, C.; Amaya-Castellanos, C.; Idrovo, A.J.; Rivero-Rubio, C.; Amaya-Castellanos, C. Perception of Pollution and Arsenic in Hair of Indigenous Living near a Ferronickel Open-Pit Mine (Córdoba, Colombia): Public Health Case Report. Rev. Univ. Ind. Santander. Salud 2017, 49, 115–123. [Google Scholar] [CrossRef]
- Idrovo, A.J. Cerro Matoso Mine, Chemical Mixtures, and Environmental Justice in Colombia. Lancet 2018, 391, 2320. [Google Scholar] [CrossRef]
- Fernández-Niño, J.A.; Idrovo, A.J.; Cucunubá, Z.M.; Reyes-Harker, P.; Guerra, Á.P.; Moncada, L.I.; López, M.C.; Barrera, S.M.; Cortés, L.J.; Olivera, M.; et al. Paradoxical Associations between Soil-Transmitted Helminths and Plasmodium Falciparum Infection. Trans. R. Soc. Trop. Med. Hyg. 2012, 106, 701–708. [Google Scholar] [CrossRef]
- Cordy, P.; Veiga, M.M.; Salih, I.; Al-Saadi, S.; Console, S.; Garcia, O.; Mesa, L.A.; Velásquez-López, P.C.; Roeser, M. Mercury Contamination from Artisanal Gold Mining in Antioquia, Colombia: The World’s Highest per Capita Mercury Pollution. Sci. Total Environ. 2011, 410–411, 154–160. [Google Scholar] [CrossRef]
- Bonilla, J.S.; Figueroa, H.; Idrovo, A.J. Historia de la mina de mercurio “La Esperanza”, 1948–1983, Aranzazu, Caldas; Un Desastre Olvidado: Bucaramanga, Colombia, 2023. [Google Scholar]
- Word Health Organization. Guidance for Identifying Populations at Risk from Mercury Exposure. Available online: https://www.who.int/publications/m/item/guidance-for-identifying-populations-at-risk-from-mercury-exposure (accessed on 28 June 2023).
- Shin, Y.; Lee, J.; Park, E.; Lee, J.; Lee, H.S.; Kim, J.-H. A Quantitative Tandem Mass Spectrometry and Scaled-Down QuEChERS Approach for Simultaneous Analysis of Pesticide Multiresidues in Human Urine. Molecules 2019, 24, 1330. [Google Scholar] [CrossRef] [PubMed]
- Kales, S.; Christiani, D. Hair and Metal Toxicity. In Hair in Toxicology; Tobin, D.J., Ed.; The Royal Society of Chemistry: London, UK, 2005; pp. 125–158. ISBN 978-0-85404-587-7. [Google Scholar]
- Nunes, J.A.; Batista, B.L.; Rodrigues, J.L.; Caldas, N.M.; Neto, J.A.G.; Barbosa, F. A Simple Method Based on ICP-MS for Estimation of Background Levels of Arsenic, Cadmium, Copper, Manganese, Nickel, Lead, and Selenium in Blood of the Brazilian Population. J. Toxicol. Environ. Health A 2010, 73, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Fenech, M. Cytokinesis-Block Micronucleus Cytome Assay. Nat. Protoc. 2007, 2, 1084–1104. [Google Scholar] [CrossRef]
- Widaman, K.F. Common Factor Analysis Versus Principal Component Analysis: Differential Bias in Representing Model Parameters? Multivar. Behav. Res. 1993, 28, 263–311. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.J.D.; Hirakata, V.N. Alternatives for Logistic Regression in Cross-Sectional Studies: An Empirical Comparison of Models That Directly Estimate the Prevalence Ratio. BMC Med. Res. Methodol. 2003, 3, 21. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Breitner, S.; Hampel, R.; Basagaña, X. Statistical Approaches to Address Multi-Pollutant Mixtures and Multiple Exposures: The State of the Science. Curr. Environ. Health Rep. 2017, 4, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.J.; Dinali, G.S.; Oliveira, C.; Martins, G.C.; Moreira, C.G.; Siqueira, J.O.; Guilherme, L.R.G. Rare Earth Elements in the Soil Environment. Curr. Pollut. Rep. 2016, 2, 28–50. [Google Scholar] [CrossRef]
- Gwenzi, W.; Mangori, L.; Danha, C.; Chaukura, N.; Dunjana, N.; Sanganyado, E. Sources, Behaviour, and Environmental and Human Health Risks of High-Technology Rare Earth Elements as Emerging Contaminants. Sci. Total Environ. 2018, 636, 299–313. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Baldwin, L.A. Inorganics and Hormesis. Crit. Rev. Toxicol. 2003, 33, 215–304. [Google Scholar] [CrossRef]
- Rix, R.R.; Guedes, R.N.C.; Cutler, G.C. Hormesis Dose–Response Contaminant-Induced Hormesis in Animals. Curr. Opin. Toxicol. 2022, 30, 100336. [Google Scholar] [CrossRef]
- Spiller, H.A. Rethinking mercury: The role of selenium in the pathophysiology of mercury toxicity. Clin. Toxicol. 2018, 56, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hao, S.; Bañuelos, G.; Zhou, X. A Quantitative Review of the Effects of Se Application on the Reduction of Hg Concentration in Plant: A Meta-Analysis. Front. Plant. Sci. 2023, 14, 1199721. [Google Scholar] [CrossRef] [PubMed]
- Simón, P. Noticias Historiales de las Conquistas de Tierra Firme en las Indias Occidentales. Available online: https://www.bibliotecadigital.uchile.cl/discovery/fulldisplay/alma991007267759703936/ (accessed on 2 August 2023).
- Mendoza, O.G.; Castellanos, F.; Jiménez, J.F. Selenio (Se). En: Atlas Geoquímico de Colombia, Versión 2020; Servicio Geológico Colombiano: Bogotá, Colombia, 2020. [Google Scholar]
- Bedoya, G.; García, J.; Montoya, P.; Rojas, W.; Amézquita, M.E.; Soto, I.; López, M.C.; Ospina-Duque, J.; Ruiz-Linares, A. Análisis de isonimia entre poblaciones del noroeste de Colombia. Biomedica 2006, 26, 538. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rincón, M.P.; Peralta-Ardila, M.; Vélez-Torres, I.; Méndez, F. Conflicto Armado Interno y Ambiente en Colombia: Análisis desde los Conflictos Ecológicos, 1960–2016. J. Pol. Ecol. 2022, 29, 672–703. [Google Scholar] [CrossRef]
- Albarracín, J.; Milanese, J.P.; Valencia, I.H.; Wolff, J. Local Competitive Authoritarianism and Post-Conflict Violence. An Analysis of the Assassination of Social Leaders in Colombia. Int. Interact. 2022, 49, 237–267. [Google Scholar] [CrossRef]
- Espitia-Pérez, L.; Sosa, M.Q.; Salcedo-Arteaga, S.; León-Mejía, G.; Hoyos-Giraldo, L.S.; Brango, H.; Kvitko, K.; da Silva, J.; Henriques, J.A. Polymorphisms in Metabolism and Repair Genes Affects DNA Damage Caused by Open-Cast Coal Mining Exposure. Mutat. Res. Toxicol. Environ. Mutagen. 2016, 808, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Castilla, A.; Olivero-Verbel, J.; Marrugo-Negrete, J. Heavy Metals in Wild House Mice from Coal-Mining Areas of Colombia and Expression of Genes Related to Oxidative Stress, DNA Damage and Exposure to Metals. Mutat. Res. Toxicol. Environ. Mutagen. 2014, 762, 24–29. [Google Scholar] [CrossRef]
- Vélez-Torres, I.; Vanegas, D. Contentious Environmental Governance in Polluted Gold Mining Geographies: The Case of La Toma, Colombia. World Dev. 2022, 157, 105953. [Google Scholar] [CrossRef]
Site (Minerals) | Montelibano (Fe/Ni) | Nechí (Au) | Aranzazu (Closed Hg) | |
---|---|---|---|---|
Variables | (n = 76) %/Median (Min–Max) | (n = 84) %/Median (Min–Max) | (n = 87) %/Median (Min–Max) | p Value |
Sex (female) | 80.26 | 72.62 | 60.92 | 0.023 |
Age (years) | 54 (21–81) | 48 (21–83) | 40 (19–83) | <0.001 a |
Civil status | ||||
Married/Free union | 85.53 | 65.48 | 70.11 | 0.029 |
Divorced/Widower | 2.63 | 7.14 | 10.34 | |
Single | 11.84 | 27.38 | 19.54 | |
Education | ||||
Illiteracy | 2.63 | 11.90 | 5.75 | <0.001 |
Elementary (partial or full) | 13.16 | 39.29 | 39.08 | |
Secondary (partial or full) | 31.58 | 22.62 | 37.93 | |
Technic (partial or full) | 35.53 | 19.05 | 4.60 | |
University (partial or full) | 17.11 | 7.14 | 12.64 | |
Occupation | ||||
In mining activities | 52.63 | 44.05 | 0 | <0.001 |
In agricultural activities | 6.58 | 22.62 | 45.98 | <0.001 |
Cigarette consumption (any moment) | 21.05 | 39.29 | 43.68 | 0.007 |
Alcohol consumption (any moment) | 61.84 | 44.05 | 40.23 | 0.015 |
Food consumption | ||||
Fish | 97.37 | 91.67 | 71.26 | <0.001 |
Canned food | 56.58 | 48.81 | 60.92 | 0.274 |
White meat | 97.37 | 92.86 | 96.55 | 0.328 |
Red meat | 94.74 | 94.05 | 96.55 | 0.734 |
Fruits | 96.05 | 94.05 | 94.25 | 0.825 |
Vegetables | 98.68 | 97.62 | 94.25 | 0.242 |
Carcinogenic elements * (IARC 1) | ||||
Arsenic | 0.14 (0.05–4.28) | 0.18 (0.06–1.64) | 0.12 (0.05–0.36) | <0.001 a |
Beryllium | 0 (0–16.06) | 0 (0–0.07) | 0 (0–0.02) | <0.001 a |
Cadmium | 0.05 (0–1.69) | 0.04 (0.01–0.48) | 0.05 (0.01–0.94) | 0.395 a |
Chromium | 0.51 (0.18–19.06) | 0.33 (0.18–7.25) | 0.33 (0.20–3.53) | <0.001 a |
Strontium | 2.09 (0.1–55.42) | 3.49 (0.33–46.21) | 2.97 (0.19–46.13) | 0.011 a |
Nickel | 0.45 (0.05–17.77) | 0.25 (0.05–2.07) | 0.14 (0.02–3.92) | <0.001 a |
Thorium | 0 (0–0.27) | 0 (0–0.04) | 0 (0–0.01) | <0.001 a |
Probably carcinogenic * (IARC 2A) | ||||
Antimony | 0.03 (0.00–0.35) | 0.02 (0.00–0.35) | 0.01 (0.00–0.29) | 0.040 a |
Cobalt | 0.04 (0.00–4.46) | 0.03 (0.01–1.14) | 0.01 (0.00–0.13) | <0.001 a |
Indium | 0 (0–0.002) | 0 | 0 (0–0.004) | 0.3484 |
Magnesium | 77.90 (12.97–1449) | 105.81 (19.44–2131) | 49.73 (9.51–608.74) | <0.001 a |
Manganese | 1.66 (0.06–92.63) | 3.09 (0.15–46.54) | 0.80 (0.10–11.50) | <0.001 a |
Silica | 0 (0 -7598) | 0 (0–4495) | 1201 (0–3913) | <0.001 a |
Possibly carcinogenic * (IARC 2B) | ||||
Mercury | 1.89 (0.06–12.29) | 2.48 (0.17–17.14) | 0.08 (0–1.63) | <0.001 a |
Molybdenum | 0.05 (0.01–1.40) | 0.06 (0.02–0.36) | 0.04 (0.02–0.24) | <0.001 a |
Lead | 0.92 (0.04–89.01) | 0.64 (0.08–75.17) | 0.55 (0.06–163.37) | 0.761 a |
Potassium | 1.83 (0–155.47) | 3.98 (0–106.10) | 1.08 (0–129.28) | <0.001 a |
Sodium | 3.12 (0.47–238.26) | 3.94 (0.49–701.25) | 1.44 (0.30–379.54) | <0.001 a |
Titanium | 0.13 (0–3.16) | 0.24 (0.09–1.24) | 0.18 (0.08–0.60) | <0.001 a |
Vanadium | 0.05 (0.00–1.41) | 0.12 (0.03–0.85) | 0.05 (0.02–0.45) | <0.001 a |
Other elements | ||||
Phosphorus | 219 (66–2883) | 218 (111–342) | 205 (148–297) | 0.114 a |
Selenium | 1.35 (0.23–14.70) | 1.40 (0.46–60.69) | 1.01 (0.41–1.44) | <0.001 a |
Montelibano (Fe/Ni Open-Pit Mine) | Concentrations (ppm) | |||||||
---|---|---|---|---|---|---|---|---|
Positives | Percentiles | |||||||
Pesticide | Sample | % | Min | 25 | 90 | 95 | 99 | Max |
Paraoxon-methyl | Blood | 27.55 | ND | ND | 0.24 | 0.29 | 37.26 | 37.26 |
Parathion-ethyl | Blood | 1.02 | ND | ND | ND | ND | ND | 1.02 |
Paraoxon-ethyl | Urine | 2.04 | ND | ND | ND | ND | 0.06 | 0.06 |
Parathion-ethyl | Urine | 2.04 | ND | ND | ND | ND | 0.07 | 0.07 |
Parathion-methyl | Urine | 2.04 | ND | ND | ND | ND | 0.07 | 0.07 |
Propoxur | Urine | 2.04 | ND | ND | ND | ND | 0.13 | 0.44 |
Nechí (Au fluvial mines) | Concentrations (ppm) | |||||||
Positives | Percentiles | |||||||
Pesticide | Sample | % | Min | 25 | 90 | 95 | 99 | Max |
Paraoxon-ethyl | Blood | 0.99 | ND | ND | ND | ND | ND | 0.75 |
Parathion-ethyl | Urine | 0.99 | ND | ND | ND | ND | ND | 0.05 |
Aranzazu (Hg closed mine) | Concentrations (ppm) | |||||||
Positives | Percentiles | |||||||
Pesticide | Sample | % | Min | 25 | 90 | 95 | 99 | Max |
Paraoxon-ethyl | Blood | 18.81 | ND | ND | 0.08 | 0.09 | 0.10 | 0.13 |
Paraoxon-methyl | Urine | 0.99 | ND | ND | ND | ND | ND | 0.38 |
Site | Montelibano (n = 76) | Nechí (n = 84) | Aranzazu (n = 87) | |||
---|---|---|---|---|---|---|
(Type of Mine) | Fe/Ni | Au | Closed Hg | |||
Variables | PR | 95% CI | PR | 95% CI | PR | 95% CI |
Sex (female) | 0.68 | 0.47–0.99 | 0.82 | 0.56–1.21 | 0.86 | 0.63–1.17 |
Age (years) | 1.01 | 0.99–1.02 | 1.00 | 0.99–1.01 | 1.00 | 0.99–1.01 |
Civil status | ||||||
Married/Free union | 1 | 1 | 1 | |||
Divorced/Widower | 1.26 | 0.51–3.11 | 1.31 | 0.64–2.68 | 1.14 | 0.68–1.91 |
Single | 1.17 | 0.68–2.02 | 1.26 | 0.85 -1.87 | 1.01 | 0.70–1.45 |
Education | ||||||
Illiteracy | 1 | 1 | 1 | |||
Elementary (partial or full) | 0.38 | 0.24–0.60 | 1.02 | 0.56–1.86 | 0.63 | 0.42–0.94 |
Secondary (partial or full) | 0.48 | 0.34–0.66 | 0.85 | 0.46 -1.59 | 0.67 | 0.43–1.03 |
Technic (partial or full) | 0.41 | 0.31–0.53 | 1.00 | 0.53–1.89 | 0.78 | 0.40–1.54 |
University (partial or full) | 0.45 | 0.31–0.64 | 1.29 | 0.65–2.55 | 0.78 | 0.50–1.22 |
Occupation | ||||||
In mining activities | 0.90 | 0.66–1.23 | 1.12 | 0.77–1.64 | NA | |
In agricultural activities | 1.13 | 0.71–1.79 | 0.58 | 0.33–1.02 | 0.99 | 0.72–1.35 |
Consumption (any moment) | ||||||
Cigarette | 1.33 | 0.94–1.87 | 0.88 | 0.58–1.33 | 1.15 | 0.84–1.57 |
Alcohol | 0.81 | 0.59–1.12 | 1.18 | 0.81–1.71 | 0.86 | 0.62–1.17 |
Food consumption | ||||||
Fish | 2.27 | 1.11–4.64 | 1.74 | 0.53–5.74 | 1.33 | 0.91–1.97 |
Canned food | 1.14 | 0.84–1.54 | 1.44 | 0.99–2.08 | 1.09 | 0.78–1.54 |
White meat | 1.29 | 1.00–1.66 | 1.93 | 0.80–4.65 | 1.05 | 0.67–1.64 |
Red meat | 0.89 | 0.62–1.26 | 1.34 | 0.45–4.01 | 0.84 | 0.35–2.04 |
Fruits | 1.12 | 0.38–3.30 | 0.48 | 0.32–0.71 | 0.73 | 0.52–1.01 |
Vegetables | 1.50 | 1.28–1.75 | 0.52 | 0.19–1.39 | 0.75 | 0.58–0.96 |
Pesticides (ppb) | ||||||
Paraoxon-methyl in blood | 1.00 | 0.99–1.01 | ||||
Paraoxon-ethyl in blood | 18.43 | 0.71–476.02 | ||||
Element mixtures in hair | ||||||
FC1 | 0.97 | 0.94–1.00 | 0.90 | 0.83–0.98 | 1.04 | 1.00–1.07 |
FC2 | 0.98 | 0.94–1.03 | 1.04 | 0.99–1.09 | 1.02 | 0.99–1.05 |
FC3 | NA | 0.96 | 0.90–1.03 | NA | ||
Selected elements in hair | ||||||
Mercury | 0.97 | 0.93–1.02 | 0.98 | 0.92–1.03 | 1.76 | 1.06–2.93 |
Selenium | NA | 1.02 | 1.01–1.02 | 0.58 | 0.25–1.34 | |
Lead | 1.01 | 1.00–1.01 | 0.94 | 0.89–0.98 | 1.00 | 0.99–1.00 |
Beryllium | 0.77 | 0.66–0.89 | NA | NA |
Site | Montelibano (n = 76) | Nechí (n = 84) | Aranzazu (n = 87) | |||
---|---|---|---|---|---|---|
(Type of Mine) | (Open-Pit Fe/Ni) | (Fluvial Au) | (Closed Hg) | |||
Variables | Adj. PR | 95% CI | Adj. PR | 95% CI | Adj. PR | 95% CI |
Pesticides (ppb) | ||||||
Parathion ethyl (blood) | 0.04 | 0.01–0.14 | ||||
Paraoxon ethyl (urine) | 0.01 | 0.00–0.04 | ||||
Element mixtures in hair (scores) | ||||||
Factor 1 | 0.97 | 0.94–0.99 | 0.88 | 0.79–0.98 | ||
Factor 2 | 1.05 | 1.00–1.09 | ||||
Hair concentration (ppm) | ||||||
Beryllium | 0.67 | 0.59–0.76 | ||||
Lead | 1.01 | 1.00–1.01 | 1.37 | 1.06–1.77 | ||
Mercury | 36.02 | 2.69–380.55 | ||||
Selenium | 1.05 | 1.03–1.08 | 0.86 | 0.32–2.33 | ||
Nickel | 1.28 | 1.13–1.45 | ||||
Interactions | ||||||
Selenium X Lead | 0.78 | 0.64–0.95 | ||||
Selenium X Mercury | 0.11 | 0.02–0.77 | ||||
Diet consumption | ||||||
Fish | 4.73 | 3.94–5.68 | ||||
Vegetables | 0.47 | 0.38–0.59 | ||||
Red meat | 0.67 | 0.54–0.83 | ||||
Fruits | 0.55 | 0.38–0.80 | 0.66 | 0.46–0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varona-Uribe, M.E.; Díaz, S.M.; Palma, R.-M.; Briceño-Ayala, L.; Trillos-Peña, C.; Téllez-Avila, E.M.; Espitia-Pérez, L.; Pastor-Sierra, K.; Espitia-Pérez, P.J.; Idrovo, A.J. Micronuclei, Pesticides, and Element Mixtures in Mining Contexts: The Hormetic Effect of Selenium. Toxics 2023, 11, 821. https://doi.org/10.3390/toxics11100821
Varona-Uribe ME, Díaz SM, Palma R-M, Briceño-Ayala L, Trillos-Peña C, Téllez-Avila EM, Espitia-Pérez L, Pastor-Sierra K, Espitia-Pérez PJ, Idrovo AJ. Micronuclei, Pesticides, and Element Mixtures in Mining Contexts: The Hormetic Effect of Selenium. Toxics. 2023; 11(10):821. https://doi.org/10.3390/toxics11100821
Chicago/Turabian StyleVarona-Uribe, Marcela E., Sonia M. Díaz, Ruth-Marien Palma, Leonardo Briceño-Ayala, Carlos Trillos-Peña, Eliana M. Téllez-Avila, Lyda Espitia-Pérez, Karina Pastor-Sierra, Pedro Juan Espitia-Pérez, and Alvaro J. Idrovo. 2023. "Micronuclei, Pesticides, and Element Mixtures in Mining Contexts: The Hormetic Effect of Selenium" Toxics 11, no. 10: 821. https://doi.org/10.3390/toxics11100821
APA StyleVarona-Uribe, M. E., Díaz, S. M., Palma, R. -M., Briceño-Ayala, L., Trillos-Peña, C., Téllez-Avila, E. M., Espitia-Pérez, L., Pastor-Sierra, K., Espitia-Pérez, P. J., & Idrovo, A. J. (2023). Micronuclei, Pesticides, and Element Mixtures in Mining Contexts: The Hormetic Effect of Selenium. Toxics, 11(10), 821. https://doi.org/10.3390/toxics11100821