Ecological Risk Assessment and Source Identification of Heavy Metals in Soils from Shiyang River Watershed in Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Chemical Analysis
2.2.1. pH, Electrical Conductivity (EC), Anions, and Cations
2.2.2. Major Elements, Trace Elements Measurements
2.2.3. Sequential Extraction Procedure (BCR)
2.2.4. Quality Control (QC)
2.3. Ecological Risk Assessment
2.4. Statistical Analysis
3. Results and Discussions
3.1. Physicochemical Properties of Soils
3.2. The Concentration of Heavy Metals in Soils
3.3. Geochemical Fractionations of Heavy Metals
3.4. Assessment of Potential Ecological Risk
3.4.1. EF and Igeo
3.4.2. Potential Ecological Risk Index
3.4.3. Risk Assessment Code
4. Discussions
4.1. Source Identification of Heavy Metals
4.2. Factors Affecting Soil Heavy Metals
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Sample | GSS−18 | GSS−18 | GSS−18 | GSS−18 | GSS−18 | Actual Value | Detection Limit (mg/kg) |
---|---|---|---|---|---|---|---|
Cr | 54.653 | 56.212 | 56.75 | 53.957 | 55.721 | 55 ± 2 | 0.005 |
Ni | 25.471 | 24.53 | 24.686 | 26.243 | 25.796 | 25 ± 1 | 0.005 |
Cu | 19.981 | 19.574 | 29.889 | 19.532 | 19.663 | 19.5 ± 0.5 | 0.01 |
Zn | 62.627 | 65.496 | 63.432 | 62.653 | 63.519 | 63 ± 2 | 0.02 |
As | 10.289 | 10.688 | 11.164 | 10.667 | 11.106 | 10.7 ± 0.5 | 0.05 |
Cd | 0.146 | 0.159 | 0.148 | 0.158 | 0.141 | 0.15 ± 0.01 | 0.01 |
Pb | 19.985 | 20.817 | 19.972 | 19.858 | 20.667 | 20 ± 1 | 0.005 |
Hg | 0.016 | 0.014 | 0.016 | 0.018 | 0.013 | 0.015 ± 0.003 | 0.005 |
pH | EC | Ca2+ | K+ | Mg2+ | Na+ | Cl− | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0–3 cm | min | 7.58 | 53.20 | 10.15 | 3.28 | 3.99 | 0.60 | ND. | 14.03 | 0.63 | ND. | 1.44 |
max | 8.98 | 24,700.00 | 1716.00 | 428.00 | 282.00 | 7196.00 | 13.80 | 115.08 | 12,529.30 | 1962.92 | 3952.90 | |
mean | 8.26 | 2654.03 | 287.10 | 39.88 | 45.67 | 511.50 | 2.12 | 44.21 | 908.36 | 155.15 | 798.88 | |
3–10 cm | min | 7.57 | 47.40 | 8.68 | 2.14 | 5.93 | 1.03 | ND. | 11.23 | 0.96 | ND. | 1.07 |
max | 8.96 | 8010.00 | 1189.00 | 72.09 | 94.46 | 1642.00 | 13.80 | 108.07 | 2225.00 | 347.08 | 2948.53 | |
mean | 8.45 | 1148.40 | 186.25 | 14.97 | 18.36 | 161.37 | 3.06 | 46.26 | 204.83 | 44.00 | 530.28 | |
10–20 cm | min | 7.54 | 51.60 | 7.70 | 1.65 | 5.78 | 1.05 | ND. | 14.03 | 0.86 | ND. | 0.80 |
max | 9.04 | 7820.00 | 1221.00 | 108.70 | 103.70 | 1562.00 | 11.04 | 105.26 | 2144.30 | 175.05 | 2670.00 | |
mean | 8.48 | 1103.36 | 158.19 | 15.08 | 17.56 | 150.82 | 3.30 | 45.46 | 178.53 | 32.58 | 534.82 | |
20–40 cm | min | 7.74 | 51.70 | 6.31 | 1.58 | 3.54 | 1.63 | ND. | 7.02 | 0.87 | ND. | 0.97 |
max | 9.49 | 7400.00 | 1099.00 | 61.14 | 66.74 | 1591.00 | 11.04 | 102.45 | 1727.57 | 231.63 | 3523.19 | |
mean | 8.56 | 1045.14 | 156.72 | 12.89 | 16.55 | 140.89 | 4.34 | 42.35 | 147.91 | 23.36 | 556.97 | |
40–80 cm | min | 7.64 | 49.60 | 3.34 | 1.65 | 4.52 | 2.35 | ND. | 1.40 | 0.84 | ND. | 1.19 |
max | 9.64 | 5850.00 | 1056.00 | 53.97 | 65.23 | 1150.00 | 31.75 | 77.19 | 1062.46 | 95.45 | 3434.88 | |
mean | 8.55 | 896.10 | 125.51 | 10.45 | 16.03 | 120.83 | 5.82 | 38.09 | 103.78 | 16.73 | 572.41 |
As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | ||
---|---|---|---|---|---|---|---|---|---|
0–3 cm | min | 7.57 | 0.08 | 53.20 | 15.30 | 0.01 | 21.90 | 15.50 | 43.00 |
max | 14.80 | 0.24 | 80.10 | 32.10 | 0.11 | 37.70 | 28.00 | 84.10 | |
mean | 10.00 | 0.16 | 63.70 | 21.71 | 0.03 | 29.24 | 20.19 | 58.94 | |
3–10 cm | min | 6.51 | 0.05 | 45.80 | 13.40 | 0.01 | 20.10 | 14.40 | 35.60 |
max | 16.00 | 0.24 | 81.90 | 32.60 | 0.11 | 38.00 | 26.80 | 80.30 | |
mean | 9.94 | 0.15 | 62.97 | 21.35 | 0.03 | 28.55 | 20.13 | 56.97 | |
10–20 cm | min | 6.90 | 0.07 | 46.90 | 12.80 | ND. | 18.90 | 12.90 | 37.50 |
max | 15.20 | 0.22 | 82.70 | 32.50 | 0.09 | 37.90 | 26.70 | 80.90 | |
mean | 10.19 | 0.15 | 63.66 | 21.13 | 0.02 | 28.75 | 19.52 | 56.31 | |
20–40 cm | min | 5.81 | 0.06 | 38.50 | 11.40 | ND. | 17.40 | 13.90 | 32.30 |
max | 15.80 | 0.22 | 84.50 | 33.50 | 0.09 | 39.10 | 37.50 | 85.00 | |
mean | 10.63 | 0.14 | 66.53 | 22.64 | 0.02 | 30.14 | 20.79 | 59.69 | |
40–80 cm | min | 6.21 | 0.07 | 47.50 | 13.30 | ND. | 20.40 | 14.20 | 35.40 |
max | 17.80 | 0.27 | 89.50 | 35.00 | 0.14 | 46.80 | 31.90 | 85.60 | |
mean | 10.68 | 0.14 | 66.72 | 22.44 | 0.02 | 30.12 | 20.14 | 58.89 |
References
- Zhang, S.; Chen, B.; Du, J.; Wang, T.; Shi, H.; Wang, F. Distribution, Assessment, and Source of Heavy Metals in Sediments of the Qinjiang River, China. Int. J. Environ. Res. Public Health 2022, 19, 1940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Cui, L.; Sheng, L.; Wang, Y. Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecol. Eng. 2009, 35, 563–569. [Google Scholar] [CrossRef]
- Rahman, M.S.; Saha, N.; Molla, A.H. Potential ecological risk assessment of heavy metal contamination in sediment and water body around Dhaka export processing zone, Bangladesh. Environ. Earth Sci. 2014, 71, 2293–2308. [Google Scholar] [CrossRef]
- Jing, H.; Yang, W.; Chen, Y.; Yang, L.; Zhou, H.; Yang, Y.; Zhao, Z.; Wu, P.; Zia-ur-Rehman, M. Exploring the mechanism of Cd uptake and translocation in rice: Future perspectives of rice safety. Sci. Total Environ. 2023, 897, 165369. [Google Scholar] [CrossRef]
- Yang, L.; Wu, P.; Yang, W. Characteristics, Health Risk Assessment, and Transfer Model of Heavy Metals in the Soil-Food Chain in Cultivated Land in Karst. Foods 2022, 11, 2802. [Google Scholar] [CrossRef] [PubMed]
- Trevors, J.T.; Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability. Heavy Met. Soils 2013, 22, 632. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- O’Connor, D.; Hou, D.; Ok, Y.S.; Mulder, J.; Duan, L.; Wu, Q.; Wang, S.; Tack, F.M.; Rinklebe, J. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environ. Int. 2019, 126, 747–761. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Guo, G.; Li, Y.; Zhang, R.; Feng, C.; Zhang, Y. Distribution, Site-Specific Water Quality Criteria, and Ecological Risk Assessment of Heavy Metals in Surface Water in Fen River, China. Toxics 2023, 11, 704. [Google Scholar] [CrossRef]
- Ma, J.; Lanwang, K.; Liao, S.; Zhong, B.; Chen, Z.; Ye, Z.; Liu, D. Source Apportionment and Model Applicability of Heavy Metal Pollution in Farmland Soil Based on Three Receptor Models. Toxics 2023, 11, 265. [Google Scholar] [CrossRef]
- Leng, Q.; Ren, D.; Wang, Z.; Zhang, S.; Zhang, X.; Chen, W. Assessment of Potentially Toxic Elements Pollution and Human Health Risks in Polluted Farmland Soils around Distinct Mining Areas in China—A Case Study of Chengchao and Tonglushan. Toxics 2023, 11, 574. [Google Scholar]
- Kubier, A.; Wilkin, R.T.; Pichler, T. Cadmium in soils and groundwater: A review. Appl. Geochem. 2019, 108, 104388. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.M.; Candelone, J.P.; Boutron, C.F. Deposition of atmospheric heavy metals to the Greenland ice sheet from the 1783-1784 volcanic eruption of Laki, Iceland. Earth Planet. Sci. Lett. 1996, 144, 605–610. [Google Scholar] [CrossRef]
- Ilyinskaya, E.; Mason, E.; Wieser, P.E.; Holland, L.; Liu, E.J.; Mather, T.A.; Edmonds, M.; Whitty, R.C.W.; Elias, T.; Nadeau, P.A.; et al. Rapid metal pollutant deposition from the volcanic plume of Kilauea, Hawai’i. Commun. Earth Environ. 2021, 2, 78. [Google Scholar] [CrossRef]
- Quinton, J.N.; Catt, J.A. Enrichment of heavy metals in sediment resulting from soil erosion on agricultural fields. Environ. Sci. Technol. 2007, 41, 3495–3500. [Google Scholar] [CrossRef]
- Yang, L.; Wu, P.; Yang, W. Study on Safe Usage of Agricultural Land in Typical Karst Areas Based on Cd in Soil and Maize: A Case Study of Northwestern Guizhou, China. Agriculture 2022, 12, 1156. [Google Scholar] [CrossRef]
- Zhang, M.L.; Wang, H.X.; Soc, I.C. Characteristics on Soil Heavy Metals Pollution around Mine Waste Piles. In Proceedings of the International Conference on Environmental Science and Information Application Technology (ESIAT 2009), Wuhan, China, 4–5 July 2009; Volume 2, pp. 90–92. [Google Scholar]
- Zhou, X.Y.; Wang, X.R. Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China. J. Clean. Prod. 2019, 230, 1–10. [Google Scholar] [CrossRef]
- Ahmad, I.; Ansari, T.M. Occurrence and translocation of heavy metals in phosphate ores and fertilisers by GFAAS. Int. J. Environ. Anal. Chem. 2022, 102, 196–221. [Google Scholar] [CrossRef]
- Singh, N.; Gupta, V.K.; Kumar, A.; Sharma, B. Synergistic Effects of Heavy Metals and Pesticides in Living Systems. Front. Chem. 2017, 5, 70. [Google Scholar] [CrossRef] [PubMed]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Spatial Distribution and Evaluation of Arsenic and Zinc Content in the Soil of a Karst Landscape. Sustainability 2021, 13, 6976. [Google Scholar] [CrossRef]
- Liu, H.L.; Zhou, J.; Li, M.; Hu, Y.M.; Liu, X.L.; Zhou, J. Study of the bioavailability of heavy metals from atmospheric deposition on It the soil-pakchoi (Brassica chinensis L.) system. J. Hazard. Mater. 2019, 362, 9–16. [Google Scholar] [CrossRef]
- Alexakis, D.E.; Bathrellos, G.D.; Skilodimou, H.D.; Gamvroula, D.E. Land suitability mapping using geochemical and spatial analysis methods. Appl. Sci. 2021, 11, 5404. [Google Scholar] [CrossRef]
- Zeng, F.R.; Ali, S.; Zhang, H.T.; Ouyang, Y.B.; Qiu, B.Y.; Wu, F.B.; Zhang, G.P. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut. 2011, 159, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.G.; Huang, W.Y.; Yao, L. Study on the Bioavailability of Soil Heavy Metal. In Proceedings of the 2nd International Conference on Energy, Environment and Sustainable Development (EESD 2012), Jilin, China, 15 July 2012; pp. 3085–3090. [Google Scholar]
- Popenda, A. Effect of redox potential on heavy metals and As behavior in dredged sediments. Desalination Water Treat. 2014, 52, 3918–3927. [Google Scholar] [CrossRef]
- Chuan, M.C.; Shu, G.Y.; Liu, J.C. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. Water Air Soil Pollut. 1996, 90, 543–556. [Google Scholar] [CrossRef]
- Zhou, J.J.; Luo, C.Y.; Ma, D.F.; Shi, W.; Wang, L.Y.; Guo, Z.A.; Tang, H.T.; Wang, X.; Wang, J.R.; Liu, C.F.; et al. The impact of land use landscape pattern on river hydrochemistry at multi-scale in an inland river basin, China. Ecol. Indic. 2022, 143, 109334. [Google Scholar] [CrossRef]
- Xiaodong, Z.; Yaowen, X.I.E.; Jianyao, S.H.I.; Chunxia, Y. Change analysis of land use and landscape patterns in Shiyang River Basin. J. Lanzhou Univ. Nat. Sci. 2008, 44, 19–25. [Google Scholar]
- Wei, W.; Xie, Y.W.; Shi, P.J.; Zhou, J.J.; Li, C.H. Spatial Temporal Analysis of Land Use Change in the Shiyang River Basin in Arid China, 1986–2015. Pol. J. Environ. Stud. 2017, 26, 1789–1796. [Google Scholar] [CrossRef]
- Li, X.Y.; Xiao, D.N.; He, X.Y.; Chen, W.; Song, D.M. Evaluation of landscape changes and ecological degradation by GIS in arid regions: A case study of the terminal oasis of the Shiyang River, northwest China. Environ. Geol. 2007, 52, 947–956. [Google Scholar] [CrossRef]
- Wei, W.; Shi, P.; Zhao, J.; Wang, X. Spatial relationship between elevation, vegetation cover and landscape types in Shiyang River Basin. Arid Land Geogr. 2012, 35, 91–98. [Google Scholar]
- Zhang, X.; Shi, P.; Luo, J.; Liu, H.; Wei, W. The Ecological Risk Assessment of Arid Inland River Basin at the Landscape Scale:A Case Study on Shiyang River Basin. J. Nat. Resour. 2014, 29, 410–419. [Google Scholar]
- Zhang, C.; Nie, S.; Liang, J.; Zeng, G.; Wu, H.; Hua, S.; Liu, J.; Yuan, Y.; Xiao, H.; Deng, L.; et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci. Total Environ. 2016, 557, 785–790. [Google Scholar] [CrossRef]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of soil, plant and water analysis: Laboratory manual. Int. Cent. Agric. Res. Dry Areas 2013, 15, 100–105. [Google Scholar]
- Ismayilov, A.I.; Mamedov, A.I.; Fujimaki, H.; Tsunekawa, A.; Levy, G.J. Soil Salinity Type Effects on the Relationship between the Electrical Conductivity and Salt Content for 1:5 Soil-to-Water Extract. Sustainability 2021, 13, 3395. [Google Scholar] [CrossRef]
- Dierickx, W.R. The Salinity and Alkalinity Status of Arid and SEMI-ARID. In Encyclopedia of Land Use, Land Cover and Soil Sciences; Eolss Publishers: Oxford, UK, 2009; Volume 5, pp. 163–189. [Google Scholar]
- Peng, Y.; Wu, J.; Chao, J.; Chen, Y. A method for the the accurate determination of 14 metal elements in soils /sediments by ICP-MS. Environ. Chem. 2017, 36, 175–182. [Google Scholar]
- Rauret, G.; Lopez-Sanchez, J.F.; Sahuquillo, A.; Rubio, R.; Davidson, C.; Ure, A.; Quevauviller, P. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit. 1999, 1, 57–61. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, S.; Chen, Y.; Chen, B.; Lei, T. Distribution characteristics, source identification, and risk assessment of heavy metals in surface sediments of the salt lakes in the Ordos Plateau, China. Environ. Sci. Pollut. Res. 2022, 29, 74772–74783. [Google Scholar] [CrossRef]
- Caeiro, S.; Costa, M.H.; Ramos, T.B.; Fernandes, F.; Silveira, N.; Coimbra, A.; Medeiros, G.; Painho, M. Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecol. Indic. 2005, 5, 151–169. [Google Scholar] [CrossRef]
- Li, D.; Lu, Q.; Cai, L.; Chen, L.; Wang, H. Characteristics of Soil Heavy Metal Pollution and Health Risk Assessment in Urban Parks at a Megacity of Central China. Toxics 2023, 11, 257. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the rhine river. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Muller, G. Schwermetallbelstung der Sediment des Neckars und Seiner Nebenflusse: Eine Estandsaufnahme. Chem. Ztg. 1981, 105, 157–164. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Agyeman, P.C.; John, K.; Kebonye, N.M.; Ofori, S.; Boruvka, L.; Vasat, R.; Kocarek, M. Ecological risk source distribution, uncertainty analysis, and application of geographically weighted regression cokriging for prediction of potentially toxic elements in agricultural soils. Process Saf. Environ. Prot. 2022, 164, 729–746. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; da Silva, J.B.; dos Santos, I.F.; de Oliveira, O.M.C.; Cerda, V.; Queiroz, A.F.S. Use of pollution indices and ecological risk in the assessment of contamination from chemical elements in soils and sediments—Practical aspects. Trends Environ. Anal. Chem. 2022, 35, e00169. [Google Scholar] [CrossRef]
- Perin, G.; Craboledda, L.; Lucchese, M.; Cirillo, R.; Dotta, L. Heavy Metal Speciation in the Sediments of Northern Adriatic Sea: A New Approach for Environmental Toxicity Determination. Heavy Met. Environ. 1985, 2, 454–456. [Google Scholar]
- Xia, P.; Ma, L.; Sun, R.; Yang, Y.; Tang, X.; Yan, D.; Lin, T.; Zhang, Y.; Yi, Y. Evaluation of potential ecological risk, possible sources and controlling factors of heavy metals in surface sediment of Caohai Wetland, China. Sci. Total Environ. 2020, 740, 140231. [Google Scholar] [CrossRef]
- Ma, X.; Zuo, H.; Tian, M.; Zhang, L.; Meng, J.; Zhou, X.; Min, N.; Chang, X.; Liu, Y. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 2016, 144, 264–272. [Google Scholar] [CrossRef]
- Rosado, D.; Usero, J.; Morillo, J. Assessment of heavy metals bioavailability and toxicity toward Vibrio fischeri in sediment of the Huelva estuary. Chemosphere 2016, 153, 10–17. [Google Scholar] [CrossRef]
- Yang, Y.; Tao, Y.; Dou, H.; Xu, J.; Yang, Y.; Bu, Y.; Shan, Z.; Zhou, R. Progress in research on ecological toxicity of combined pollution of pesticide and heavy metals. Chin. J. Pestic. Sci. 2021, 23, 10–21. [Google Scholar]
- Yi, Y.; Huang, W.; Zhang, C. Phosphorus Solubilization of Bacteria and Associated Heavy Metal Releasing from Phosphate Rock Powder. J. Soil Sci. 2012, 43, 374–378. [Google Scholar]
- Wang, L.; Tao, Y.; Su, B.; Wang, L.; Liu, P. Environmental and Health Risks Posed by Heavy Metal Contamination of Groundwater in the Sunan Coal Mine, China. Toxics 2022, 10, 390. [Google Scholar] [CrossRef]
- El-Saadani, Z.; Mingqi, W.; He, Z.; Hamukwaya, S.L.; Abdel Wahed, M.S.M.; Abu Khatita, A. Environmental Geochemistry and Fractionation of Cadmium Metal in Surficial Bottom Sediments and Water of the Nile River, Egypt. Toxics 2022, 10, 221. [Google Scholar] [CrossRef]
- Santos, I.D.; Rodrigues, S.L.; Siqueira, J.O.; Monte, M.B.M.; Dutra, A.J.B. Effect of partial oxidation of organic matter on cadmium leaching from phosphate. Miner. Eng. 2016, 99, 67–75. [Google Scholar] [CrossRef]
- Mignardi, S.; Corami, A.; Ferrini, V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere 2012, 86, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Aydin, I.; Aydin, F.; Saydut, A.; Bakirdere, E.G.; Hamamci, C. Hazardous metal geochemistry of sedimentary phosphate rock used for fertilizer (Mazidag, SE Anatolia, Turkey). Microchem. J. 2010, 96, 247–251. [Google Scholar] [CrossRef]
- Liu, Y.H.; Bei, K.; Zheng, W.R.; Yu, G.G.; Sun, C.X. Assessment of health risks associated with pesticide and heavy metal contents in Fritillaria thunbergii Miq. (Zhe Beimu). Environ. Sci. Pollut. Res. 2023, 30, 26807–26818. [Google Scholar] [CrossRef] [PubMed]
- Kitahara, Y.; Nomura, H.; Nishihara, N.; Ueda, T.; Watanabe, S.; Saito, I.; Ueyama, J. Survey of Arsenic/Heavy Metals and Pesticide Residues in Edible Insects for Human Consumption or Supplied in Japan. Food Hyg. Saf. Sci. 2022, 63, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Tumanyan, A.F.; Shcherbakova, N.A.; Tusaint, F.; Seliverstova, A.P.; Tyutyuma, N.V. Heavy Metal Contents in Soils and Vegetables of Southern Russia. Chem. Technol. Fuels Oils 2019, 54, 766–770. [Google Scholar] [CrossRef]
- Younas, U.; Iqbal, S.; Saeed, Z.; Ibrahim, S.; Khurshid, S.; Pervaiz, M.; Saleem, A.; Zaidi, A.; Iqbal, M.; Nazir, A. Heavy Metal Enrichment of Soil Irrigated with Paper and Board Mill (PBM) Effluents. Pol. J. Environ. Stud. 2020, 29, 4463–4468. [Google Scholar] [CrossRef]
Al2O3 % | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
mg/kg | |||||||||
0–3 cm | 9.88 | 8.09 | 0.14 | 52.00 | 16.20 | 0.01 | 22.90 | 18.70 | 43.60 |
3–10 cm | 9.36 | 10.70 | 0.09 | 44.60 | 14.40 | 0.033 | 19.20 | 17.80 | 40.20 |
10–20 cm | 9.81 | 11.10 | 0.09 | 55.00 | 14.50 | 0.01 | 19.90 | 17.30 | 38.40 |
20–40 cm | 9.58 | 5.44 | 0.09 | 50.10 | 15.10 | 0.01 | 20.30 | 18.20 | 42.50 |
40–80 cm | 8.71 | 12.70 | 0.07 | 34.00 | 11.20 | 0.09 | 15.30 | 16.20 | 34.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Wang, T.; Gui, J.; Zhang, H.; Huang, C.; Song, X.; Zhang, S. Ecological Risk Assessment and Source Identification of Heavy Metals in Soils from Shiyang River Watershed in Northwest China. Toxics 2023, 11, 825. https://doi.org/10.3390/toxics11100825
Liao J, Wang T, Gui J, Zhang H, Huang C, Song X, Zhang S. Ecological Risk Assessment and Source Identification of Heavy Metals in Soils from Shiyang River Watershed in Northwest China. Toxics. 2023; 11(10):825. https://doi.org/10.3390/toxics11100825
Chicago/Turabian StyleLiao, Jie, Tao Wang, Jianhua Gui, Hengping Zhang, Cuihua Huang, Xiang Song, and Shengyin Zhang. 2023. "Ecological Risk Assessment and Source Identification of Heavy Metals in Soils from Shiyang River Watershed in Northwest China" Toxics 11, no. 10: 825. https://doi.org/10.3390/toxics11100825
APA StyleLiao, J., Wang, T., Gui, J., Zhang, H., Huang, C., Song, X., & Zhang, S. (2023). Ecological Risk Assessment and Source Identification of Heavy Metals in Soils from Shiyang River Watershed in Northwest China. Toxics, 11(10), 825. https://doi.org/10.3390/toxics11100825