Effects of Transporter Inhibitors and Chemical Analogs on the Uptake of Antimonite and Antimonate by Boehmeria nivea L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Collection of Bleeding Sap
2.3. Sample Digestion
2.4. Determination of Sb and Ag Concentrations
2.5. Statistical Analysis
3. Results and Discussion
3.1. Xylem Transport of Sb
3.2. Effects of Malonic Acid on Sb Uptake
3.3. Aquaglyceroporin Inhibitor on Sb Uptake+
3.4. SbV Analogs on SbV Uptake by Ramie
3.5. SbIII Analogs on SbIII Uptake by Ramie
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Natasha; Shahid, M.; Khalid, S.; Dumat, C.; Pierart, A.; Niazi, N.K. Biogeochemistry of antimony in soil-plant system: Ecotoxicology and human health. Appl. Geochem. 2019, 106, 45–59. [Google Scholar] [CrossRef]
- Callahan, M.A. Water-Related Environmental Fate of 129 Priority Pollutants; Office of Water Planning and Standards, Office of Water and Waste Management: Washington, DC, USA, 1980.
- EU. Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community. Off. J. 1976, 129, 0023–0029. [Google Scholar]
- Wilson, S.C.; Lockwood, P.V.; Ashley, P.M.; Tighe, M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ. Pollut. 2010, 158, 1169–1181. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2004; Volume 1. [Google Scholar]
- Wu, F.; Fu, Z.; Liu, B.; Mo, C.; Chen, B.; Corns, W.; Liao, H. Health risk associated with dietary co-exposure to high levels of antimony and arsenic in the world’s largest antimony mine area. Sci. Total Environ. 2011, 409, 3344–3351. [Google Scholar] [CrossRef]
- Fu, Z.; Wu, F.; Mo, C.; Deng, Q.; Meng, W.; Giesy, J.P. Comparison of arsenic and antimony biogeochemical behavior in water, soil and tailings from Xikuangshan, China. Sci. Total Environ. 2016, 539, 97–104. [Google Scholar] [CrossRef]
- He, M.; Wang, X.; Wu, F.; Fu, Z. Antimony pollution in China. Sci. Total Environ. 2012, 421–422, 41–50. [Google Scholar] [CrossRef]
- Okkenhaug, G.; Zhu, Y.-G.; Luo, L.; Lei, M.; Li, X.; Mulder, J. Distribution, speciation and availability of antimony (Sb) in soils and terrestrial plants from an active Sb mining area. Environ. Pollut. 2011, 159, 2427–2434. [Google Scholar] [CrossRef]
- Chang, A.C.; Pan, G.; Page, A.L.; Asano, T. Developing human health-related chemical guidelines for reclaimed waster and sewage sludge applications in agriculture. World Health Organ. Eur. Environ. Bur. 2001, 13. [Google Scholar]
- He, L.; Su, R.; Chen, Y.; Zeng, P.; Du, L.; Cai, B.; Zhang, A.; Zhu, H. Integration of manganese accumulation, subcellular distribution, chemical forms, and physiological responses to understand manganese tolerance in Macleaya cordata. Environ. Sci. Pollut. Res. 2022, 29, 39017–39026. [Google Scholar] [CrossRef]
- Su, R.; Ou, Q.; Wang, H.; Dai, X.; Chen, Y.; Luo, Y.; Yao, H.; Ouyang, D.; Li, Z.; Wang, Z. Organic–inorganic composite modifiers enhance restoration potential of Nerium oleander L. to lead–zinc tailing: Application of phytoremediation. Environ. Sci. Pollut. Res. 2023, 30, 56569–56579. [Google Scholar] [CrossRef]
- Lu, Y.; Peng, F.; Wang, Y.; Yang, Z.; Li, H. Transcriptomic analysis reveals the molecular mechanisms of Boehmeria nivea L. in response to antimonite and antimonate stresses. J. Environ. Manag. 2023, 343, 118195. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Z.; Wang, Y.; Peng, F.; Yang, Z.; Li, H. Uptake, tolerance, and detoxification mechanisms of antimonite and antimonate in Boehmeria nivea L. J. Environ. Manag. 2023, 334, 117504. [Google Scholar] [CrossRef]
- Wang, L.; Cui, D.; Zhao, X.; He, M. The important role of the citric acid cycle in plants. Genom. Appl. Biol. 2017, 8, e2200238. [Google Scholar] [CrossRef]
- O’Leary, B.M.; Plaxton, W.C. Plant respiration. eLS 2016, 1–11. [Google Scholar] [CrossRef]
- Huang, S.; Millar, A.H. Succinate dehydrogenase: The complex roles of a simple enzyme. Curr. Opin. Plant Biol. 2013, 16, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Polygalova, O.O.; Bufetov, E.N.; Ponomareva, A.A. Wheat root cells functioning under inhibition of I and II complexes of mitochondrial respiratory chain. Tsitologiia 2007, 49, 664–670. [Google Scholar]
- Feng, R.; Lei, L.; Liu, B.; Chen, W.; Zhang, R.; Wang, L.; Li, Y.; Su, J.; Dai, J.; Wang, R.; et al. Effects of different inhibitors such as malonic acid, Na3PO4 and HgCl2 on uptake of different forms of antimony in rice plant. Plant Soil 2019, 445, 259–271. [Google Scholar] [CrossRef]
- Feng, R.; Wei, C.; Tu, S.; Ding, Y.; Wang, R.; Guo, J. The uptake and detoxification of antimony by plants: A review. Environ. Exp. Bot. 2013, 96, 28–34. [Google Scholar] [CrossRef]
- Tschan, M.; Robinson, B.; Schulin, R. Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution. Environ. Geochem. Health 2008, 30, 187–191. [Google Scholar] [CrossRef]
- Ji, Y.; Sarret, G.; Schulin, R.; Tandy, S. Fate and chemical speciation of antimony (Sb) during uptake, translocation and storage by rye grass using XANES spectroscopy. Environ. Pollut. 2017, 231, 1322–1329. [Google Scholar] [CrossRef]
- Tschan, M.; Robinson, B.H.; Schulin, R. Antimony in the soilplant system a review. Environ. Chem. 2009, 6, 106–115. [Google Scholar] [CrossRef]
- Bhattacharjee, H.; Mukhopadhyay, R.; Thiyagarajan, S.; Rosen, B.P. Aquaglyceroporins: Ancient channels for metalloids. J. Biol. 2008, 7, 33. [Google Scholar] [CrossRef] [PubMed]
- Meharg, A.A.; Jardine, L. Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol. 2003, 157, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Kamiya, T.; Fujiwara, T. Arabidopsis NIP1;1 Transports antimonite and determines antimonite sensitivity. Plant Cell Physiol. 2009, 50, 1977–1981. [Google Scholar] [CrossRef]
- Niemietz, C.M.; Tyerman, S.D. New potent inhibitors of aquaporins: Silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett. 2002, 531, 443–447. [Google Scholar] [CrossRef]
- Tisarum, R.; Chen, Y.; Dong, X.; Lessl, J.T.; Ma, L.Q. Uptake of antimonite and antimonate by arsenic hyperaccumulator Pteris vittata: Effects of chemical analogs and transporter inhibitor. Environ. Pollut. 2015, 206, 49–55. [Google Scholar] [CrossRef]
- Wang, X.; Ma, L.Q.; Rathinasabapathi, B.; Liu, Y.; Zeng, G. Uptake and translocation of arsenite and arsenate by Pteris vittata L.: Effects of silicon, boron and mercury. Environ. Exp. Bot. 2010, 68, 222–229. [Google Scholar] [CrossRef]
- Chai, L.-Y.; Mubarak, H.; Yang, Z.-H.; Yong, W.; Tang, C.-J.; Mirza, N. Growth, photosynthesis, and defense mechanism of antimony (Sb)-contaminated Boehmeria nivea L. Environ. Sci. Pollut. Res. 2016, 23, 7470–7481. [Google Scholar] [CrossRef]
- Uroic, K.; Salaun, P.; Raab, A.; Feldmann, J. Arsenate impact on the metabolite profile, production, and arsenic loading of xylem sap in cucumbers (Cucumis sativus L.). Front. Physiol. 2012, 3, 55. [Google Scholar] [CrossRef]
- Ma, L.; Yang, Z.; Kong, Q.; Wang, L. Extraction and determination of arsenic species in leafy vegetables: Method development and application. Food Chem. 2017, 217, 524–530. [Google Scholar] [CrossRef]
- Fu, H.; Yu, H.; Li, T.; Wu, Y. Effect of cadmium stress on inorganic and organic components in xylem sap of high cadmium accumulating rice line (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2019, 168, 330–337. [Google Scholar] [CrossRef]
- Wilson, S.C.; Egodawatta, L.P.; Tandy, S. Antimony soil-plant transfer. In Antimony, 1st ed.; Filella, M., Ed.; Walter de Gruyter GmbH: Berlin, Germany, 2021; pp. 147–172. [Google Scholar]
- Ueno, D.; Koyama, E.; Yamaji, N.; Ma, J.F. Physiological, genetic, and molecular characterization of a high-Cd-accumulating rice cultivar, Jarjan. J. Exp. Bot. 2011, 62, 2265–2272. [Google Scholar] [CrossRef]
- Dong, Q.; Xu, P.; Wang, Z. Differential cadmium distribution and translocation in roots and shoots related to hyper-tolerance between tall fescue and kentucky bluegrass. Front. Plant Sci. 2017, 8, 113. [Google Scholar] [CrossRef] [PubMed]
- Lei, M.; Wan, X.-M.; Huang, Z.-C.; Chen, T.-B.; Li, X.-w.; Liu, Y.-R. First evidence on different transportation modes of arsenic and phosphorus in arsenic hyperaccumulator Pteris vittata. Environ. Pollut. 2012, 161, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xing, Y.; Wang, J.; Yang, Y.; Ye, C.; Sun, R. Effect of poly-γ-glutamic acid on the phytoremediation of ramie (Boehmeria nivea L.) in the Hg-contaminated soil. Chemosphere 2023, 312, 137280. [Google Scholar] [CrossRef] [PubMed]
- Bienert, G.P.; Thorsen, M.; Schüssler, M.D.; Nilsson, H.R.; Wagner, A.; Tamás, M.J.; Jahn, T.P. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol. 2008, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Tschan, M.; Robinson, B.H.; Nodari, M.; Schulin, R. Antimony uptake by different plant species from nutrient solution, agar and soil. Environ. Chem. 2009, 6, 144–152. [Google Scholar] [CrossRef]
- Xu, L.; Zhao, H.; Wan, R.; Liu, Y.; Xu, Z.; Tian, W.; Ruan, W.; Wang, F.; Deng, M.; Wang, J.; et al. Identification of vacuolar phosphate efflux transporters in land plants. Nat. Plants 2019, 5, 84–94. [Google Scholar] [CrossRef]
- Porquet, A.; Filella, M. Structural Evidence of the Similarity of Sb(OH)3 and As(OH)3 with Glycerol: Implications for Their Uptake. Chem. Res. Toxicol. 2007, 20, 1269–1276. [Google Scholar] [CrossRef]
- Wan, X.; Lei, M.; Chen, T. Interaction of As and Sb in the hyperaccumulator Pteris vittata L.: Changes in As and Sb speciation by XANES. Environ. Sci. Pollut. Res. 2016, 23, 19173–19181. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Zhang, W.Q.; Zhao, L.J. Silicon enhances resistance to antimony toxicity in the low-silica rice mutant, lsi1. Chem. Ecol. 2012, 28, 341–354. [Google Scholar] [CrossRef]
- Shetty, R.; Vidya, C.S.-N.; Weidinger, M.; Vaculík, M. Silicon alleviates antimony phytotoxicity in giant reed (Arundo donax L.). Planta 2021, 254, 100. [Google Scholar] [CrossRef] [PubMed]
- Vaculíková, M.; Vaculík, M.; Šimková, L.; Fialová, I.; Kochanová, Z.; Sedláková, B.; Luxová, M. Influence of silicon on maize roots exposed to antimony—Growth and antioxidative response. Plant Physiol. Biochem. 2014, 83, 279–284. [Google Scholar] [CrossRef] [PubMed]
Treatment | Inhibitor Concentration (mg/L) | Sb Concentration (mg/L) | |
---|---|---|---|
SbIII | SbV | ||
Control | 0 | 0 | 0 |
SbIII | 0 | 10 | |
SbV | 0 | 10 | |
SbIII + 1C3H4O4 | 1 | 10 | / |
SbIII + 5C3H4O4 | 5 | 10 | / |
SbIII + 10C3H4O4 | 10 | 10 | / |
SbV + 1C3H4O4 | 1 | / | 10 |
SbV + 5C3H4O4 | 5 | / | 10 |
SbV + 10C3H4O4 | 10 | / | 10 |
SbIII + 0.01Ag | 0.01 | 10 | / |
SbIII + 0.1Ag | 0.1 | 10 | / |
SbIII + 1Ag | 1 | 10 | / |
SbV + 0.01Ag | 0.01 | / | 10 |
SbV + 0.1Ag | 0.1 | / | 10 |
SbV + 1Ag | 1 | / | 10 |
SbV + 1PV | 1 | / | 10 |
SbV + 10PV | 10 | / | 10 |
SbIII + 1AsIII | 1 | 10 | / |
SbIII + 10AsIII | 10 | 10 | / |
SbIII + 1glycerol | 1 | 10 | / |
SbIII + 10glycerol | 10 | 10 | / |
SbIII + 1Si | 1 | 10 | / |
SbIII + 10Si | 10 | 10 | / |
SbIII + 1glucose | 1 | 10 | / |
SbIII + 10glucose | 10 | 10 | / |
Treatment | Bleeding Weight of Xylem Sap (g) | Sb Concentration in the Bleeding Sap (mg/kg) | Sb Transported (ng/h) |
Control | 0.062 ± 0.010 a | 4.127 ± 0.010 c | 0.016 ± 0.002 c |
SbIII | 0.060 ± 0.015 a | 123.0 ± 25.69 a | 0.460 ± 0.104 a |
SbV | 0.066 ± 0.008 a | 58.37± 11.50 b | 0.242 ± 0.057 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Peng, F.; Wang, Y.; Li, H.; Yang, Z. Effects of Transporter Inhibitors and Chemical Analogs on the Uptake of Antimonite and Antimonate by Boehmeria nivea L. Toxics 2023, 11, 860. https://doi.org/10.3390/toxics11100860
Lu Y, Peng F, Wang Y, Li H, Yang Z. Effects of Transporter Inhibitors and Chemical Analogs on the Uptake of Antimonite and Antimonate by Boehmeria nivea L. Toxics. 2023; 11(10):860. https://doi.org/10.3390/toxics11100860
Chicago/Turabian StyleLu, Yi, Fangyuan Peng, Yingyang Wang, Haipu Li, and Zhaoguang Yang. 2023. "Effects of Transporter Inhibitors and Chemical Analogs on the Uptake of Antimonite and Antimonate by Boehmeria nivea L." Toxics 11, no. 10: 860. https://doi.org/10.3390/toxics11100860
APA StyleLu, Y., Peng, F., Wang, Y., Li, H., & Yang, Z. (2023). Effects of Transporter Inhibitors and Chemical Analogs on the Uptake of Antimonite and Antimonate by Boehmeria nivea L. Toxics, 11(10), 860. https://doi.org/10.3390/toxics11100860