Freshwater Lacustrine Zooplankton and Microplastic: An Issue to Be Still Explored
Abstract
:1. Introduction
2. Database Search for Articles on Microplastics and Freshwater Zooplankton
3. Zooplankton and Microplastics in Lab Studies: Assessing Hazard and Exposure of Microplastics
3.1. Effects to Individuals and Different Endpoints
3.2. Role of Particle Characteristic in Toxicity
3.2.1. Role of Particle Size
3.2.2. Role of Morphology and Particle Chemical Features
3.3. Co–Exposure with Other Stressors
3.3.1. Physical Stressors
3.3.2. Organic Pollutants
3.3.3. Inorganic Chemicals and Nanoparticles
3.4. Toward Improved Environmental Relevance: Exposure of MPs to Simplified Communities
3.5. Future Trends and Research Gaps in the Exposure of Zooplankton to MPs
4. Studies on Zooplankton and Microplastics in Freshwater Lakes
4.1. Current Knowledge of Environmental Conditions
4.2. Future Steps for Environmental Monitoring of Zooplankton–MPs Interaction
5. Conclusions and Research Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dodds, W.K.; Perkin, J.S.; Gerken, J.E. Human Impact on Freshwater Ecosystem Services: A Global Perspective. Environ. Sci. Technol. 2013, 47, 9061–9068. [Google Scholar] [CrossRef] [PubMed]
- Dodson, S.I.; Newman, A.L.; Will-Wolf, S.; Alexander, M.L.; Woodford, M.P.; Van Egeren, S. The Relationship between Zooplankton Community Structure and Lake Characteristics in Temperate Lakes (Northern Wisconsin, USA). J. Plankton Res. 2009, 31, 93–100. [Google Scholar] [CrossRef]
- Jeppesen, E.; Nõges, P.; Davidson, T.A.; Haberman, J.; Nõges, T.; Blank, K.; Lauridsen, T.L.; Søndergaard, M.; Sayer, C.; Laugaste, R.; et al. Zooplankton as Indicators in Lakes: A Scientific-Based Plea for Including Zooplankton in the Ecological Quality Assessment of Lakes According to the European Water Framework Directive (WFD). Hydrobiologia 2011, 676, 279–297. [Google Scholar] [CrossRef]
- Van Egeren, S.J.; Dodson, S.I.; Torke, B.; Maxted, J.T. The Relative Significance of Environmental and Anthropogenic Factors Affecting Zooplankton Community Structure in Southeast Wisconsin Till Plain Lakes. Hydrobiologia 2011, 668, 137–146. [Google Scholar] [CrossRef]
- Bettinetti, R.; Quadroni, S.; Crosa, G.; Harper, D.; Dickie, J.; Kyalo, M.; Mavuti, K.; Galassi, S. A Preliminary Evaluation of the DDT Contamination of Sediments in Lakes Natron and Bogoria (Eastern Rift Valley, Africa). AMBIO 2011, 40, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Paquette, C.; Griffiths, K.; Gregory-Eaves, I.; Beisner, B.E. Zooplankton Assemblage Structure and Diversity since Pre-Industrial Times in Relation to Land Use. Glob. Ecol. Biogeogr. 2022, 31, 2337–2352. [Google Scholar] [CrossRef]
- Shen, J.; Qin, G.; Yu, R.; Zhao, Y.; Yang, J.; An, S.; Liu, R.; Leng, X.; Wan, Y. Urbanization Has Changed the Distribution Pattern of Zooplankton Species Diversity and the Structure of Functional Groups. Ecol. Indic. 2021, 120, 106944. [Google Scholar] [CrossRef]
- Toruan, R.L.; Coggins, L.X.; Ghadouani, A. Response of Zooplankton Size Structure to Multiple Stressors in Urban Lakes. Water 2021, 13, 2305. [Google Scholar] [CrossRef]
- Bettinetti, R.; Garibaldi, L.; Leoni, B.; Quadroni, S.; Galassi, S. Zooplankton as an Early Warning System of Persistent Organic Pollutants Contamination in a Deep Lake (Lake Iseo, Northern Italy). J. Limnol. 2012, 71, e36. [Google Scholar] [CrossRef]
- Boldrocchi, G.; Moussa Omar, Y.; Rowat, D.; Bettinetti, R. First Results on Zooplankton Community Composition and Contamination by Some Persistent Organic Pollutants in the Gulf of Tadjoura (Djibouti). Sci. Total Environ. 2018, 627, 812–821. [Google Scholar] [CrossRef]
- Hessen, D.O.; Andersen, T.; Faafeng, B.A. Replacement of Herbivore Zooplankton Species along Gradients of Ecosystem Productivity and Fish Predation Pressure. Can. J. Fish. Aquat. Sci. 1995, 52, 733–742. [Google Scholar] [CrossRef]
- Hanazato, T.; Kasai, F. Effects of the Organophosphorus Insecticide Fenthion on Phyto- and Zooplankton Communities in Experimental Ponds. Environ. Pollut. 1995, 88, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Kreutzweiser, D.P.; Back, R.C.; Sutton, T.M.; Thompson, D.G.; Scarr, T.A. Community-Level Disruptions among Zooplankton of Pond Mesocosms Treated with a Neem (Azadirachtin) Insecticide. Aquat. Toxicol. 2002, 56, 257–273. [Google Scholar] [CrossRef] [PubMed]
- Lahr, J.; Diallo, A.O.; Gadji, B.; Diouf, P.S.; Bedaux, J.J.M.; Badji, A.; Ndour, K.B.; Andreasen, J.E.; van Straalen, N.M. Ecological Effects of Experimental Insecticide Applications on Invertebrates in Sahelian Temporary Ponds. Environ. Toxicol. Chem. 2000, 19, 1278–1289. [Google Scholar] [CrossRef]
- Sierszen, M.E.; Lozano, S.J. Zooplankton Population and Community Responses to the Pesticide Azinphos-Methyl in Freshwater Littoral Enclosures. Environ. Toxicol. Chem. 1998, 17, 907–914. [Google Scholar]
- Moore, M.T.; Greenway, S.L.; Farris, J.L.; Guerra, B. Assessing Caffeine as an Emerging Environmental Concern Using Conventional Approaches. Arch. Environ. Contam. Toxicol. 2008, 54, 31–35. [Google Scholar] [CrossRef]
- Vince, J.; Stoett, P. From Problem to Crisis to Interdisciplinary Solutions: Plastic Marine Debris. Mar. Policy 2018, 96, 200–203. [Google Scholar] [CrossRef]
- Plastics—The Facts 2020 • Plastics Europe. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2020/ (accessed on 7 December 2023).
- Dris, R.; Gasperi, J.; Tassin, B. Sources and Fate of Microplastics in Urban Areas: A Focus on Paris Megacity. In Freshwater Microplastics: Emerging Environmental Contaminants? Wagner, M., Lambert, S., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2018; pp. 69–83. [Google Scholar]
- Güven, O.; Gökdağ, K.; Jovanović, B.; Kıdeyş, A.E. Microplastic Litter Composition of the Turkish Territorial Waters of the Mediterranean Sea, and Its Occurrence in the Gastrointestinal Tract of Fish. Environ. Pollut. 2017, 223, 286–294. [Google Scholar] [CrossRef]
- Nava, V.; Chandra, S.; Aherne, J.; Alfonso, M.B.; Antão-Geraldes, A.M.; Attermeyer, K.; Bao, R.; Bartrons, M.; Berger, S.A.; Biernaczyk, M.; et al. Plastic Debris in Lakes and Reservoirs. Nature 2023, 619, 317–322. [Google Scholar] [CrossRef]
- Wright, S.L.; Thompson, R.C.; Galloway, T.S. The Physical Impacts of Microplastics on Marine Organisms: A Review. Environ. Pollut. 2013, 178, 483–492. [Google Scholar] [CrossRef]
- Dekiff, J.H.; Remy, D.; Klasmeier, J.; Fries, E. Occurrence and Spatial Distribution of Microplastics in Sediments from Norderney. Environ. Pollut. 2014, 186, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Bakir, A.; Rowland, S.J.; Thompson, R.C. Competitive Sorption of Persistent Organic Pollutants onto Microplastics in the Marine Environment. Mar. Pollut. Bull. 2012, 64, 2782–2789. [Google Scholar] [CrossRef] [PubMed]
- Zarfl, C.; Matthies, M. Are Marine Plastic Particles Transport Vectors for Organic Pollutants to the Arctic? Mar. Pollut. Bull. 2010, 60, 1810–1814. [Google Scholar] [CrossRef] [PubMed]
- Oehlmann, J.; Schulte-Oehlmann, U.; Kloas, W.; Jagnytsch, O.; Lutz, I.; Kusk, K.O.; Wollenberger, L.; Santos, E.M.; Paull, G.C.; Van Look, K.J.W.; et al. A Critical Analysis of the Biological Impacts of Plasticizers on Wildlife. Philos. Trans. R. Soc. B-Biol. Sci. 2009, 364, 2047–2062. [Google Scholar] [CrossRef] [PubMed]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.U.; Barlaz, M.A.; Jonsson, S.; Bjorn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R.; et al. Transport and Release of Chemicals from Plastics to the Environment and to Wildlife. Philos. Trans. R. Soc. B-Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Scherer, C.; Alvarez-Muñoz, D.; Brennholt, N.; Bourrain, X.; Buchinger, S.; Fries, E.; Grosbois, C.; Klasmeier, J.; Marti, T.; et al. Microplastics in Freshwater Ecosystems: What We Know and What We Need to Know. Environ. Sci. Eur. 2014, 26, 12. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.J.; Moore, S.L.; Leecaster, M.K.; Weisberg, S.B. A Comparison of Plastic and Plankton in the North Pacific Central Gyre. Mar. Pollut. Bull. 2001, 42, 1297–1300. [Google Scholar] [CrossRef]
- Alava, J.J. Modeling the Bioaccumulation and Biomagnification Potential of Microplastics in a Cetacean Foodweb of the Northeastern Pacific: A Prospective Tool to Assess the Risk Exposure to Plastic Particles. Front. Mar. Sci. 2020, 7, 566101. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.S. Microplastic Ingestion by Zooplankton. Environ. Sci. Technol. 2013, 47, 6646–6655. [Google Scholar] [CrossRef]
- Wagner, M.; Lambert, S. (Eds.) Freshwater Microplastics: Emerging Environmental Contaminants? The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2018; Volume 58. [Google Scholar]
- Setälä, O.; Fleming-Lehtinen, V.; Lehtiniemi, M. Ingestion and Transfer of Microplastics in the Planktonic Food Web. Environ. Pollut. 2014, 185, 77–83. [Google Scholar] [CrossRef] [PubMed]
- D’Avignon, G.; Gregory-Eaves, I.; Ricciardi, A. Microplastics in Lakes and Rivers: An Issue of Emerging Significance to Limnology. Environ. Rev. 2022, 30, 228–244. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Microplastics Are Contaminants of Emerging Concern in Freshwater Environments: An Overview. In Freshwater Microplastics: Emerging Environmental Contaminants? Wagner, M., Lambert, S., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–23. [Google Scholar]
- Dusaucy, J.; Gateuille, D.; Perrette, Y.; Naffrechoux, E. Microplastic Pollution of Worldwide Lakes. Environ. Pollut. 2021, 284, 117075. [Google Scholar] [CrossRef] [PubMed]
- Alfonso, M.B.; Arias, A.H.; Ronda, A.C.; Piccolo, M.C. Continental Microplastics: Presence, Features, and Environmental Transport Pathways. Sci. Total Environ. 2021, 799, 149447. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Wang, J.; Cai, L. Current Understanding of Microplastics in the Environment: Occurrence, Fate, Risks, and What We Should Do. Integr. Environ. Assess. Manag. 2017, 13, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Dimzon, I.K.; Eubeler, J.; Knepper, T.P. Analysis, Occurrence, and Degradation of Microplastics in the Aqueous Environment. In Freshwater Microplastics: Emerging Environmental Contaminants? Wagner, M., Lambert, S., Eds.; The Handbook of Environmental Chemistry; Springer International Publishing: Cham, Switzerland, 2018; pp. 51–67. [Google Scholar]
- Norling, M.; Hurley, R.; Schell, T.; Futter, M.N.; Rico, A.; Vighi, M.; Blanco, A.; Ledesma, J.L.J.; Nizzetto, L. Retention Efficiency for Microplastic in a Landscape Estimated from Empirically Validated Dynamic Model Predictions. J. Hazard. Mater. 2023, 464, 132993. [Google Scholar] [CrossRef] [PubMed]
- Rochman, C.M.; Hoellein, T. The Global Odyssey of Plastic Pollution. Science 2020, 368, 1184–1185. [Google Scholar] [CrossRef]
- Thi, D.D.; Miranda, A.; Trestrail, C.; De Souza, H.; Dinh, K.V.; Nugegoda, D. Antagonistic Effects of Copper and Microplastics in Single and Binary Mixtures on Development and Reproduction in the Freshwater Cladoceran Daphnia carinata. Environ. Technol. Innov. 2021, 24, 102045. [Google Scholar] [CrossRef]
- Xin, X.; Chen, B.; Yang, M.; Gao, S.; Wang, H.; Gu, W.; Li, X.; Zhang, B. A Critical Review on the Interaction of Polymer Particles and Co-Existing Contaminants: Adsorption Mechanism, Exposure Factors, Effects on Plankton Species. J. Hazard. Mater. 2023, 445, 130463. [Google Scholar] [CrossRef]
- De Felice, B.; Sugni, M.; Casati, L.; Parolini, M. Molecular, Biochemical and Behavioral Responses of Daphnia magna under Long-Term Exposure to Polystyrene Nanoplastics. Environ. Int. 2022, 164, 107264. [Google Scholar] [CrossRef]
- De Felice, B.; Sabatini, V.; Antenucci, S.; Gattoni, G.; Santo, N.; Bacchetta, R.; Ortenzi, M.A.; Parolini, M. Polystyrene Microplastics Ingestion Induced Behavioral Effects to the Cladoceran Daphnia magna. Chemosphere 2019, 231, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Wang, X.; Yin, J.; Han, Y.; Yang, J.; Lu, X.; Xie, T.; Akbar, S.; Lyu, K.; Yang, Z. Molecular Characterization of Thioredoxin Reductase in Waterflea Daphnia magna and Its Expression Regulation by Polystyrene Microplastics. Aquat. Toxicol. 2019, 208, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Aljaibachi, R.; Callaghan, A. Impact of Polystyrene Microplastics on Daphnia magna Mortality and Reproduction in Relation to Food Availability. PeerJ 2018, 6, e4601. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, Y.; Li, B. Is Color a Matter of Concern during Microplastic Exposure to Scenedesmus obliquus and Daphnia magna? J. Hazard. Mater. 2020, 383, 121224. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhang, T.; Liu, X.; Gu, X.; Li, D.; Yin, J.; Jiang, Q.; Zhang, W. Changes in Life-History Traits, Antioxidant Defense, Energy Metabolism and Molecular Outcomes in the Cladoceran Daphnia pulex after Exposure to Polystyrene Microplastics. Chemosphere 2022, 308, 136066. [Google Scholar]
- Kokalj, A.J.; Kunej, U.; Skalar, T. Screening Study of Four Environmentally Relevant Microplastic Pollutants: Uptake and Effects on Daphnia magna and Artemia franciscana. Chemosphere 2018, 208, 522–529. [Google Scholar] [CrossRef]
- Rehse, S.; Kloas, W.; Zarfl, C. Short-Term Exposure with High Concentrations of Pristine Microplastic Particles Leads to Immobilisation of Daphnia magna. Chemosphere 2016, 153, 91–99. [Google Scholar] [CrossRef]
- Jeong, C.-B.; Kang, H.-M.; Lee, Y.H.; Kim, M.-S.; Lee, J.-S.; Seo, J.S.; Wang, M.; Lee, J.-S. Nanoplastic Ingestion Enhances Toxicity of Persistent Organic Pollutants (POPs) in the Monogonont Rotifer Brachionus koreanus via Multixenobiotic Resistance (MXR) Disruption. Environ. Sci. Technol. 2018, 52, 11411–11418. [Google Scholar] [CrossRef]
- Mao, T.; Lu, Y.; Ma, H.; Pan, Z.; Zhang, R.; Zhu, T.; Yang, Y.; Han, C.; Yang, J. Variations in the Life-Cycle Parameters and Population Growth of Rotifer Brachionus plicatilis under the Stress of Microplastics and 17β-Estradiol. Sci. Total Environ. 2022, 835, 155390. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Chaudhry, Q.; Stone, V.; Fernandes, T.F. A Comparison of Nanoparticle and Fine Particle Uptake by Daphnia magna. Environ. Toxicol. Chem. 2009, 28, 2142–2149. [Google Scholar] [CrossRef]
- Jeong, C.-B.; Won, E.-J.; Kang, H.-M.; Lee, M.-C.; Hwang, D.-S.; Hwang, U.-K.; Zhou, B.; Souissi, S.; Lee, S.-J.; Lee, J.-S. Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and p-JNK and p-P38 Activation in the Monogonont Rotifer (Brachionus koreanus). Environ. Sci. Technol. 2016, 50, 8849–8857. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.; Göttlich, S.; Oehlmann, J.; Wagner, M.; Völker, C. What Are the Drivers of Microplastic Toxicity? Comparing the Toxicity of Plastic Chemicals and Particles to Daphnia magna. Environ. Pollut. 2020, 267, 115392. [Google Scholar] [CrossRef] [PubMed]
- An, D.; Na, J.; Song, J.; Jung, J. Size-Dependent Chronic Toxicity of Fragmented Polyethylene Microplastics to Daphnia magna. Chemosphere 2021, 271, 129591. [Google Scholar] [CrossRef] [PubMed]
- Ziajahromi, S.; Kumar, A.; Neale, P.A.; Leusch, F.D.L. Impact of Microplastic Beads and Fibers on Waterflea (Ceriodaphnia dubia) Survival, Growth, and Reproduction: Implications of Single and Mixture Exposures. Environ. Sci. Technol. 2017, 51, 13397–13406. [Google Scholar] [CrossRef] [PubMed]
- Frydkjær, C.K.; Iversen, N.; Roslev, P. Ingestion and Egestion of Microplastics by the Cladoceran Daphnia magna: Effects of Regular and Irregular Shaped Plastic and Sorbed Phenanthrene. Bull. Environ. Contam. Toxicol. 2017, 99, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Coady, K.K.; Burgoon, L.; Doskey, C.; Davis, J.W. Assessment of Transcriptomic and Apical Responses of Daphnia magna Exposed to a Polyethylene Microplastic in a 21-d Chronic Study. Environ. Toxicol. Chem. 2020, 39, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Jemec, A.; Horvat, P.; Kunej, U.; Bele, M.; Kržan, A. Uptake and Effects of Microplastic Textile Fibers on Freshwater Crustacean Daphnia magna. Environ. Pollut. 2016, 219, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Zebrowski, M.L.; Babkiewicz, E.; Błażejewska, A.; Pukos, S.; Wawrzeńczak, J.; Wilczynski, W.; Zebrowski, J.; Ślusarczyk, M.; Maszczyk, P. The Effect of Microplastics on the Interspecific Competition of Daphnia. Environ. Pollut. 2022, 313, 120121. [Google Scholar] [CrossRef]
- Schür, C.; Rist, S.; Baun, A.; Mayer, P.; Hartmann, N.B.; Wagner, M. When Fluorescence Is Not a Particle: The Tissue Translocation of Microplastics in Daphnia magna Seems an Artifact. Environ. Toxicol. Chem. 2019, 38, 1495–1503. [Google Scholar] [CrossRef]
- Schür, C.; Zipp, S.; Thalau, T.; Wagner, M. Microplastics but Not Natural Particles Induce Multigenerational Effects in Daphnia magna. Environ. Pollut. 2020, 260, 113904. [Google Scholar] [CrossRef]
- Hiltunen, M.; Vehniäinen, E.-R.; Kukkonen, J.V.K. Interacting Effects of Simulated Eutrophication, Temperature Increase, and Microplastic Exposure on Daphnia. Environ. Res. 2021, 192, 110304. [Google Scholar] [CrossRef] [PubMed]
- Guilhermino, L.; Martins, A.; Cunha, S.; Fernandes, J.O. Long-Term Adverse Effects of Microplastics on Daphnia magna Reproduction and Population Growth Rate at Increased Water Temperature and Light Intensity: Combined Effects of Stressors and Interactions. Sci. Total Environ. 2021, 784, 147082. [Google Scholar] [CrossRef] [PubMed]
- Rehse, S.; Kloas, W.; Zarfl, C. Microplastics Reduce Short-Term Effects of Environmental Contaminants. Part I: Effects of Bisphenol A on Freshwater Zooplankton Are Lower in Presence of Polyamide Particles. Int. J. Environ. Res. Public Health 2018, 15, 280. [Google Scholar] [CrossRef] [PubMed]
- Felten, V.; Toumi, H.; Masfaraud, J.-F.; Billoir, E.; Camara, B.I.; Férard, J.-F. Microplastics Enhance Daphnia magna Sensitivity to the Pyrethroid Insecticide Deltamethrin: Effects on Life History Traits. Sci. Total Environ. 2020, 714, 136567. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yan, Z.; Lu, G.; Ji, Y. Single and Combined Effects of Microplastics and Roxithromycin on Daphnia magna. Environ. Sci. Pollut. Res. 2019, 26, 17010–17020. [Google Scholar] [CrossRef] [PubMed]
- Zocchi, M.; Sommaruga, R. Microplastics Modify the Toxicity of Glyphosate on Daphnia magna. Sci. Total Environ. 2019, 697, 134194. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.; da Silva, D.D.; Silva, R.; Carvalho, F.; Guilhermino, L. Long-Term Effects of Lithium and Lithium-Microplastic Mixtures on the Model Species Daphnia magna: Toxicological Interactions and Implications to ‘One Health’. Sci. Total Environ. 2022, 838, 155934. [Google Scholar] [CrossRef] [PubMed]
- Yuan, W.; Zhou, Y.; Chen, Y.; Liu, X.; Wang, J. Toxicological Effects of Microplastics and Heavy Metals on the Daphnia magna. Sci. Total Environ. 2020, 746, 141254. [Google Scholar] [CrossRef]
- Lin, W.; Jiang, R.; Hu, S.; Xiao, X.; Wu, J.; Wei, S.; Xiong, Y.; Ouyang, G. Investigating the Toxicities of Different Functionalized Polystyrene Nanoplastics on Daphnia magna. Ecotoxicol. Environ. Saf. 2019, 180, 509–516. [Google Scholar] [CrossRef]
- Kim, D.; Chae, Y.; An, Y.-J. Mixture Toxicity of Nickel and Microplastics with Different Functional Groups on Daphnia magna. Environ. Sci. Technol. 2017, 51, 12852–12858. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, A.; Cao, S.; Sun, F.; Wang, L.; Guo, H.; Ji, R. Effects of Nanoplastics and Microplastics on Toxicity, Bioaccumulation, and Environmental Fate of Phenanthrene in Fresh Water. Environ. Pollut. 2016, 219, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, A.; Martins, A.; Guilhermino, L. Toxicological Interactions Induced by Chronic Exposure to Gold Nanoparticles and Microplastics Mixtures in Daphnia magna. Sci. Total Environ. 2018, 628–629, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Schrank, I.; Trotter, B.; Dummert, J.; Scholz-Böttcher, B.M.; Löder, M.G.J.; Laforsch, C. Effects of Microplastic Particles and Leaching Additive on the Life History and Morphology of Daphnia magna. Environ. Pollut. 2019, 255, 113233. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Qin, S.; Yang, Z.; Sun, Y. Polystyrene Microplastics Weaken the Predator-Induced Defenses of Daphnia magna: Evidences from the Changes in Morphology and Behavior. Environ. Pollut. 2023, 316, 120657. [Google Scholar] [CrossRef] [PubMed]
- Mavrianos, S.; Manzi, F.; Agha, R.; Azoubib, N.; Schampera, C.; Wolinska, J. Nanoplastics Modulate the Outcome of a Zooplankton–Microparasite Interaction. Freshw. Biol. 2023, 68, 847–859. [Google Scholar] [CrossRef]
- Elizalde-Velázquez, A.; Carcano, A.M.; Crago, J.; Green, M.J.; Shah, S.A.; Cañas-Carrell, J.E. Translocation, Trophic Transfer, Accumulation and Depuration of Polystyrene Microplastics in Daphnia magna and Pimephales promelas. Environ. Pollut. 2020, 259, 113937. [Google Scholar] [CrossRef] [PubMed]
- Yıldız, D.; Yalçın, G.; Jovanović, B.; Boukal, D.S.; Vebrová, L.; Riha, D.; Stanković, J.; Savić-Zdraković, D.; Metin, M.; Akyürek, Y.N.; et al. Effects of a Microplastic Mixture Differ across Trophic Levels and Taxa in a Freshwater Food Web: In Situ Mesocosm Experiment. Sci. Total Environ. 2022, 836, 155407. [Google Scholar] [CrossRef]
- Pan, Y.; Long, Y.; Hui, J.; Xiao, W.; Yin, J.; Li, Y.; Liu, D.; Tian, Q.; Chen, L. Microplastics Can Affect the Trophic Cascade Strength and Stability of Plankton Ecosystems via Behavior-Mediated Indirect Interactions. J. Hazard. Mater. 2022, 430, 128415. [Google Scholar] [CrossRef]
- Rist, S.; Baun, A.; Hartmann, N.B. Ingestion of Micro- and Nanoplastics in Daphnia magna—Quantification of Body Burdens and Assessment of Feeding Rates and Reproduction. Environ. Pollut. 2017, 228, 398–407. [Google Scholar] [CrossRef]
- Lyu, K.; Cao, C.; Li, D.; Akbar, S.; Yang, Z. The Thermal Regime Modifies the Response of Aquatic Keystone Species Daphnia to Microplastics: Evidence from Population Fitness, Accumulation, Histopathological Analysis and Candidate Gene Expression. Sci. Total Environ. 2021, 783, 147154. [Google Scholar] [CrossRef]
- Ogonowski, M.; Schür, C.; Jarsén, Å.; Gorokhova, E. The Effects of Natural and Anthropogenic Microparticles on Individual Fitness in Daphnia magna. PLoS ONE 2016, 11, e0155063. [Google Scholar] [CrossRef] [PubMed]
- Hoffschröer, N.; Grassl, N.; Steinmetz, A.; Sziegoleit, L.; Koch, M.; Zeis, B. Microplastic Burden in Daphnia Is Aggravated by Elevated Temperatures. Zoology 2021, 144, 125881. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Mohamed Nor, N.H.; Kooi, M. Solving the Nonalignment of Methods and Approaches Used in Microplastic Research to Consistently Characterize Risk. Environ. Sci. Technol. 2020, 54, 12307–12315. [Google Scholar] [CrossRef] [PubMed]
- Triebskorn, R.; Braunbeck, T.; Grummt, T.; Hanslik, L.; Huppertsberg, S.; Jekel, M.; Knepper, T.P.; Krais, S.; Müller, Y.K.; Pittroff, M.; et al. Relevance of Nano- and Microplastics for Freshwater Ecosystems: A Critical Review. TrAC Trends Anal. Chem. 2019, 110, 375–392. [Google Scholar] [CrossRef]
- Beiras, R.; Verdejo, E.; Campoy-López, P.; Vidal-Liñán, L. Aquatic Toxicity of Chemically Defined Microplastics Can Be Explained by Functional Additives. J. Hazard. Mater. 2021, 406, 124338. [Google Scholar] [CrossRef]
- Chen, W.; Gong, Y.; McKie, M.; Almuhtaram, H.; Sun, J.; Barrett, H.; Yang, D.; Wu, M.; Andrews, R.C.; Peng, H. Defining the Chemical Additives Driving In Vitro Toxicities of Plastics. Environ. Sci. Technol. 2022, 56, 14627–14639. [Google Scholar] [CrossRef]
- Rozman, U.; Filker, S.; Kalčíková, G. Monitoring of Biofilm Development and Physico-Chemical Changes of Floating Microplastics at the Air-Water Interface. Environ. Pollut. 2023, 322, 121157. [Google Scholar] [CrossRef]
- Binda, G.; Costa, M.; Supraha, L.; Spanu, D.; Vogelsang, C.; Leu, E.; Nizzetto, L. Untangling the Role of Biotic and Abiotic Ageing of Various Environmental Plastics toward the Sorption of Metals. Sci. Total Environ. 2023, 893, 164807. [Google Scholar] [CrossRef]
- Polhill, L.; de Bruijn, R.; Amaral-Zettler, L.; Praetorius, A.; van Wezel, A. Daphnia magna’s Favorite Snack: Biofouled Plastics. Environ. Toxicol. Chem. 2022, 41, 1977–1981. [Google Scholar] [CrossRef]
- Carnati, S.; Pozzi, A.; Spanu, D.; Monticelli, D.; Bettinetti, R.; Boldrocchi, G.; Nizzetto, L.; Binda, G. Assessing Sources and Fractions of Metals Associated with Environmental Plastics: A Case Study in Lake Como (Italy). Environ. Sci. Adv. 2023, 2, 1746–1756. [Google Scholar] [CrossRef]
- Sørensen, L.; Gomes, T.; Igartua, A.; Lyngstad, I.L.; Almeida, A.C.; Wagner, M.; Booth, A.M. Organic Chemicals Associated with Rubber Are More Toxic to Marine Algae and Bacteria than Those of Thermoplastics. J. Hazard. Mater. 2023, 458, 131810. [Google Scholar] [CrossRef] [PubMed]
- Sadler, D.E.; Brunner, F.S.; Plaistow, S.J. Temperature and Clone-Dependent Effects of Microplastics on Immunity and Life History in Daphnia magna. Environ. Pollut. 2019, 255, 113178. [Google Scholar] [CrossRef] [PubMed]
- Bradney, L.; Wijesekara, H.; Palansooriya, K.N.; Obadamudalige, N.; Bolan, N.S.; Ok, Y.S.; Rinklebe, J.; Kim, K.-H.; Kirkham, M.B. Particulate Plastics as a Vector for Toxic Trace-Element Uptake by Aquatic and Terrestrial Organisms and Human Health Risk. Environ. Int. 2019, 131, 104937. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, L.; Nack, F.L.; Zimmermann, T.; Pröfrock, D. Microplastics as a Trojan Horse for Trace Metals. J. Hazard. Mater. Lett. 2021, 2, 100035. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Mohamed Nor, N.H.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in Freshwaters and Drinking Water: Critical Review and Assessment of Data Quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Zhao, Y.; Xu, X.; Li, Z.; Xie, L.; Wang, G.; Yang, F. Microcystin Bound on Microplastics in Eutrophic Waters: A Potential Threat to Zooplankton Revealed by Adsorption-Desorption Processes. Environ. Pollut. 2023, 321, 121146. [Google Scholar] [CrossRef] [PubMed]
- Dahms, H.-U.; Hagiwara, A.; Lee, J.-S. Ecotoxicology, Ecophysiology, and Mechanistic Studies with Rotifers. Aquat. Toxicol. 2011, 101, 1–12. [Google Scholar] [CrossRef]
- Trotter, B.; Wilde, M.; Brehm, J.; Dafni, E.; Aliu, A.; Arnold, G.J.; Froehlich, T.; Laforsch, C. Long-Term Exposure of Daphnia magna to Polystyrene Microplastic (PS-MP) Leads to Alterations of the Proteome, Morphology and Life-History. Sci. Total Environ. 2021, 795, 148822. [Google Scholar] [CrossRef]
- Binda, G.; Spanu, D.; Monticelli, D.; Pozzi, A.; Bellasi, A.; Bettinetti, R.; Carnati, S.; Nizzetto, L. Unfolding the Interaction between Microplastics and (Trace) Elements in Water: A Critical Review. Water Res. 2021, 204, 117637. [Google Scholar] [CrossRef]
- Cedervall, T.; Hansson, L.-A.; Lard, M.; Frohm, B.; Linse, S. Food Chain Transport of Nanoparticles Affects Behaviour and Fat Metabolism in Fish. PLoS ONE 2012, 7, e32254. [Google Scholar] [CrossRef]
- Farrell, P.; Nelson, K. Trophic Level Transfer of Microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ. Pollut. 2013, 177, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Santana, M.F.M.; Moreira, F.T.; Turra, A. Trophic Transference of Microplastics under a Low Exposure Scenario: Insights on the Likelihood of Particle Cascading along Marine Food-Webs. Mar. Pollut. Bull. 2017, 121, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Kalčíková, G. Beyond Ingestion: Adhesion of Microplastics to Aquatic Organisms. Aquat. Toxicol. 2023, 258, 106480. [Google Scholar] [CrossRef] [PubMed]
- Pazos, R.S.; Bauer, D.E.; Gómez, N. Microplastics Integrating the Coastal Planktonic Community in the Inner Zone of the Río de La Plata Estuary (South America). Environ. Pollut. 2018, 243, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Lusher, A.; Buenaventura, N.T.; Eidsvoll, D.; Thrane, J.-E.; Økelsrud, A.; Jartun, M. Freshwater Microplastics in Norway: A First Look at Sediment, Biota and Historical Plankton Samples from Lake Mjøsa and Lake Femunden; Norwegian Institute for Water Research: Oslo, Norway, 2018. [Google Scholar]
- Pastorino, P.; Anselmi, S.; Esposito, G.; Bertoli, M.; Pizzul, E.; Barceló, D.; Elia, A.C.; Dondo, A.; Prearo, M.; Renzi, M. Microplastics in Biotic and Abiotic Compartments of High-Mountain Lakes from Alps. Ecol. Indic. 2023, 150, 110215. [Google Scholar] [CrossRef]
- Da Silva, J.V.F.; Lansac-Tôha, F.M.; Segovia, B.T.; Amadeo, F.E.; Braghin, L.d.S.M.; Velho, L.F.M.; Sarmento, H.; Bonecker, C.C. Experimental Evaluation of Microplastic Consumption by Using a Size-Fractionation Approach in the Planktonic Communities. Sci. Total Environ. 2022, 821, 153045. [Google Scholar] [CrossRef] [PubMed]
- Klasios, N.; Tseng, M. Microplastics in Subsurface Water and Zooplankton from Eight Lakes in British Columbia. Can. J. Fish. Aquat. Sci. 2023, 80, 1248–1267. [Google Scholar] [CrossRef]
- Rajeswari, I.T.; Iyyanar, A.; Govindarajulu, B. Microplastic Pollution in Kolavai Lake, Tamil Nadu, India: Quantification of Plankton-Sized Microplastics in the Surface Water of Lake. Environ. Sci. Pollut. Res. 2023, 30, 94033–94048. [Google Scholar] [CrossRef]
- Alfonso, M.B.; Lindsay, D.J.; Arias, A.H.; Nakano, H.; Jandang, S.; Isobe, A. Zooplankton as a Suitable Tool for Microplastic Research. Sci. Total Environ. 2023, 905, 167329. [Google Scholar] [CrossRef]
- Wu, M.; Yang, C.; Du, C.; Liu, H. Microplastics in Waters and Soils: Occurrence, Analytical Methods and Ecotoxicological Effects. Ecotoxicol. Environ. Saf. 2020, 202, 110910. [Google Scholar] [CrossRef]
- Franzellitti, S.; Canesi, L.; Auguste, M.; Wathsala, R.H.G.R.; Fabbri, E. Microplastic Exposure and Effects in Aquatic Organisms: A Physiological Perspective. Environ. Toxicol. Pharmacol. 2019, 68, 37–51. [Google Scholar] [CrossRef] [PubMed]
- Bowszys, M. Microplastics in the Waters of European Lakes and Their Potential Effect on Food Webs: A Review. Pol. J. Nat. Sci. 2022, 37, 345–364. [Google Scholar]
- Bellasi, A.; Binda, G.; Pozzi, A.; Galafassi, S.; Volta, P.; Bettinetti, R. Microplastic Contamination in Freshwater Environments: A Review, Focusing on Interactions with Sediments and Benthic Organisms. Environments 2020, 7, 30. [Google Scholar] [CrossRef]
- Hossain, M.A.R.; Olden, J.D. Global Meta-Analysis Reveals Diverse Effects of Microplastics on Freshwater and Marine Fishes. Fish Fish. 2022, 23, 1439–1454. [Google Scholar] [CrossRef]
- Rodrigues, S.M.; Elliott, M.; Almeida, C.M.R.; Ramos, S. Microplastics and Plankton: Knowledge from Laboratory and Field Studies to Distinguish Contamination from Pollution. J. Hazard. Mater. 2021, 417, 126057. [Google Scholar] [CrossRef]
- Lusher, A.L.; Primpke, S. Finding the Balance between Research and Monitoring: When Are Methods Good Enough to Understand Plastic Pollution? Environ. Sci. Technol. 2023, 57, 6033–6039. [Google Scholar] [CrossRef]
Zooplankton Type | MPs Concentration in Zooplankton | Affected Endpoint | MPs Size | MPs Type Morphology (Fiber, Pallets, Fragments, etc.) | Exposure Assessment Results | References |
---|---|---|---|---|---|---|
D magna | PS–NPs; 0.05 and 0.5 μg/mL |
| 50 nm | PS spherical nanoplastics | Gene associated with oxidative stress response occurred within contact of 21 days. | [45] |
D. magna | 0.125, 1.25 and 12.5 μg/mL) |
| 1 μm and 10 μm | PS beads |
| [46] |
D. magna | 2, 4 and 8 mg/L |
| 1.25 µm | PS microbeads |
| [47] |
D. magna | 1.46 × 102 mg/L |
| 2 μm | PS |
| [48] |
D. magna | 6 MPs/mL |
| 5 μm | white, green, orange and red PS round–shaped microbeads |
| [49] |
D. magna | 0.5, 1, 2 and 4 mg/L) |
| 500 nm | PS |
| [50] |
D. magna | 100 mg/L |
| 300 μm, 120 μm and 20 μm | facial cleanser products, 1 plastic bag and 1 textile fleece |
| [51] |
D. magna | 12.5–400 mg/L |
| 1 and 100 µm | PE spherical particles |
| [52] |
Rotifers | 0, 0.1, 1, 10 and 20 μg/mL) |
| 0.05, 0.5 and 6 μm | PS microbeads |
| [53] |
rotifer Brachionus plicatilis | (5 μg/mL, 10 μg/mL, 20 μg/mL and 50 μg/mL) |
| 50, 100, 500 nm | PS pallets |
| [54] |
D. magna | 2 mg/L. |
| 20 nm and 1000 nm | PS microbeads |
| [55] |
Monogonont Rotifer (Brachionus koreanus) | 0.1, 1, 10 and 20 μg/mL. |
| 0.05, 0.5 and 6 μm | PS microbeads |
| [56] |
D. magna | 10, 50, 100 and 500 mg/L. |
| 2.0–60 µm and 8.0–240 µm | PVC, PUR and PLA microplastics irregular particles |
| [57] |
D. magna | 5 mg/L |
| small– and large–sized MPs fragments (17.23 and 34.43 µm) MPs beads (39.54 µm). | PE MPs fragments (large irregular) and beads (small spherical regular). |
| [58] |
Ceriodaphnia dubia | 0.5 to 16 mg/L of PE beads and 0.125 to 4 mg/L of PEST fibers. |
| 1–4 μm PE microplastic 116 μm beads | PEST fibers and PE spherical beads |
| [59] |
D. magna | 0.0001–10 g/L |
| beads (10–106 μm) and fragments (10–75 μm) | PE microplastic, two types: regular round–shaped beads and irregular–shaped fragments. |
| [60] |
D. magna | 9.2 and 69 mg |
| 144 and 543 nm | Ethylene acrylic acid copolymer |
| [61] |
D. magna | 12.5–100 mg/L |
| length range: 62–1400 µm, width 31–528 µm, thickness 1–21.5 µm | PET regular textile microfibers |
| [62] |
Superior and inferior competitor: D. pulex and D. magna, D. magna and D. galeata, D. pulex and D. galeata | 0.2 mg/L |
| PS 23.3 μm and PE 23.0 μm | PS and PE |
| [63] |
D. magna | 2 mg/L |
| 20 and 1000 nm | PS beads |
| [64] |
D. magna | 10,000 and 2000 particles/ mL |
| <63 µm | Irregular PS particle |
| [65] |
Daphnia | 0.03 mg C/L |
| 1.2–40 μm | PET, PS, tray and toy nbrick (acrylonitrile butadiene styrene) |
| [66] |
D. magna | 0.04, 0.09, 0.19 mg/L |
| 1–5 μm diameter | Polymer microspheres. |
| [67] |
D. magna | 200 mg/L |
| 15–20 μm | Irregular–shaped PA particles |
| [68] |
D magna | 0, 1, 10 mg/L |
| 1–4 μm | PE spherical particle |
| [69] |
D. magna | 0.1 mg/L |
| 1 and 10 μm | PS particles |
| [70] |
D. magna | 2.5 mg/L |
| length of 10 μm and width of 2 μm | PE microbeads and (PET/PA fibers) |
| [71] |
D. magna | 0.02 Li + 0.04 MP, 0.04 Li + 0.09 MP mg/L, 0.08 Li + 0.19 MP mg/L |
| 1–5 µm | fluorescent plastic microspheres |
| [72] |
D. magna | lower MPs concentrations (0.01–10 mg/L) and higher MPs concentrations (10–1000 mg/L) |
| 10 μm and 50 μm | PS beads |
| [73] |
D. magna | concentrations of plain PS, PS–COOH, PS–n–NH2 and PS–p–NH2 in exposure suspensions were set at a range of 0–75 mg/L, 0–70 mg/L, 0–40 mg/L and 0–100 mg/L, respectively |
| 100 nm, 50–100 nm and 300 nm | PS |
| [74] |
D. magna | 1, 5, 10, 20 and 30 mg/L |
| PS: 201.5 and PS–COOH 191.3 nm | carboxyl group (PS–COOH) and PS |
| [75] |
D. magna | (1–50) mg/L up to 100 mg/L |
| 50 nm to 500 nm nanoplastics and (5 μm, 10 μm, 15 μm) microplastic. | Beads |
| [76] |
D. magna | 12 mg/L |
| 1–5 μm | Not mentioned |
| [77] |
D. magna | 2.67 μg/L |
| 100–150 μm | PVC |
| [78] |
D. magna | 2 and 6 mg/L |
| 0.7 μm–3 μm | PS spherical plastic |
| [79] |
Daphnia galeata | 5 and 20 mg/L |
| ≤100 nm | PS spherical particles |
| [80] |
D. magna | 20–2000 mg/L |
| 6 µm | PS microsphere rounded shape |
| [81] |
Daphnia | 2 mg/L for the water column (PE with fluorescent) |
| 200 μm | PE, PP, PS, PVC, PA and PET |
| [82] |
D. magna | 0, 5, 40 and 160 mg/L |
| <70 μm | PE particles |
| [83] |
D. magna | 1 mg/L, 0.5 mg/L and 0.1 mg/L |
| 2 μm and 100 nm | PS spherical beads |
| [84] |
D. magna | 2 mg/L |
| 1.25 μm | PS particles |
| [85] |
D. magna | (0.4 and 9 μgC/mL) and MPs |
| Beads (1–5 μm) of fluorescent PE. | PMP: PE spherical beads and SMP; PE irregular beads |
| [86] |
D. magna | 200 ng/mL or 360,000 particles/mL |
| 1 μm | PS beads |
| [87] |
Water Body (Lake) | Location | Zooplankton Type | MPs Concentration (m3) in L | MPs Size | MPs Type Morphology | MPs (Source) | Result | References |
---|---|---|---|---|---|---|---|---|
Lake Taihu | China | crustacean, D. magna | Not mentioned | 200 μm | PE and PP particles | Not mentioned | A prolonged period escalated adsorption by 25.1% and 6.5%. Later, desorption posed extreme risks to zooplankton. | [101] |
Río de la Plata estuary (South America) | South America | rotifers, copepods, cyclopoida and nauplius larvae | 164 and 114 MPs m3. | >500 and ≤1000 μm | fibers and fragments | urbanized sites, sewage discharges | Fibers were present in all samples. All zooplankton (mainly mesozooplankton) contained MPs. | [109] |
Lake Mjøsa | Norway | Zooplankton | 0.001–0.06 | Fragments (294 μm to 153 μm) | Rubber, PE, PS, PVC, acrylic. Fibers and fragments | Not mentioned | Fibers and fragments were present in all samples. | [110] |
Lake Balma | Italy | Not mentioned | Not present | Not mentioned | Not mentioned | Not mentioned | MPs were not found in zooplankton. | [111] |
Garças Lagoon | Brazil | Cladoceran and copepods | 30 ind./L, 64 ind./L | 0.75 μm, 1.0 μm and 3.0 μm | Beads | Not mentioned | Highest ingested 0.75 μm and 1.0 μm MPs particles. Evidence of microplastic transfer. | [112] |
8 lakes in BC, Canada | Canada | Copepod, Daphnia | 0.01 ± 0.011 microplastics per copepod and 0.02 ± 0.014 microplastics per Daphnia | Not mentioned | PEST fibers and PET films and fragments | Recreational activities | PEST was dominant in zooplankton. Zooplankton consume shorter microplastic than body size. | [113] |
Kolavai Lake | India | Rotifera, nauplii and Cyclopoida, Cladocera and Calanoida | 6.1 ± 2.5 particles/L | >0.3 mm | Fibers and fragments: PE, high–density polyethylene (HDPE) and PP | Road and solid waste pollution | microplastic–to–zooplankton ratio 0.05 to 0.74 MPs have detrimental impacts due to infiltration in the food web. | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lawrence, J.; Santolini, C.; Binda, G.; Carnati, S.; Boldrocchi, G.; Pozzi, A.; Bettinetti, R. Freshwater Lacustrine Zooplankton and Microplastic: An Issue to Be Still Explored. Toxics 2023, 11, 1017. https://doi.org/10.3390/toxics11121017
Lawrence J, Santolini C, Binda G, Carnati S, Boldrocchi G, Pozzi A, Bettinetti R. Freshwater Lacustrine Zooplankton and Microplastic: An Issue to Be Still Explored. Toxics. 2023; 11(12):1017. https://doi.org/10.3390/toxics11121017
Chicago/Turabian StyleLawrence, Jassica, Carlotta Santolini, Gilberto Binda, Stefano Carnati, Ginevra Boldrocchi, Andrea Pozzi, and Roberta Bettinetti. 2023. "Freshwater Lacustrine Zooplankton and Microplastic: An Issue to Be Still Explored" Toxics 11, no. 12: 1017. https://doi.org/10.3390/toxics11121017
APA StyleLawrence, J., Santolini, C., Binda, G., Carnati, S., Boldrocchi, G., Pozzi, A., & Bettinetti, R. (2023). Freshwater Lacustrine Zooplankton and Microplastic: An Issue to Be Still Explored. Toxics, 11(12), 1017. https://doi.org/10.3390/toxics11121017