Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health
Abstract
:1. Introduction
2. The Contribution of Synthetic Pesticides and Their Impact on the Environment and Human Health
2.1. Defining Pesticides
2.2. Toxicity, Impacts, and Risks of Pesticides in Regards to the Environment and Human Health
3. Biopesticides: Alternatives to Synthetic Pesticides and Their Integration into Sustainable Agriculture
3.1. Defining Biopesticides and Regulatory Aspects
3.2. Biopesticide Potential, Applicability, and Classification
- Biochemical pest control agents or biochemical pesticides (e.g., botanical pesticides, essential oils, pheromones, hormones, natural plant growth regulators, enzymes, minerals, etc.);
- Microbial pest control agents or microbiological pesticides (e.g., microorganisms);
- Macrobiological pest control agents or macrobiological pesticides (e.g., beneficial insects, parasitoids and entomopathogenic nematodes).
3.3. Challenges in Biopesticide Introduction
3.4. A New Generation of Biopesticidal Compounds: Plant Extracts/Botanicals
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lykogianni, M.; Bempelou, E.; Karamaouna, F.; Aliferis, K.A. Do Pesticides Promote or Hinder Sustainability in Agriculture? The Challenge of Sustainable Use of Pesticides in Modern Agriculture. Sci. Total Environ. 2021, 795, 148625. [Google Scholar] [CrossRef]
- Schleiffer, M.; Speiser, B. Presence of Pesticides in the Environment, Transition into Organic Food, and Implications for Quality Assurance along the European Organic Food Chain–A Review. Environ. Pollut. 2022, 313, 120116. [Google Scholar] [CrossRef]
- Statista. Leading Countries in Agricultural Consumption of Pesticides Worldwide in 2020 (in 1000 Metric Tons); Statista: Hamburg, Germany, 2023. [Google Scholar]
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C. Agriculture Development, Pesticide Application and Its Impact on the Environment. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Hellou, J.; Lebeuf, M.; Rudi, M. Review on DDT and Metabolites in Birds and Mammals of Aquatic Ecosystems. Environ. Rev. 2013, 21, 53–69. [Google Scholar] [CrossRef]
- Stenberg, J.A. A Conceptual Framework for Integrated Pest Management. Trends Plant Sci. 2017, 22, 759–769. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Current Status and Recent Developments in Biopesticide Use. Agriculture 2018, 8, 13. [Google Scholar] [CrossRef]
- Marrone, P.G. Pesticidal Natural Products–Status and Future Potential. Pest Manag. Sci. 2019, 75, 2325–2340. [Google Scholar] [CrossRef]
- Daraban, G.; Marinela, B.; Rusu, L.; Daniela, S. Biopesticides–a New Challenge in Assuring Food Quality and Sustainable Agriculture. Lucr. Ştiintifice Ser. Hortic. 2018, 61, 269–274. [Google Scholar]
- Hassaan, M.A.; El Nemr, A. Pesticides Pollution: Classifications, Human Health Impact, Extraction and Treatment Techniques. Egypt. J. Aquat. Res. 2020, 46, 207–220. [Google Scholar] [CrossRef]
- Akutse, K.S.; Subramanian, S.; Maniania, N.K.; Dubois, T.; Ekesi, S. Biopesticide Research and Product Development in Africa for Sustainable Agriculture and Food Security—Experiences From the International Centre of Insect Physiology and Ecology (Icipe). Front. Sustain. Food Syst. 2020, 4, 563016. [Google Scholar] [CrossRef]
- Dekebo, A. Introductory Chapter: Plant Extracts. In Plant Extracts; Dekebo, A., Ed.; IntechOpen: London, UK, 2019; pp. 1–11. ISBN 0000957720. [Google Scholar]
- Almodaifer, S.; Alsibaie, N.; Alhoumedan, G.; Alammari, G.; Kavita, M.S.; Turki, M.A.; Al Harthy, N. Role of Phytochemicals in Health and Nutrition. BAOJ Nutr. 2017, 3, 28–34. [Google Scholar] [CrossRef]
- Chen, S.L.; Yu, H.; Luo, H.M.; Wu, Q.; Li, C.F.; Steinmetz, A. Conservation and Sustainable Use of Medicinal Plants: Problems, Progress, and Prospects. Chin. Med. 2016, 11, 37. [Google Scholar] [CrossRef]
- Hawkins, N.J.; Bass, C.; Dixon, A.; Neve, P. The Evolutionary Origins of Pesticide Resistance. Biol. Rev. 2019, 94, 135–155. [Google Scholar] [CrossRef]
- Olson, S. An Analysis of the Biopesticide Market Now and Where It Is Going. Outlooks Pest Manag. 2015, 26, 203–206. [Google Scholar] [CrossRef]
- Cappa, F.; Baracchi, D.; Cervo, R. Biopesticides and Insect Pollinators: Detrimental Effects, Outdated Guidelines, and Future Directions. Sci. Total Environ. 2022, 837, 155714. [Google Scholar] [CrossRef]
- Giraldo-Rivera, A.-I.; Guerrero-Alvarez, G.-E. Botanical Biopesticides: Research and Development Trends, a Focus on the Annonaceae Family (Biopesticidas de Origen Botánico: Tendencias En Investigación y Desarrollo, Un Enfoque En La Familia Annonaceae). Rev. Colomb. Ciencias Hortic. 2019, 13, 371–383. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Ishaaya, I. Biorational Insecticides—Mechanisms, Selectivity and Importance in Pest Management. In Insect Pest Management-Field and Protected Crops; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–28. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current Status of Pesticide Effects on Environment, Human Health and It’s Eco-Friendly Management as Bioremediation: A Comprehensive Review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Gavrilescu, M.; Pogăcean, O.M.; Gavrilescu, M.; Cozma, P.; Simion, I.M.; Roșca, M. Modelling Pesticide Dynamics in Vegetal Products and Human Health Risk Assessment (Modelarea Dinamicii Pesticidelor în Produse Vegetale şi Estimarea Riscurilor Asupra Sănătăţii Umane); Hlihor, R.M., Gavrilescu, M., Eds.; Politehnium Publishing House: Iasi, Romania, 2018; ISBN 9789736214776. [Google Scholar]
- Bortoli, S.; Coumoul, X. Impact of Pesticides on Human Health. Prat. en Nutr. 2018, 14, 18–24. [Google Scholar] [CrossRef]
- Meena, R.K.; Mishra, P. Bio-Pesticides for Agriculture and Environment Sustainability. In Resources Use Efficiency in Agriculture; Kumar, S., Ed.; Springer Nature: Singapore, 2020; pp. 85–107. ISBN 9789811569531. [Google Scholar]
- Rasool, S.; Rasool, T.; Gani, K.M. A Review of Interactions of Pesticides within Various Interfaces of Intrinsic and Organic Residue Amended Soil Environment. Chem. Eng. J. Adv. 2022, 11, 100301. [Google Scholar] [CrossRef]
- Benbrook, C.M.; Benbrook, R. A Minimum Data Set for Tracking Changes in Pesticide Use. In Herbicides. Chemistry, Efficacy, Toxicology, and Environmental Impacts; Mesnage, R., Zaller, J.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 21–39. [Google Scholar]
- Bernardes, M.F.F.; Pazin, M.; Pereira, L.C.; Dorta, D.J. Impact of Pesticides on Environmental and Human Health. In Toxicology Studies–Cells, Drugs and Environment; Intech: London, UK, 2015; pp. 195–233. ISBN 0000957720. [Google Scholar]
- Devi, P.I.; Manjula, M.; Bhavani, R.V. Agrochemicals, Environment, and Human Health. Annu. Rev. Environ. Resour. 2022, 47, 399–421. [Google Scholar] [CrossRef]
- Wołejko, E.; Jabłońska-Trypuć, A.; Wydro, U.; Butarewicz, A.; Łozowicka, B. Soil Biological Activity as an Indicator of Soil Pollution with Pesticides—A Review. Appl. Soil Ecol. 2020, 147, 103356. [Google Scholar] [CrossRef]
- Damalas, C.A.; Koutroubas, S.D. Farmers’ Exposure to Pesticides: Toxicity Types and Ways of Prevention. Toxics 2016, 4, 1. [Google Scholar] [CrossRef]
- Cozma, P.; Gavrilescu, M.; Roșca, M.; Apostol, L.C.; Hlihor, R.M.; Gavrilescu, M. Evaluation of Human Health Risks Associated with Pesticide Dietary Intake–An Overview on Quantitative Uncertainty Analysis. Environ. Eng. Manag. J. 2018, 17, 2263–2274. [Google Scholar] [CrossRef]
- Kaur, R.; Mavi, G.K.; Raghav, S.; Khan, I. Pesticides Classification and Its Impact on Environment. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1889–1897. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Turon, H.; Wolfenden, L.; Finch, M.; Mccrabb, S.; Naughton, S.; Connor, S.R.O. Dissemination of Public Health Research to Prevent Non-Communicable Diseases: A Scoping Review. BMC Public Health 2023, 23, 757. [Google Scholar] [CrossRef]
- Mesnage, R.; Benbrook, C. Use of the Concept ‘Environmentally Relevant Level’ in Linking the Results of Pesticide Toxicity Studies to Public Health Outcomes. All Life 2023, 16, 2167872. [Google Scholar] [CrossRef]
- Siviter, H.; Koricheva, J.; Brown, M.J.F.; Leadbeater, E. Quantifying the Impact of Pesticides on Learning and Memory in Bees. J. Appl. Ecol. 2018, 55, 2812–2821. [Google Scholar] [CrossRef]
- Muratet, A.; Fontaine, B. Contrasting Impacts of Pesticides on Butterflies and Bumblebees in Private Gardens in France. Biol. Conserv. 2015, 182, 148–154. [Google Scholar] [CrossRef]
- Lechinovski, L.; Bados, M.; Rosa, J.; Moda, D.B.; Krawczyk, A.C. de D.B. Ecotoxicological Effects of Conventional Herbicides and a Natural Herbicide on Freshwater Fish (Danio rerio). J. Environ. Sci. Health Part B 2022, 57, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Yadav, I.C.; Devi, N.L. Pesticides Classification and Its Impact on Environment. In Environmental Science and Engineering. Volume 6: Toxicology; Gurjar, B.R., Chandra, R., Eds.; Studium Press, LLC: New Delhi, India, 2017; pp. 140–158. [Google Scholar]
- Minuț, M.; Roșca, M.; Hlihor, R.M.; Cozma, P.; Gavrilescu, M. Modelling of Health Risk Associated with the Intake of Pesticides from Romanian Fruits and Vegetables. Sustainability 2020, 12, 10035. [Google Scholar] [CrossRef]
- Hlihor, R.-M.; Paiu, M.; Cozma, P.; Favier, L.; Stoleru, V.; Gavrilescu, M. An Approach Towards Modelling the Human Health Risks Posed by Pesticides Residues in Lettuce. In Proceedings of the International Scientific Congress “Life Sciences, a Challenge for the Future”, Iasi, Romania, 17–18 October 2019; Miron, L.-D., Ed.; Filodiritto Editore: Iasi, Romania, 2019; pp. 226–232. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Health Risks Associated with Pesticides in Soils; Springer: Dordrecht, The Netherlands, 2018; ISBN 9789402412222. [Google Scholar]
- Rani, L.; Thapa, K.; Kanojia, N.; Sharma, N.; Singh, S.; Grewal, A.S.; Srivastav, A.L.; Kaushal, J. An Extensive Review on the Consequences of Chemical Pesticides on Human Health and Environment. J. Clean. Prod. 2021, 283, 124657. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, Y.; Liu, X.; Yang, D.; Yuan, H. Minimizing Occupational Exposure to Pesticide and Increasing Control Efficacy of Pests by Unmanned Aerial Vehicle Application on Cowpea. Appl. Sci. 2021, 11, 9579. [Google Scholar] [CrossRef]
- Paoletti, M.G.; Pimentel, D. Environmental Risks of Pesticides versus Genetic Engineering for Agricultural Pest Control. J. Agric. Environ. Ethics 2000, 12, 279–303. [Google Scholar] [CrossRef]
- Dindar, C.K.; Erkmen, C.; Uslu, B. Electroanalytical Methods Based on Bimetallic Nanomaterials for Determination of Pesticides: Past, Present, and Future. Trends Environ. Anal. Chem. 2021, 32, e00145. [Google Scholar] [CrossRef]
- Raj, A.S.; Chandran, P. Intimate Coupling of Photocatalysis and Biodegradation (ICPB): A Viable Method for Removing Pesticides from Contaminated Sites. In Relationship between Microbes and the Environment for Sustainable Ecosystem Services; Elsevier: Amsterdam, The Netherlands, 2022; Volume 1, pp. 357–370. [Google Scholar] [CrossRef]
- Statista. Distribution of Pesticide Exposure Incidents in the U.S. In 2018, by Type; Statista: Hamburg, Germany, 2023. [Google Scholar]
- Evangelou, E.; Ntritsos, G.; Chondrogiorgi, M.; Kavvoura, F.K.; Hernández, A.F.; Ntzani, E.E.; Tzoulaki, I. Exposure to Pesticides and Diabetes: A Systematic Review and Meta-Analysis. Environ. Int. 2016, 91, 60–68. [Google Scholar] [CrossRef]
- Mamane, A.; Baldi, I.; Tessier, J.F.; Raherison, C.; Bouvier, G. Occupational Exposure to Pesticides and Respiratory Health. Eur. Respir. Rev. 2015, 24, 306–319. [Google Scholar] [CrossRef]
- Hlihor, R.M.; Pogăcean, M.O.; Rosca, M.; Cozma, P.; Gavrilescu, M. Modelling the Behavior of Pesticide Residues in Tomatoes and Their Associated Long-Term Exposure Risks. J. Environ. Manag. 2019, 233, 523–529. [Google Scholar] [CrossRef]
- Sachdev, S.; Singh, R.P. Current Challenges, Constraints and Future Strategies for Development of Successful Market for Biopesticides. Clim. Chang. Environ. Sustain. 2016, 4, 129. [Google Scholar] [CrossRef]
- Rajput, V.S.; Jhala, J.; Acharya, V. Biopesticides and Their Mode of Action against Insect Pests: A Review. Int. J. Chem. Stud. 2020, 8, 2856–2862. [Google Scholar] [CrossRef]
- Suteu, D.; Rusu, L.; Zaharia, C.; Badeanu, M.; Daraban, G.M. Challenge of Utilization Vegetal Extracts as Natural Plant Protection Products. Appl. Sci. 2020, 10, 8913. [Google Scholar] [CrossRef]
- California Department of Pesticide Regulation (DPR). Towards Safer and More Sustainable Alternatives to Chlorpyrifos: An Action Plan for California; California Department of Pesticide Regulation (DPR): Sacramento, CA, USA, 2020. [Google Scholar]
- Ishaaya, I.; Horowitz, A.R. Biorational Control of Arthropod Pests: Application and Resistance Management; Springer: Dordrecht, The Netherlands, 2009; pp. 1–408. [Google Scholar] [CrossRef]
- Egwu, O.C.; Dickson, M.A.; Gabriel, O.T.; Okai, I.R.; Amanabo, M. Risk Assessment of Heavy Metals Level in Soil and Jute Leaves (Corchorus Olitorius) Treated with Azadirachtin Neem Seed Solution and Organochlorine Pesticides. Int. J. Environ. Agric. Biotechnol. 2019, 4, 756–776. [Google Scholar] [CrossRef]
- Leahy, J.; Mendelsohn, M.; Kough, J.; Jones, R.; Berckes, N. Biopesticide Oversight and Registration at the U.S. Environmental Protection Agency. ACS Symp. Ser. 2014, 1172, 3–18. [Google Scholar] [CrossRef]
- EEA. Biopesticide; EPA: Research Triangle Park, NC, USA, 2023. [Google Scholar]
- FAO; WHO. Guidelines for the Registration of Microbial, Botanical and Semiochemical Pest Control Agents for Plant Protection and Public Health Uses; WHO: Geneva, Switzerland, 2017; ISBN 9789251300152. [Google Scholar]
- Liu, H.W.; Begley, T. Comprehensive Natural Products III; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–633. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sandín-España, P.; Sevilla-Morán, B.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides from Natural Products: Current Development, Legislative Framework, and Future Trends. BioResources 2016, 11, 5618–5640. [Google Scholar] [CrossRef]
- EPA. Pesticide Assessment Guidelines–Subdivision M: Biorational Pesticides; EPA: Research Triangle Park, NC, USA, 1982.
- Aktar, W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef]
- Dhakal, R.; Singh, D.N. Biopesticides: A Key to Sustainable Agriculture. Int. J. Pure Appl. Biosci. 2019, 7, 391–396. [Google Scholar] [CrossRef]
- Manda, R.R.; Addanki, V.A.; Srivastava, S. Microbial Bio-Pesticides and Botanicals as an Alternative to Synthetic Pesticides in the Sustainable Agricultural Production. Plant Cell Biotechnol. Mol. Biol. 2020, 21, 31–48. [Google Scholar]
- Regnault-Roger, C.; Philogène, B.J.R. Past and Current Prospects for the Use of Botanicals and Plant Allelochemicals in Integrated Pest Management. Pharm. Biol. 2008, 46, 41–52. [Google Scholar] [CrossRef]
- Oguh, C.E.; Okpaka, C.O.; Ubani, C.S.; Okekaji, U.; Joseph, P.S.; Amadi, E.U. Natural Pesticides (Biopesticides) and Uses in Pest Management-A Critical Review. Asian J. Biotechnol. Genet. Eng. 2019, 2, 1–18. [Google Scholar]
- El-Wakeil, N.E.; Gaafar, N.M.; Vidal, S. Side Effect of Some Neem Products on Natural Enemies of Helicoverpa (Trichogramma Spp.) and Chrysoperla Carnea. Arch. Phytopathol. Plant Prot. 2006, 39, 445–455. [Google Scholar] [CrossRef]
- Inamuddin; Ahamed, M.I.; Lichtfouse, E. Sustainable Agriculture Reviews Volume 48. Pesticide Occurrence, Analysis and Remediation Vol. 2 Analysis; Springer: Cham, Switzerland, 2021; Volume 2, ISBN 9783540228608. [Google Scholar]
- Sarwar, M. Usage of Biorational Pesticides with Novel Modes of Action, Mechanism and Application in Crop Protection. Int. J. Mater. Chem. Phys. 2015, 1, 156–162. [Google Scholar]
- Isman, M.B. Botanical Insecticides, Deterrents, and Repellents in Modern Agriculture and an Increasingly Regulated World. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef] [PubMed]
- EPA. Biopesticide Active Ingredients; EPA: Research Triangle Park, NC, USA, 2020.
- EPA. Current and Previously Registered Section 3 Plant-Incorporated Protectant (PIP) Registrations; EPA: Research Triangle Park, NC, USA, 2020.
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Villaverde, J.J.; Sevilla-Morán, B.; Sandín-España, P.; López-Goti, C.; Alonso-Prados, J.L. Biopesticides in the Framework of the European Pesticide Regulation (EC) No. 1107/2009. Pest Manag. Sci. 2014, 70, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Fanning, P.D.; Grieshop, M.J.; Isaacs, R. Efficacy of Biopesticides on Spotted Wing Drosophila, Drosophila suzukii Matsumura in Fall Red Raspberries. J. Appl. Entomol. 2018, 142, 26–32. [Google Scholar] [CrossRef]
- Sarwar, M. Biopesticides: An Effective and Environmental Friendly Insect-Pests Inhibitor Line of Action. Int. J. Eng. Adv. Res. Technol. 2015, 1, 10–15. [Google Scholar]
- Holmes, K.; Chaudhary, M.; Babendreier, D.; Bateman, M.; Grunder, J.; Mulaa, M.; Durocher-Granger, L.; Faheem, M. Introduction to the Biopesticides Manual. In Biopesticides Manual: Guidelines for Selecting, Sourcing and Using Biocontrol Agents for Key Pests of Tobacco; Holmes, K., Chaudhary, M., Babendreier, D., Bateman, M., Grunder, J., Mulaa, M., Durocher-Granger, L., Faheem, M., Eds.; CABI: Houston, TX, USA, 2018; pp. 1–4. ISBN 978-1-78924-202-7. [Google Scholar]
- Šunjka, D.; Mechora, Š. An Alternative Source of Biopesticides and Improvement in Their Formulation—Recent Advances. Plants 2022, 11, 3172. [Google Scholar] [CrossRef]
- EPA. Overview of Plant Incorporated Protectants; EPA: Research Triangle Park, NC, USA, 2022.
- Aneja, K.R.; Khan, S.A. Biopesticides an Eco-Friendly Pestmanagement Approach in Agriculture: Status and Prospects. KAVAKA 2016, 47, 145–154. [Google Scholar]
- Kaushal, M.; Prasad, R. Microbial Biotechnology in Crop Protection; Springer: Berlin/Heidelberg, Germany, 2021; ISBN 9789811600487. [Google Scholar]
- Lengai, G.M.W.; Muthomi, J.W.; Mbega, E.R. Phytochemical Activity and Role of Botanical Pesticides in Pest Management for Sustainable Agricultural Crop Production. Sci. Afr. 2020, 7, e00239. [Google Scholar] [CrossRef]
- Alam, M.Z.; Haque, M.M.; Islam, M.S.; Hossain, E.; Hasan, S.B.; Hasan, S.B.; Hossain, M.S. Comparative Study of Integrated Pest Management and Farmers Practices on Sustainable Environment in the Rice Ecosystem. Int. J. Zool. 2016, 2016, 7286040. [Google Scholar] [CrossRef]
- Thompson, L.; McDougall, S. Final Report. National Vegetable IPM Coordinator; Scholefield Robinson Horticultural Services Pty Ltd.: Urrbrae, SA, USA, 2011. [Google Scholar]
- Sorby, K.; Fleischer, G.; Pehu, E. Integrated Pest Management in Development: Review of Trends and Implementation Strategies. Agric. Rural Dev. Work. Pap. 2003, 5, 53. [Google Scholar]
- Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.; Kudsk, P.; et al. Eight Principles of Integrated Pest Management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [Google Scholar] [CrossRef]
- Benbrook, C.M. The Dollars and Cents of Soil Health. In Global Soil Security. Progress in Soil Science; Field, D.J., Morgan, C.L.S., McBratney, A.B., Eds.; Springer: Cham, Switzerland, 2017; pp. 219–226. ISBN 9780511543487. [Google Scholar]
- Wegulo, S.N.; Baenziger, P.S.; Hernandez Nopsa, J.; Bockus, W.W.; Hallen-Adams, H. Management of Fusarium Head Blight of Wheat and Barley. Crop Prot. 2015, 73, 100–107. [Google Scholar] [CrossRef]
- Muthomi, J.; Fulano, A.M.; Wagacha, J.M.; Mwang’ombe, A.W. Management of Snap Bean Insect Pests and Diseases by Use of Antagonistic Fungi and Plant Extracts. Sustain. Agric. Res. 2017, 6, 52. [Google Scholar] [CrossRef]
- Chougule, A.; Jha, V.K.; Mukhopadhyay, D. Using IoT for Integrated Pest Management. In Proceedings of the 2016 International Conference on Internet of Things and Applications (IOTA), Pune, India, 22–24 January 2016; pp. 17–22. [Google Scholar] [CrossRef]
- Yan, Y.; Feng, C.-C.; Chang, K. Towards Enhancing Integrated Pest Management Based on Volunteered Geographic Information. ISPRS Int. J. Geo Inf. 2017, 6, 224. [Google Scholar] [CrossRef]
- Dara, S.K. The New Integrated Pest Management Paradigm for the Modern Age. J. Integr. Pest Manag. 2019, 10, pmz010. [Google Scholar] [CrossRef]
- Fahad, S.; Saud, S.; Akhter, A.; Bajwa, A.A.; Hassan, S.; Battaglia, M.; Adnan, M.; Wahid, F.; Datta, R.; Babur, E.; et al. Bio-Based Integrated Pest Management in Rice: An Agro-Ecosystems Friendly Approach for Agricultural Sustainability. J. Saudi Soc. Agric. Sci. 2021, 20, 94–102. [Google Scholar] [CrossRef]
- Karlsson Green, K.; Stenberg, J.A.; Lankinen, Å. Making Sense of Integrated Pest Management (IPM) in the Light of Evolution. Evol. Appl. 2020, 13, 1791–1805. [Google Scholar] [CrossRef]
- Mwenda, E.; Muange, E.N.; Ngigi, M.W.; Kosgei, A. Impact of ICT-Based Pest Information Services on Tomato Pest Management Practices in the Central Highlands of Kenya. Sustain. Technol. Entrep. 2023, 2, 100036. [Google Scholar] [CrossRef]
- Mohammed, A.L.; Iddriss, M. Effect of Moringa (Moringa oleifera) Leaf Powder, Neem (Azadirachta indica) Leaf Powder, and Camphor on Weevil (Callosobruchus maculatus F.) in Stored Cowpea (Vigna unguiculata (L.) Walp) Seeds. J. Appl. Life Sci. Environ. 2022, 55, 257–269. [Google Scholar] [CrossRef]
- Kekuda, T.R.P.; Akarsh, S.; Nawaz, A.S.N.; Ranjitha, M.C.; Darshini, S.M.; Vidya, P. In Vitro Antifungal Activity of Some Plants Against Bipolaris Sorokiniana (Sacc.) Shoem. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 331–337. [Google Scholar] [CrossRef]
- Parajuli, S.; Shrestha, J.; Subedi, S.; Pandey, M. Biopesticides: A Sustainable Approach for Pest Management. SAARC J. Agric. 2022, 20, 1–13. [Google Scholar] [CrossRef]
- Statista. Market Value of Biopesticides Worldwide in 2016 and 2020 with a Forecast for 2025; Statista: Hamburg, Germany, 2023. [Google Scholar]
- Stevenson, P.C.; Isman, M.B.; Belmain, S.R. Pesticidal Plants in Africa: A Global Vision of New Biological Control Products from Local Uses. Ind. Crops Prod. 2017, 110, 2–9. [Google Scholar] [CrossRef]
- Sales, M.D.C.; Costa, H.B.; Fernandes, P.M.B.; Ventura, J.A.; Meira, D.D. Antifungal Activity of Plant Extracts with Potential to Control Plant Pathogens in Pineapple. Asian Pac. J. Trop. Biomed. 2016, 6, 26–31. [Google Scholar] [CrossRef]
- Bhandari, G. Pesticide Use in Nepal: The Assessment of Residues and Risks; Wageningen University: Wageningen, The Netherlands, 2021; ISBN 9789463956406. [Google Scholar]
- Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes 2020, 8, 1222. [Google Scholar] [CrossRef]
- Belwal, T.; Ezzat, S.M.; Rastrelli, L.; Bhatt, I.D.; Daglia, M.; Baldi, A.; Devkota, H.P.; Orhan, I.E.; Patra, J.K.; Das, G.; et al. A Critical Analysis of Extraction Techniques Used for Botanicals: Trends, Priorities, Industrial Uses and Optimization Strategies. TrAC–Trends Anal. Chem. 2018, 100, 82–102. [Google Scholar] [CrossRef]
- Wen, L.; Zhang, Z.; Sun, D.W.; Sivagnanam, S.P.; Tiwari, B.K. Combination of Emerging Technologies for the Extraction of Bioactive Compounds. Crit. Rev. Food Sci. Nutr. 2020, 60, 1826–1841. [Google Scholar] [CrossRef]
- Kumar, J.; Ramlal, A.; Mallick, D.; Mishra, V. An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants 2021, 10, 1185. [Google Scholar] [CrossRef]
- Acheuk, F.; Basiouni, S.; Shehata, A.A.; Dick, K.; Hajri, H.; Lasram, S.; Yilmaz, M.; Emekci, M.; Tsiamis, G.; Spona-Friedl, M.; et al. Status and Prospects of Botanical Biopesticides in Europe and Mediterranean Countries. Biomolecules 2022, 12, 311. [Google Scholar] [CrossRef]
- Giunti, G.; Benelli, G.; Palmeri, V.; Laudani, F.; Ricupero, M.; Ricciardi, R.; Maggi, F.; Lucchi, A.; Guedes, R.N.C.; Desneux, N.; et al. Non-Target Effects of Essential Oil-Based Biopesticides for Crop Protection: Impact on Natural Enemies, Pollinators, and Soil Invertebrates. Biol. Control 2022, 176, 105071. [Google Scholar] [CrossRef]
- Daraban, G.M.; Badeanu, M.; Suteu, D. Repellent and Insecticide Activities of Plants Extracts from Spontaneous Flora Using Conventional and Innovative Assisted Extraction Techniques. Res. J. Agric. Sci. 2021, 53, 85–92. [Google Scholar]
- Daraban, G.M.; Zaharia, C.; Suteu, D.; Puitel, A.; Tatatru-Farmus, R.E.; Badeanu, M. Preliminary Evaluation of Vegetal Extract Characteristics from Spontaneous Flora of Moldova Area (Romania). Rom. Biotechnol. Lett. 2021, 26, 2594–2605. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Vincent, C.; Arnason, J.T. Essential Oils in Insect Control: Low-Risk Products in a High-Stakes World. Annu. Rev. Entomol. 2012, 57, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Devrnja, N.; Milutinović, M.; Savić, J. When Scent Becomes a Weapon—Plant Essential Oils as Potent Bioinsecticides. Sustainability 2022, 14, 6847. [Google Scholar] [CrossRef]
- Daraban, G.M.; Badeanu, M.; Rusu, L.; Zaharia, C.; Suteu, D. Vegetal Extract From Spontaneous Romanian Flora with Bioinsecticidal Action. Res. J. Agric. Sci. 2020, 52, 183–188. [Google Scholar]
- Buitenhuis, R.; Brownbridge, M.; Brommit, A.; Saito, T.; Murphy, G. How to Start with a Clean Crop: Biopesticide Dips Reduce Populations of Bemisia tabaci (Hemiptera: Aleyrodidae) on Greenhouse Poinsettia Propagative Cuttings. Insects 2016, 7, 48. [Google Scholar] [CrossRef]
- Mehrotra, S.; Kumar, S.; Zahid, M.; Garg, M. Biopesticides. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Springer: Singapore, 2017; pp. 273–292. ISBN 9789811018664. [Google Scholar]
- Spochacz, M.; Chowański, S.; Walkowiak-Nowicka, K.; Szymczak, M.; Adamski, Z. Plant-Derived Substances Used Against Beetles–Pests of Stored Crops and Food–and Their Mode of Action: A Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1339–1366. [Google Scholar] [CrossRef]
- Walia, S.; Saha, S.; Tripathi, V.; Sharma, K.K. Phytochemical Biopesticides: Some Recent Developments. Phytochem. Rev. 2017, 16, 989–1007. [Google Scholar] [CrossRef]
- Ngegba, P.M.; Cui, G.; Khalid, M.Z.; Zhong, G. Use of Botanical Pesticides in Agriculture as an Alternative to Synthetic Pesticides. Agriculture 2022, 12, 600. [Google Scholar] [CrossRef]
- Ingle, K.; Deshmukh, A.; Padole, D.A.; Mahendra, S.; Dudhare, M.P.; Moharil, K.V. Bioefficacy of Crude Extracts from Jatropha curcas against Spodoptera litura. J. Entomol. Zool. Stud. 2017, 5, 36–38. [Google Scholar]
- Salhi, N.; Mohammed Saghir, S.A.; Terzi, V.; Brahmi, I.; Ghedairi, N.; Bissati, S. Antifungal Activity of Aqueous Extracts of Some Dominant Algerian Medicinal Plants. Biomed Res. Int. 2017, 2017, 7526291. [Google Scholar] [CrossRef] [PubMed]
- Ichim, E.; Marutescu, L.; Popa, M.; Cristea, S. Antimicrobial Efficacy of Some Plant Extracts on Bacterial Ring Rot Pathogen, Clavibacter michiganensis Ssp. Sepedonicus. EuroBiotech J. 2017, 1, 85–88. [Google Scholar] [CrossRef]
- Singh, G. Evaluation of Nematicidal Activity of Ethanolic Extracts of Medicinal Plants to Meloidogyne incognita (Kofoid and White) Chitwood under Lab Conditions. Int. J. Pure Appl. Biosci. 2017, 5, 827–831. [Google Scholar] [CrossRef]
- Elbeshehy, E.K.F.; Metwali, E.M.R.; Almaghrabi, O.A. Antiviral Activity of Thuja orientalis Extracts against Watermelon Mosaic Virus (WMV) on Citrullus Lanatus. Saudi J. Biol. Sci. 2015, 22, 211–219. [Google Scholar] [CrossRef]
- Seixas, P.T.L.; Demuner, A.J.; Alvarenga, E.S.; Barbosa, L.C.A.; Marques, A.; Farias, E.d.S.; Picanço, M.C. Bioactivity of Essential Oils from Artemisia against Diaphania Hyalinata and Its Selectivity to Beneficial Insects. Sci. Agric. 2018, 75, 519–525. [Google Scholar] [CrossRef]
- Dancewicz, K.; Gabryś, B. Effect of Extracts of Garlic (Allium sativum L.), Wormwood (Artemisia absinthium L.) and Tansy (Tanaceum vulgare L.) on the Behaviour of the Peach Potato Aphid Myzus Persicae (Sulz.) during the Settling on Plants. Pestycydy/Pesticides 2008, 3-4, 93–99. [Google Scholar]
- Chaieb, I.; Hamouda, A.B.; Tayeb, W.; Zarrad, K.; Bouslema, T.; Laarif, A. The Tunisian Artemisia Essential Oil for Reducing Contamination of Stored Cereals by Tribolium castaneum. Food Technol. Biotechnol. 2018, 56, 247–256. [Google Scholar] [CrossRef]
- Magierowicz, K.; Górska-Drabik, E.; Golan, K. Effects of Plant Extracts and Essential Oils on the Behavior of Acrobasis advenella (Zinck.) Caterpillars and Females. J. Plant Dis. Prot. 2020, 127, 63–71. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Saber, M.; Bagheri, M.; Mahdavinia, G.R. Achillea millefolium Essential Oil and Chitosan Nanocapsules with Enhanced Activity against Tetranychus urticae. J. Pest Sci. 2018, 91, 837–848. [Google Scholar] [CrossRef]
- Nasr, M.; Jalali Sendi, J.; Moharramipour, S.; Zibaee, A. Evaluation of Origanum vulgare L. Essential Oil as a Source of Toxicant and an Inhibitor of Physiological Parameters in Diamondback Moth, Plutella xylustella L. (Lepidoptera: Pyralidae). J. Saudi Soc. Agric. Sci. 2017, 16, 184–190. [Google Scholar] [CrossRef]
- Yazdani, E.; Sendi, J.J.; Hajizadeh, J. Effect of Thymus vulgaris L. and Origanum vulgare L. Essential Oils on Toxicity, Food Consumption, and Biochemical Properties of Lesser Mulberry Pyralid Glyphodes Pyloalis Walker (Lepidoptera: Pyralidae). J. Plant Prot. Res. 2014, 54, 53–61. [Google Scholar] [CrossRef]
- Khalfi, O.; Sahraoui, N.; Bentahar, F.; Boutekedjiret, C. Chemical Composition and Insecticidal Properties of Origanum glandulosum (Desf.) Essential Oil from Algeria. J. Sci. Food Agric. 2008, 88, 1562–1566. [Google Scholar] [CrossRef]
- Daraban, G.M.; Rusu, L.; Dinica, R.M.; Roşca, M.; Badeanu, M.; Mihaila, M.D.I.; Suteu, D. Exploring the Antioxidant and Bioinsecticidal Activity of Spontaneous Flora Vegetal Extracts for Plant Protection and Prevention of Soil Contamination. Separations 2022, 9, 260. [Google Scholar] [CrossRef]
- Al-Samarrai, G.F.; Singh, H.; Syarhabil, M. Extracts Some Plants on Controlling Green Mold of Orange and on Postharvest Quality Parameters. World Appl. Sci. J. 2013, 22, 564–570. [Google Scholar] [CrossRef]
- Arora, S.; Kanojia, A.K.; Kumar, A.; Mogha, N.; Sahu, V. Biopesticide Formulation to Control Tomato Lepidopteran Pest Menace. Asian Agrihist. 2014, 18, 283–293. [Google Scholar]
Plant and/or Active Substance | Species a | Type b | Molecular Formula a | Molecular Mass (g/mol) a | Toxicity a | Chemical Structure c | Formulation b | Product (Producer) b |
---|---|---|---|---|---|---|---|---|
α-pinene | Teucrium montanum, Xylopia aromatica, etc. | Fungicide | C10H16 | 136.23 | Mammals (oral): LD50 = 3700 mg/kg | Emulsifiable concentrate to be diluted and used as a foliar spray | Timorex (BioMor, Riga, Latvija) | |
Capsaicin | Capsicum spp. | Repellent, insecticide, miticide, rodenticide | C18H27NO3 | 305.4 | Mice (oral): LD50 = 47.2 mg/kg | Granular, powder and liquid formulations, with capsaicin alone, or in combination with other active biopesticides | Capsaicin (Aversion Technologies Inc., Annapolis, Maryland, USA) Hot Pepper Wax Natural Insect Repellent (Hot Pepper Wax, Inc., Greenville, PA, USA) Armorex (Soil Technologies Corp., Fairfield, IA, USA) | |
Neem/ Azadirachtin | Azadirachta indica | Insecticide, fungicide, acaricide | C35H44O16 | 720.71 | Rats (oral): LD50 > 5000 mg/kg | Emulsifiable concentrate applied as a spray | Azatin XL (OHP Inc., Morrisville, NC, USA) Fortune Aza (Fortune Bio Tech Pvt Ltd., Yadadri, Telangana State, India) Neemix (Certis Biologicals, Columbia, MD, USA) | |
Nicotine | Nicotiana tabacum | Insecticide | C10H14N2 | 162.23 | Mice (oral): LD50 = 24 mg/kg Humans (mammary glands): 200 µmol/L/24 h | smoke-generating formulations | Nicotine 40% Shreds (Dow AgroSciences LLC, Indianapolis, IN, USA) | |
Piretrum | Chrysanthemum cinerariifolium | Insecticide, acaricide, veterinary substance | C43H56O8 | 700.9 | Rats (oral): LD50 = 584–900 mg/kg | Very low volume liquids and ready-to-use sprays | Evergreen Crop Protection 60-6 (MGK, Minneapolis, MN, USA) Diatect II (Diatect International Corp., Heber City, UT, USA) Pyrethrum 5EC concentrate (Agropharm Ltd., Buckinghamshire, United Kingdom) | |
Ryania/ Ryanodine | Ryania speciosa | Insecticide | C25H35NO9 | 493.5 | Humans (oral): LDLo = 143 mg/kg Mice (oral): LD50: 650 mg/kg Rats (oral): LD50 = 750 mg/kg | Water-dispersible powder | Natur-Gro R50 (AgriSystems International, Columbus, Ohio, USA) Ryan 50 (Dunhill Chemicals, Rosemead, CA, USA) | |
Rotenone | Derris spp. sau Lonchocarpus spp. | Insecticide, acaricide, veterinary substance | C23H22O6 | 394.4 | Humans (oral): LDLo = 143 mg/kg Mice (oral): LD50: 2800 µg/kg Rats (oral): LD50: 60 mg/kg | Emulsifiable concentrate or powder | Prentox Cube Powder (Prentiss Incorporated, New York, NY, USA) Vironone (Vipesco, Ho Chi Minh City, Vietnam) Derris (Nantong Shenyu Green Medicine Co., Ltd., Shanghai, China) | |
Sabadilla/ Veratrine (Cevadine) | Schoenocaulon officinale and Veratrum oblongum | Insecticide, miticide | C32H49NO9 | 591.7 | Bees: LD50 = 12.33 UGB Mice (intra-peritoneal): LD50 = 3500 µg/kg | Water-soluble powders and concentrates for use as sprays | Veratran D (MGK, Minneapolis, MN, USA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daraban, G.M.; Hlihor, R.-M.; Suteu, D. Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health. Toxics 2023, 11, 983. https://doi.org/10.3390/toxics11120983
Daraban GM, Hlihor R-M, Suteu D. Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health. Toxics. 2023; 11(12):983. https://doi.org/10.3390/toxics11120983
Chicago/Turabian StyleDaraban, Gabriel Mihăiță, Raluca-Maria Hlihor, and Daniela Suteu. 2023. "Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health" Toxics 11, no. 12: 983. https://doi.org/10.3390/toxics11120983
APA StyleDaraban, G. M., Hlihor, R. -M., & Suteu, D. (2023). Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health. Toxics, 11(12), 983. https://doi.org/10.3390/toxics11120983