Evaluation of Health Economic Loss Due to Particulate Matter Pollution in the Seoul Subway, South Korea
Abstract
:1. Introduction
2. Data and Methodology
2.1. Overview
2.2. Study Area
2.3. Data Sources
2.4. Exposed Population
2.5. Exposure Route
2.6. Health-Effect Endpoint
- COPD (Chronic Obstructive Pulmonary Disease).
- Asthma.
- Cardiovascular diseases.
3. Health Economic Accounting
3.1. Poisson Regression Model
3.2. Measurement of Direct and Indirect Cost
3.2.1. Direct Cost
3.2.2. Indirect Cost
- Morbidity costs
- Mortality costs
- Caregivers’ time costs
- Methods used to determine the health care costs are given in Table 4
Morbidity Costs
Mortality Costs
Caregivers’ Time Costs
4. Results and Discussion
5. Limitations and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.; Yang, J.; Lim, Y.; Kim, C. Economic damage cost of premature death due to fine particulate matter in Seoul, Korea. Environ. Sci. Pollut. Res. 2021, 28, 51702–51713. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.B.; Jeong, W.; Park, D.; Kim, K.T.; Cho, K.H. A multivariate study for characterizing particulate matter (PM10, PM2.5, and PM1) in Seoul metropolitan subway stations, Korea. J. Hazard. Mater. 2015, 297, 295–303. [Google Scholar] [PubMed]
- Kam, W.; Cheung, K.; Daher, N.; Sioutas, C. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos. Environ. 2011, 45, 1506–1516. [Google Scholar]
- Seaton, A.; Cherrie, J.; Dennekamp, M.; Donaldson, K.; Hurley, J.F.; Tran, C.L. The London Underground: Dust and hazards to health. Occup. Environ. Med. 2005, 62, 355–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, C.; Johansson, P.Å. Particulate matter in the underground of Stockholm. Atmos. Environ. 2003, 37, 3–9. [Google Scholar]
- Salma, I.; Pósfai, M.; Kovács, K.; Kuzmann, E.; Homonnay, Z.; Posta, J. Properties and sources of individual particles and some chemical species in the aerosol of a metropolitan underground railway station. Atmos. Environ. 2009, 43, 3460–3466. [Google Scholar]
- Chuang, K.J.; Yan, Y.H.; Chiu, S.Y.; Cheng, T.J. Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan. Occup. Environ. Med. 2011, 68, 64–68. [Google Scholar]
- Shah, A.S.; Langrish, J.P.; Nair, H.; McAllister, D.A.; Hunter, A.L.; Donaldson, K.; Newby, D.E.; Mills, N.L. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 2013, 382, 1039–1048. [Google Scholar]
- Behera, D.; Balamugesh, T. Lung cancer in India. Indian J. Chest Dis. Allied Sci. 2004, 46, 269–281. [Google Scholar]
- Koo, E.J.; Bae, J.G.; Kim, E.J.; Cho, Y.H. Correlation between Exposure to Fine Particulate Matter (PM2.5) during Pregnancy and Congenital Anomalies: Its Surgical Perspectives. J. Korean Med. Sci. 2021, 36, e236. [Google Scholar]
- Seeni, I.; Ha, S.; Nobles, C.; Liu, D.; Sherman, S.; Mendola, P. Air pollution exposure during pregnancy: Maternal asthma and neonatal respiratory outcomes. Ann. Epidemiol. 2018, 28, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Ravindra, K.; Sokhi, R.; Van Grieken, R. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors and regulation. Atmos. Environ. 2008, 42, 2895–2921. [Google Scholar]
- Sin, D.W.; Wong, Y.C.; Choi, Y.Y.; Lam, C.H.; Louie, P.K. Distribution of polycyclic aromatic hydrocarbons in the atmosphere of Hong Kong. J. Environ. Monit. 2003, 5, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Passi, A.; Nagendra, S.S.; Maiya, M.P. Characteristics of indoor air quality in underground metro stations: A critical review. Build. Environ. 2021, 198, 107907. [Google Scholar]
- Carrer, P.; Wolkoff, P. Assessment of indoor air quality problems in office-like environments: Role of occupational health services. Int. J. Environ. Res. Public Health 2018, 15, 741. [Google Scholar] [PubMed] [Green Version]
- Bernstein, J.A.; Alexis, N.; Bacchus, H.; Bernstein, I.L.; Fritz, P.; Horner, E.; Li, N.; Mason, S.; Nel, A.; Oullette, J.; et al. The health effects of non-industrial indoor air pollution. J. Allergy Clin. Immunol. 2008, 121, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Park, W.M.; Park, D.U.; Hwang, S.H. Factors affecting ambient endotoxin and particulate matter concentrations around air vents of subway sta-tions in South Korea. Chemosphere 2018, 205, 45–51. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Fuller, G.W.; Anderson, H.R.; Harrison, R.M.; Armstrong, B. Urban ambient particle metrics and health: A time-series analysis. Epidemiology 2010, 21, 501–511. [Google Scholar]
- Cadelis, G.; Tourres, R.; Molinie, J. Short-term effects of the particulate pollutants contained in Saharan dust on the visits of children to the emergency department due to asthmatic conditions in Guadeloupe (French Archipelago of the Caribbean). PLoS ONE 2014, 9, e91136. [Google Scholar] [CrossRef] [Green Version]
- Correia, A.W.; Pope, C.A., III; Dockery, D.W.; Wang, Y.; Ezzati, M.; Dominici, F. The effect of air pollution control on life expectancy in the United States: An analysis of 545 US counties for the period 2000 to 2007. Epidemiology 2013, 24, 23. [Google Scholar]
- Fang, Y.; Naik, V.; Horowitz, L.W.; Mauzerall, D.L. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present. Atmos. Chem. Phys. 2013, 13, 1377–1394. [Google Scholar]
- Meister, K.; Johansson, C.; Forsberg, B. Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ. Health Perspect. 2012, 120, 431–436. [Google Scholar] [CrossRef] [Green Version]
- Ting, G.; Guoxing, L.; Meimei, X.; Xuying, W.; Fengchao, L.; Qiang, Z.; Xiaochuan, P. Evaluation of atmospheric PM2.5 health economic loss based on willingness to pay. J. Environ. Health 2015, 32, 697–700. [Google Scholar]
- Zhao, X.; Yu, X.; Wang, Y.; Fan, C. Economic evaluation of health losses from air pollution in Beijing, China. Environ. Sci. Pollut. Res. 2016, 23, 11716–11728. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.Q.; Mei, X.D.; Feng, D. Air pollution and chronic airway diseases: What should people know and do? J. Thorac. Dis. 2016, 8, E31. [Google Scholar]
- Zheng, T.; Niu, S.; Lu, B.; Fan, X.E.; Sun, F.; Wang, J.; Zhang, Y.; Zhang, B.; Owens, P.; Hao, L.; et al. Childhood asthma in Beijing, China: A population-based case-control study. Am. J. Epidemiol. 2002, 156, 977–983. [Google Scholar]
- Liu, F.; Zhao, Y.; Liu, Y.Q.; Liu, Y.; Sun, J.; Huang, M.M.; Liu, Y.; Dong, G.H. Asthma and asthma related symptoms in 23,326 Chinese children in relation to indoor and outdoor environmental factors: The Seven Northeastern Cities (SNEC) Study. Sci. Total Environ. 2014, 497, 10–17. [Google Scholar]
- Song, Q.; Christiani, D.C.; Wang, X.; Ren, J. The global contribution of outdoor air pollution to the incidence, prevalence, mortality and hospital admission for chronic obstructive pulmonary disease: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2014, 11, 11822–11832. [Google Scholar]
- Zhou, Y.; Zou, Y.; Li, X.; Chen, S.; Zhao, Z.; He, F.; Zou, W.; Luo, Q.; Li, W.; Pan, Y.; et al. Lung function and incidence of chronic obstructive pulmonary disease after improved cooking fuels and kitchen ventilation: A 9-year prospective cohort study. PLoS Med. 2014, 11, e1001621. [Google Scholar] [CrossRef]
- Hwang, Y.I. Reducing chronic obstructive pulmonary disease mortality in Korea: Early diagnosis matters. Korean J. Intern. Med. 2019, 34, 1212. [Google Scholar] [CrossRef] [Green Version]
- Hamanaka, R.B.; Mutlu, G.M. Particulate matter air pollution: Effects on the cardiovascular system. Front. Endocrinol. 2018, 9, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wold, L.E.; Ying, Z.; Hutchinson, K.R.; Velten, M.; Gorr, M.W.; Velten, C.; Youtz, D.J.; Wang, A.; Lucchesi, P.A.; Sun, Q.; et al. Cardiovascular remodeling in response to long-term exposure to fine particulate matter air pollution. Circ. Heart Fail. 2012, 5, 452–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thangavel, P.; Park, D.; Lee, Y.C. Recent insights into particulate matter (PM2.5)-mediated toxicity in humans: An overview. Int. J. Environ. Res. Public Health 2022, 19, 7511. [Google Scholar] [PubMed]
- Alexeeff, S.E.; Liao, N.S.; Liu, X.; Van Den Eeden, S.K.; Sidney, S. Long-term PM2.5 exposure and risks of ischemic heart disease and stroke events: Review and meta-analysis. J. Am. Heart Assoc. 2021, 10, e016890. [Google Scholar]
- Kyung, S.Y.; Jeong, S.H. Particulate-matter related respiratory diseases. Tuberc. Respir. Dis. 2020, 83, 116. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.; Saldiva, P.H.; Lavigne, E.; Matus, P.; et al. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar]
- Schikowski, T.; Mills, I.C.; Anderson, H.R.; Cohen, A.; Hansell, A.; Kauffmann, F.; Krämer, U.; Marcon, A.; Perez, L.; Sunyer, J.; et al. Ambient air pollution: A cause of COPD? Eur. Respir. J. 2014, 43, 250–263. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Manley, J.; Radoias, V. Air pollution and long term mental health. Atmosphere 2020, 11, 1355. [Google Scholar] [CrossRef]
- Kim, Y.; Radoias, V. Severe Air Pollution Exposure and Long-Term Health Outcomes. Int. J. Environ. Res. Public Health 2022, 19, 14019. [Google Scholar]
- Jayachandran, S. Air quality and early-life mortality evidence from Indonesia’s wildfires. J. Hum. Resour. 2009, 44, 916–954. [Google Scholar] [CrossRef] [Green Version]
- Takizawa, H. Impacts of particulate air pollution on asthma: Current understanding and future perspectives. Recent Pat. Inflamm. Allergy Drug Discov. 2015, 9, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.; Oliva, P. The effect of pollution on labor supply: Evidence from a natural experiment in Mexico City. J. Public Econ. 2015, 122, 68–79. [Google Scholar]
- Lanzi, E.; Dellink, R.; Chateau, J. The sectoral and regional economic consequences of outdoor air pollution to 2060. Energy Econ. 2018, 71, 89–113. [Google Scholar] [CrossRef]
- Li, L.; Lei, Y.; Pan, D.; Yu, C.; Si, C. Economic evaluation of the air pollution effect on public health in China’s 74 cities. SpringerPlus 2016, 5, 402. [Google Scholar]
- Li, S.; Williams, G.; Guo, Y. Health benefits from improved outdoor air quality and intervention in China. Environ. Pollut. 2016, 214, 17–25. [Google Scholar]
- Kim, Y.; Manley, J.; Radoias, V. Medium-and long-term consequences of pollution on labor supply: Evidence from Indonesia. IZA J. Labor Econ. 2017, 6, 5. [Google Scholar]
- Wan, Y.; Yang, H.W.; Masui, T. Considerations in applying the general equilibrium approach to environmental health assessment. Biomed. Environ. Sci. 2005, 18, 356. [Google Scholar]
- Wong, C.M.; Lai, H.K.; Tsang, H.; Thach, T.Q.; Thomas, G.N.; Lam, K.B.; Chan, K.P.; Yang, L.; Lau, A.K.; Ayres, J.G.; et al. Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents. Environ. Health Perspect. 2015, 123, 1167–1172. [Google Scholar]
- Wan, Y.U.; Yang, H.O.; Masui, T. Air pollution-induced health impacts on the national economy of China: Demonstration of a computable general equilibrium approach. Rev. Environ. Health 2005, 20, 119–140. [Google Scholar]
- Kang, H.Y.; Yang, K.H.; Kim, Y.N.; Moon, S.H.; Choi, W.J.; Kang, D.R.; Park, S.E. Incidence and mortality of hip fracture among the elderly population in South Korea: A population-based study using the national health insurance claims data. BMC Public Health 2010, 10, 230. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Park, J.H.; Bae, S.Y.; Kim, S.Y.; Byun, H.; Kwak, H.; Hwang, S.; Park, J.; Park, H.; Lee, K.H.; et al. Characteristics of PM10 levels monitored for more than a decade in subway stations in South Korea. Aerosol Air Qual. Res. 2019, 19, 2746–2756. [Google Scholar]
- Korea Ministry of Environment (KMOE). 2018 White Paper of Environment; Publication No. 11-1480000-000586-10; Ministry of Environment, Republic of Korea: Sejong, Republic of Korea, 2018.
- Korean Statistical Information Service. Available online: http://www.me.go.kr/ (accessed on 16 November 2021).
- Manojkumar, N.; Monishraj, M.; Srimuruganandam, B. Commuter exposure concentrations and inhalation doses in traffic and residential routes of Vellore city, India. Atmos. Pollut. Res. 2021, 12, 219–230. [Google Scholar]
- Betancourt, R.M.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J.P.; Sarmiento, O.L.; Gallo-Murcia, S.M.; Contreras, Y. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos. Environ. 2017, 157, 135–145. [Google Scholar]
- Ham, W.; Vijayan, A.; Schulte, N.; Herner, J.D. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento, California. Atmos. Environ. 2017, 167, 335–345. [Google Scholar] [CrossRef]
- Ramos, C.A.; Silva, J.R.; Faria, T.; Wolterbeek, T.H.; Almeida, S.M. Exposure assessment of a cyclist to particles and chemical elements. Environ. Sci. Pollut. Res. 2017, 24, 11879–11889. [Google Scholar]
- Shang, Y.; Sun, Z.; Cao, J.; Wang, X.; Zhong, L.; Bi, X.; Li, H.; Liu, W.; Zhu, T.; Huang, W. Systematic review of Chinese studies of short-term expo-sure to air pollution and daily mortality. Environ. Int. 2013, 54, 100–111. [Google Scholar] [CrossRef] [PubMed]
- US Environmental Protection Agency. Exposure Factors Handbook 2011 Edition (Final); US EPA: Washington, DC, USA, 2011.
- Toelle, B.G.; Ng, K.K.; Crisafulli, D.; Belousova, E.G.; Almqvist, C.; Webb, K.; Tovey, E.R.; Kemp, A.S.; Mellis, C.M.; Leeder, S.R.; et al. Eight-year outcomes of the childhood asthma prevention study. J. Allergy Clin. Immunol. 2010, 126, 388–389. [Google Scholar]
- Sullivan, P.W.; Ghushchyan, V.H.; Slejko, J.F.; Belozeroff, V.; Globe, D.R.; Lin, S.L. The burden of adult asthma in the United States: Evidence from the Medical Expenditure Panel Survey. J. Allergy Clin. Immunol. 2011, 127, 363–369. [Google Scholar] [CrossRef]
- Lee, Y.H.; Yoon, S.J.; Kim, E.J.; Kim, Y.A.; Seo, H.Y.; Oh, I.H. Economic burden of asthma in Korea. Allergy Asthma Proc. 2011, 32, 35. [Google Scholar]
- National Health Insurance Service. Available online: https://www.nhis.or.kr/ (accessed on 16 November 2021).
- Available online: http://kosis.kr/eng/ (accessed on 12 December 2021).
- Available online: https://kosis.kr/statHtml/ (accessed on 10 August 2021).
- Yu, G.; Wang, F.; Hu, J.; Liao, Y.; Liu, X. Value assessment of health losses caused by PM2.5 in Changsha City, China. Int. J. Environ. Res. Public Health 2019, 16, 2063. [Google Scholar]
- Arshad, S.H. Environmental control for secondary prevention of asthma. Clin. Exp. Allergy 2010, 40, 2–4. [Google Scholar] [PubMed]
- Rachelefsky, G.S. From the page to the clinic: Implementing new National Asthma Education and Prevention Program guidelines. Clin. Cornerstone 2009, 9, 9–19. [Google Scholar] [PubMed]
- Chen, X.; Wang, X.; Huang, J.J.; Zhang, L.W.; Song, F.J.; Mao, H.J.; Chen, K.X.; Chen, J.; Liu, Y.M.; Jiang, G.H.; et al. Nonmalignant respiratory mortality and long-term exposure to PM10 and SO2: A 12-year cohort study in northern China. Environ. Pollut. 2017, 231, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Chillrud, S.N.; Epstein, D.; Ross, J.M.; Sax, S.N.; Pederson, D.; Spengler, J.D.; Kinney, P.L. Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City’s subway system. Environ. Sci. Technol. 2004, 38, 732–737. [Google Scholar] [CrossRef]
- Goel, R.; Gani, S.; Guttikunda, S.K.; Wilson, D.; Tiwari, G. On-road PM2.5 pollution exposure in multiple transport microenvironments in Delhi. Atmos. Environ. 2015, 123, 129–138. [Google Scholar]
- Qiu, H.; Yu, H.; Wang, L.; Zhu, X.; Chen, M.; Zhou, L.; Deng, R.; Zhang, Y.; Pu, X.; Pan, J. The burden of overall and cause-specific respiratory mor-bidity due to ambient air pollution in Sichuan Basin, China: A multi-city time-series analysis. Environ. Res. 2018, 167, 428–436. [Google Scholar] [CrossRef]
- Aarnio, P.; Yli-Tuomi, T.; Kousa, A.; Mäkelä, T.; Hirsikko, A.; Hämeri, K.; Räisänen, M.; Hillamo, R.; Koskentalo, T.; Jantunen, M. The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos. Environ. 2005, 39, 5059–5066. [Google Scholar]
- Martins, V.; Moreno, T.; Minguillón, M.C.; Amato, F.; de Miguel, E.; Capdevila, M.; Querol, X. Exposure to airborne particulate matter in the sub-way system. Sci. Total Environ. 2015, 511, 711–722. [Google Scholar]
- Salma, I.; Weidinger, T.; Maenhaut, W. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan under-ground railway station. Atmos. Environ. 2007, 41, 8391–8405. [Google Scholar] [CrossRef]
- Minguillón, M.C.; Schembari, A.; Triguero-Mas, M.; de Nazelle, A.; Dadvand, P.; Figueras, F.; Salvado, J.A.; Grimalt, J.O.; Nieuwenhuijsen, M.; Querol, X. Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain. Atmos. Environ. 2012, 59, 426–436. [Google Scholar]
- Morris, S.E.; Sale, R.C.; Wakefield, J.C.; Falconer, S.; Elliott, P.; Boucher, B.J. Hospital admissions for asthma and chronic obstructive airways disease in east London hospitals and proximity of residence to main roads. J. Epidemiol. Community Health 2000, 54, 75–76. [Google Scholar]
- Venn, A.J.; Lewis, S.A.; Cooper, M.; Hubbard, R.; Britton, J. Living near a main road and the risk of wheezing illness in children. Am. J. Respir. Crit. Care Med. 2001, 164, 2177–2180. [Google Scholar] [CrossRef] [PubMed]
- McConnell, R.; Berhane, K.; Yao, L.; Jerrett, M.; Lurmann, F.; Gilliland, F.; Künzli, N.; Gauderman, J.; Avol, E.D.; Thomas, D.; et al. Traffic, susceptibility, and childhood asthma. Environ. Health Perspect. 2006, 114, 766–772. [Google Scholar] [PubMed] [Green Version]
- Jerrett, M.; Shankardass, K.; Berhane, K.; Gauderman, W.J.; Künzli, N.; Avol, E.; Gilliland, F.; Lurmann, F.; Molitor, J.N.; Molitor, J.T.; et al. Traffic-related air pollution and asthma onset in children: A prospective cohort study with individual exposure measurement. Environ. Health Perspect. 2008, 116, 1433–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gergen, P.J. Understanding the economic burden of asthma. J. Allergy Clin. Immunol. 2001, 107, S445–S448. [Google Scholar] [CrossRef]
- Thanh, N.X.; Ohinmaa, A.; Yan, C. Asthma-related productivity losses in Alberta, Canada. J. Asthma Allergy 2009, 2, 43. [Google Scholar] [CrossRef] [Green Version]
- Lamb, C.E.; Ratner, P.H.; Johnson, C.E.; Ambegaonkar, A.J.; Joshi, A.V.; Day, D.; Sampson, N.; Eng, B. Economic impact of workplace productivity losses due to allergic rhinitis compared with select medical conditions in the United States from an employer perspective. Curr. Med. Res. Opin. 2006, 22, 1203–1210. [Google Scholar]
- Rice, D.P. Cost of illness studies: What is good about them? Inj. Prev. 2000, 6, 177–179. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.S.; Lee, S.H.; Kim, J.S.; Kim, J.S.; Han, K.H. Socioeconomic costs of food-borne disease using the cost-of-illness model: Applying the QALY method. J. Prev. Med. Public Health 2010, 43, 352–361. [Google Scholar] [CrossRef]
- Pak, H.Y.; Pak, Y.S. The effects of PM10 on the hospital admission of patients with respiratory disease in Seoul, Korea. J. Converg. Inf. Technol. 2019, 9, 194–201. [Google Scholar]
- Ban, J.; Wang, Q.; Ma, R.; Zhang, Y.; Shi, W.; Zhang, Y.; Chen, C.; Sun, Q.; Wang, Y.; Guo, X.; et al. Associations between short-term exposure to PM2.5 and stroke incidence and mortality in China: A case-crossover study and estimation of the burden. Environ. Pollut. 2021, 268, 115743. [Google Scholar] [PubMed]
Platform μg/m3 | Waiting Room μg/m3 | Cabin μg/m3 | Avg. No. of People Travelling per Day | ||||
---|---|---|---|---|---|---|---|
PM10 | PM2.5 | PM10 | PM2.5 | PM10 | PM2.5 | Boarding | Alighting |
42.18 | 21.00 | 8.74 | 5.01 | 20.69 | 13.13 | 5478 | 5364 |
83.90 | 23.72 | 56.14 | 18.17 | 32.64 | 24.40 | 8331.6 | 8388 |
92.04 | 22.46 | 72.84 | 21.17 | 49.82 | 41.05 | 7306.2 | 7089 |
72.70 | 22.38 | 49.9 | 14.23 | 34.383 | 26.19 | 7038.6 | 6947 |
Disease | Risk/Prevalence/Development of a Disease per 1000 Patients (Morbidity) | Mortality-Associated Costs (Million USD) per 1000 Persons | Average Median PM2.5 Exposure Concentration (μg) |
---|---|---|---|
COPD | 373 | 9.3 | 1.05 |
Asthma | 44 | 1.1 | 1.03 |
IHD | 19 | 0.4 | 1.07 |
Average Time Spent by a Commuter in the Subway (min) | 30 | 60 | 90 |
---|---|---|---|
Average exposure concentration PM2.5 (µg/m3) | 16.22 | 16.22 | 16.22 |
Average minute ventilation rate by commuter (m3 min−1) | 0.015 | 0.015 | 0.015 |
Inhaled dose per trip (μg) PM2.5 | 7.299 | 14.598 | 21.895 |
Health Care Costs | Outpatient | Inpatient | Formula |
---|---|---|---|
Direct medical costs | ✓ | ✓ |
|
Nonmedical costs | ✓ | ✓ |
|
Transportation | |||
Caregiving | ✓ | ||
Indirect costs | ✓ | ✓ |
Disease | Direct Cost (Million USD; per 1000 Persons) | Indirect Cost (Million USD; per 1000 Persons) | Total Cost (Million USD; per 1000 Persons) |
---|---|---|---|
COPD | 0.10591 | 0.0718 | 0.17771 |
ASTHMA | 0.55 | 0.07 | 0.42 |
IHD | 0.57478 | 0.294 | 0.86878 |
Category | Costs (Million USD; per 1000 Persons) | |||||
---|---|---|---|---|---|---|
COPD | Contribution (%) | Asthma | Contribution (%) | IHD | Contribution (%) | |
Direct | ||||||
Medical | ||||||
Formal (Treatment) | 0.029 | 16.6 | 0.2 | 54.8 | 0.302 | 34.76 |
Informal (Medical Equipment) | 0.00631 | 3.5 | 0.02 | 7.4 | 0.16 | 18.41 |
Non-Medical | ||||||
Transportation | 0.0006 | 0.3 | 0.08 | 2.4 | 0.07 | 8.066 |
Nursing | 0.070 | 39 | 0.05 | 14.1 | 0.04278 | 4.92 |
Indirect | 3.33 | |||||
Loss of Work | 0.0588 | 32.7 | 0.04 | 12.4 | 0.029 | 30.5 |
Premature deaths | 0.013 | 7.7 | 0.03 | 9 | 0.265 | 100 |
Total | 0.17771 | 100 | 0.42 | 100 | 0.86878 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thangavel, P.; Kim, K.Y.; Park, D.; Lee, Y.-C. Evaluation of Health Economic Loss Due to Particulate Matter Pollution in the Seoul Subway, South Korea. Toxics 2023, 11, 113. https://doi.org/10.3390/toxics11020113
Thangavel P, Kim KY, Park D, Lee Y-C. Evaluation of Health Economic Loss Due to Particulate Matter Pollution in the Seoul Subway, South Korea. Toxics. 2023; 11(2):113. https://doi.org/10.3390/toxics11020113
Chicago/Turabian StyleThangavel, Prakash, Kyoung Youb Kim, Duckshin Park, and Young-Chul Lee. 2023. "Evaluation of Health Economic Loss Due to Particulate Matter Pollution in the Seoul Subway, South Korea" Toxics 11, no. 2: 113. https://doi.org/10.3390/toxics11020113
APA StyleThangavel, P., Kim, K. Y., Park, D., & Lee, Y. -C. (2023). Evaluation of Health Economic Loss Due to Particulate Matter Pollution in the Seoul Subway, South Korea. Toxics, 11(2), 113. https://doi.org/10.3390/toxics11020113