Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches
Abstract
:1. Introduction
2. The Source and Toxicity of Heavy Metal Ions
3. Removal of Heavy Metal Ions
3.1. Metabolically Independent Approaches for Heavy Metal Removal
3.2. Metabolically Dependent Approaches for Heavy Metal Removal
3.3. Other Bio-Remedial Techniques
3.4. Disadvantages and Advantages of Methods of Heavy Metal Removal
3.5. Challenges of Heavy Metal Remediation Technologies and Future Prospects
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Martin, Y.E.; Johnson, E.A. Biogeosciences survey: Studying interactions of the biosphere with the lithosphere, hydrosphere and atmosphere. Prog. Phys. Geogr. 2012, 36, 833–852. [Google Scholar] [CrossRef]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: Community health implication. Sci. Rep. 2020, 10, 8434. [Google Scholar] [CrossRef]
- Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian J. Pharmacol. 2011, 43, 246–253. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metals Toxicity and the Environment. EXS 2012, 101, 133–164. [Google Scholar]
- Wu, X.; Cobbina, S.J.; Mao, G.; Xu, H.; Zhang, Z.; Yang, L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ. Sci. Pollut. Res. Int. 2016, 23, 8244–8259. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Mohd, Q.; Haq, R. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Khulbe, K.C.; Matsuura, T. Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci. 2018, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. NPJ Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S. Physico–chemical treatment techniques for wastewater. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Sreekumari, S.S. Adsorptive removal of heavy metal ions from industrial effluents usingactivated carbon derived from waste coconut buttons. J. Environ. Sci. 2011, 23, 1989–1998. [Google Scholar] [CrossRef] [PubMed]
- Wołowiec, M.; Komorowska-Kaufman, M.; Pruss, A.; Rzepa, G.; Bajda, T. Removal of Heavy Metals and Metalloids from Water Using Drinking Water Treatment Residuals as Adsorbents: A Review. Minerals 2019, 9, 487. [Google Scholar] [CrossRef]
- Singh, V.; Singh, J.; Singh, N.; Rai, S.N.; Verma, M.K.; Verma, M.; Singh, V.; Chivate, M.S.; Bilal, M.; Mishra, V. Simultaneous removal of ternary heavy metal ions by a newly isolated Microbacterium paraoxydans strain VSVM IIT(BHU) from coal washery effluent. BioMetals 2022, 2022, 1–17. [Google Scholar] [CrossRef]
- Jobby, R.; Jha, P.; Yadav, A.K.; Desai, N. Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere 2018, 207, 255–266. [Google Scholar] [CrossRef]
- Gadd, G.M. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 2007, 84, 13–28. [Google Scholar] [CrossRef]
- Singh, V.; Singh, N.; Verma, M.; Kamal, R.; Tiwari, R.; Chivate, M.S.; Rai, S.N.; Kumar, A.; Singh, A.; Singh, M.P.; et al. Hexavalent-Chromium-Induced Oxidative Stress and the Protective Role of Antioxidants against Cellular Toxicity. Antioxidants 2022, 12, 2375. [Google Scholar] [CrossRef]
- Zafar, S.; Aqil, F.; Ahmad, I. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour. Technol. 2007, 98, 2557–2561. [Google Scholar] [CrossRef]
- Singh, V.; Mishra, V. Microbial Removal of Cr (VI) by a New Bacterial Strain Isolated from the Site Contaminated with Coal Mine Effluents. J. Environ. Chem. Eng. 2021, 9, 106279. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Int. Sch. Reseach Not. 2011, 2011, 402647. [Google Scholar] [CrossRef]
- Quinn, M.J.; Sherlock, J.C. The correspondence between U.K. ‘action levels’ for lead in blood and in water. Food Addit. Contam. 1990, 7, 387–424. [Google Scholar] [CrossRef]
- Singh, V.; Singh, J.; Mishra, V. Sorption kinetics of an eco-friendly and sustainable Cr (VI) ion scavenger in a batch reactor. J. Environ. Chem. Eng. 2021, 9, 105125. [Google Scholar] [CrossRef]
- Lunk, H.J. Discovery, properties and applications of chromium and its compounds. ChemTexts 2015, 1, 6. [Google Scholar] [CrossRef]
- Panakkal, A.; Kumar, R.B.B. Evaluation of the trace metal contamination in sediments of the urban water channels in Thrissur City, South India. Nat. Environ. Pollut. Technol. 2014, 13, 701–706. [Google Scholar]
- Central Pollution Control Board (CPCB), India (2000) Environmental Standards for Ambient Air, Automobiles, Fuels, Industries and Noise. Available online: http://www.cpcbenvis.nic.in/scanned%20reports/PCL%204%20Environmental%20Standards.pdf (accessed on 1 July 2000).
- EPA 822-F-18-001; 2018 Edition of the Drinking Water Standards and Health Advisories. United States Environmental Protection Agency (USEPA): Washington, DC, USA, 2018.
- World Health Organization (WHO). Guidelines for Drinking Water Quality; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Yuan, W.; Yang, N.; Li, X. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer. BioMed Res. Int. 2016, 2016, 7825432. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Singh, V.; Singh, J.; Mishra, V. Development of a cost-effective, recyclable and viable metal ion doped adsorbent for simultaneous adsorption and reduction of toxic Cr (VI) ions. J. Environ. Chem. Eng. 2021, 9, 105124. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle. Environ. Sci. Technol. 2011, 45, 9332–9338. [Google Scholar] [CrossRef]
- Singh, V.; Mishra, V. Sustainable reduction of Cr (VI) and its elemental mapping on chitosan coated citrus limetta peels biomass in synthetic wastewater. Sep. Sci. Technol. 2021, 57, 1609–1626. [Google Scholar] [CrossRef]
- Singh, V.; Singh, M.P.; Mishra, V. Bioremediation of toxic metal ions from coal washery effluent. Desalination Water Treat. 2020, 197, 300–318. [Google Scholar] [CrossRef]
- Singh, V.; Singh, N.; Yadav, P.; Mishra, V. Removal of Hexavalent Chromium from Aqueous Media Using Eco-Friendly and Cost-Effective Biological Methods. In Biosorption for Wastewater Contaminants; Selvasembian, R., Singh, P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 246–268. [Google Scholar] [CrossRef]
- Wakeel, A.; Xu, M.; Gan, Y. Chromium-Induced Reactive Oxygen Species Accumulation by Altering the Enzymatic Antioxidant System and Associated Cytotoxic, Genotoxic, Ultrastructural, and Photosynthetic Changes in Plants. Int. J. Mol. Sci. 2020, 21, 728. [Google Scholar] [CrossRef]
- Cohen, M.D.; Kargacin, B.; Klein, C.B.; Costa, M. Mechanisms of chromium carcinogenicity and toxicity. Crit. Rev. Toxicol. 1993, 23, 255–281. [Google Scholar] [CrossRef]
- Kim, E.; Na, K.J. Nephrotoxicity of sodium dichromate depending on the route of administration. Arch. Toxicol. 1991, 65, 537–541. [Google Scholar] [CrossRef] [PubMed]
- Gumbleton, M.; Nicholls, P.J. Dose-response and time-response biochemical and histological study of potassium dichromate-induced nephrotoxicity in the rat. Food Chem. Toxicol. 1988, 26, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Wise, S.S.; Holmes, A.L.; Ketterer, M.E.; Hartsock, W.J.; Fomchenko, E.; Katsifis, S.P.; Thompson, W.D.; Wise, J.P. Chromium is the proximate clastogenic species for lead chromate-induced clastogenicity in human bronchial cells. Mutat. Res. 2004, 560, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Rahimzadeh, M.R.; Rahimzadeh, M.R.; Kazemi, S.; Moghadamnia, A.K. Cadmium toxicity and treatment: An update. Caspian J. Intern. Med. 2017, 8, 135–145. [Google Scholar]
- Baselt, R.C.; Cravey, R.H. Disposition of Toxic Drugs and Chemicals in Man, 4th ed.; Year Book Medical Publishers: Chicago, IL, USA, 1995; pp. 105–107. [Google Scholar]
- Waalkes, M.P.; Berthan, G. (Eds.) Handbook on Metal-Ligand Interactions of Biological Fluids; Marcel Dekker: New York, NY, USA, 1995; Volume 2, pp. 471–482. [Google Scholar]
- Lanphear, B.P.; Matte, T.D.; Rogers, J.; Clickner, R.P.; Dietz, B.; Bornschein, R.L.; Succop, P.; Mahaffey, K.R.; Dixon, S.; Galke, W.; et al. The contribution of lead-contaminated house dust and residential soil to children’s blood lead levels. A pooled analysis of 12 epidemiologic studies. Environ. Res. 1998, 79, 51–68. [Google Scholar] [CrossRef]
- Flora, S.J.S.; Flora, G.J.S.; Saxena, G. Environmental occurrence, health effects and management of lead poisoning. In Lead: Chemistry, Analytical Aspects, Environmental Impacts and Health Effects; Cascas, S.B., Sordo, J., Eds.; Elsevier Publication: Amsterdam, The Netherlands, 2006; pp. 158–228. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Managing Elevated Blood Lead Levels Among Young Children: Recommendations from the Advisory Committee on Childhood Lead Poisoning Prevention. 2001. Available online: https://www.cdc.gov/nceh/lead/casemanagement/managingEBLLs.pdf (accessed on 31 March 2002).
- ATSDR. Public Health Service. Toxicological Profile for Lead. 2020. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp13.pdf (accessed on 31 August 2020).
- Kumar, H.; Bhardwaj, K.; Sharma, R.; Nepovimova, E.; Kuča, K.; Dhanjal, D.S.; Verma, R.; Bhardwaj, P.; Sharma, S.; Kumar, D. Fruit and Vegetable Peels: Utilization of High Value Horticultural Waste in Novel Industrial Applications. Molecules 2020, 25, 2812. [Google Scholar] [CrossRef] [PubMed]
- Abdelbasir, S.M.; McCourt, K.M.; Lee, C.M.; Vanegas, D.C. Waste-Derived Nanoparticles: Synthesis Approaches, Environmental Applications, and Sustainability Considerations. Front. Chem. 2020, 8, 782. [Google Scholar] [CrossRef] [PubMed]
- Tarekegn, M.M.; Salilih, F.Z.; Ishetu, A.I.; Yildiz, F. Microbes used as a tool for bioremediation of heavy metal from the environment. Cogent Food Agric. 2020, 6, 1. [Google Scholar] [CrossRef]
- Vieira, R.H.S.F.; Volesky, B. Biosorption: A solution to pollution? Int. Microbiol. 2000, 3, 17–24. [Google Scholar] [PubMed]
- Mishra, R.; Sinha, V.; Kannan, A.; Upreti, R.K. Reduction of Chromium-VI by Chromium Resistant Lactobacilli: A Prospective Bacterium for Bioremediation. Toxicol. Int. 2012, 19, 25–30. [Google Scholar] [PubMed]
- Mishra, A.; Dubey, A.; Shinghal, S. Biosorption of chromium (VI) from aqueous solutions using waste plant biomass. Int. J. Environ. Sci. Technol. 2015, 12, 1415–1426. [Google Scholar] [CrossRef]
- Volesky, B.; Holan, Z.R. Biosorption of heavy metals. Biotechnol. Prog. 1990, 11, 235–250. [Google Scholar] [CrossRef]
- Malik, A. Metal bioremediation through growing cells. Environ. Int. 2004, 30, 261–278. [Google Scholar] [CrossRef]
- Peng, S.H.; Wang, R.; Yang, L.Z.; He, L.; He, X.; Liu, X. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell. Ecotoxicol. Environ. Saf. 2018, 165, 61–69. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 95–226. [Google Scholar] [CrossRef]
- Volesky, B. Biosorption and me. Water Res. 2007, 41, 4017–4029. [Google Scholar] [CrossRef] [PubMed]
- Verma, N.; Sharma, R. Bioremediation of Toxic Heavy Metals: A Patent Review. Recent. Pat. Biotechnol. 2017, 11, 171–187. [Google Scholar] [CrossRef] [PubMed]
- Ojuederie, O.B.; Babalola, O.O. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. Int. J. Environ. Res Public Health 2017, 14, 1504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; An, Y.; Li, S.; Liu, Z.; Chen, Z.; Ren, Y.; Wang, S.; Zhang, X.; Wang, X. Enhanced heavy metal removal from an aqueous environment using an eco-friendly and sustainable adsorbent. Sci. Rep. 2020, 10, 16453. [Google Scholar] [CrossRef]
- Chojnacka, K. Biosorption and bioaccumulation-the prospects for practical applications. Environ. Int. 2010, 36, 299–307. [Google Scholar] [CrossRef]
- Tsezos, M.; Remoudaki, E.; Angelatou, V. Biosorption sites of selected metals using Electron microscopy. Comp. Biochem. Phys. A 1997, 118, 481–487. [Google Scholar] [CrossRef]
- Duwiejuah, A.B.; Abubakari, A.H.; Quainoo, A.K.; Amadu, Y. Review of Biochar Properties and Remediation of Metal Pollution of Water and Soil. J. Health Pollut. 2020, 10, 200902. [Google Scholar] [CrossRef]
- Dias, M.A.; Rosa, C.A.; Linardi, V.R.; Conte, R.A.; De Castro, H.F. Application of factorial design to study of heavy metals biosorption by waste biomass from beverage distillery. Appl. Biochem. Biotechnol. 2001, 91–93, 413–422. [Google Scholar] [CrossRef]
- Naja, G.M.; Volesky, B. Treatment of Metal-Bearing Effluents: Removal and Recovery. In Handbook on Heavy Metals in the Environment. Boca Raton; Wang, L.K., Chen, J.P., Hung, Y.T., Shammas, N.K., Eds.; Taylor & Francis: Boca Raton, FL, USA; CRC Press: Boca Raton, FL, USA, 2010; p. 46. [Google Scholar]
- Netzahuatl-Muñoz, A.R.; Cristiani-Urbina, M.D.C.; Cristiani-Urbina, E. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies. PLoS ONE 2015, 10, e0137086. [Google Scholar] [CrossRef]
- Park, D.; Park, J.M.; Yun, Y.S. Mechanisms of the removal of hexavalent chromium by biomaterials or biomaterial-based activated carbons. J. Hazard. Mater. 2006, 137, 1254–1257. [Google Scholar] [CrossRef]
- Park, D.; Yun, Y.S.; Park, J.M. Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere 2005, 60, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Zhang, Y.; Qin, J.; Wang, X.; Zhu, X. Biosorption of Cr (VI) from aqueous solutions by nonliving algae Cladophora albida. Miner. Eng. 2009, 22, 372–377. [Google Scholar] [CrossRef]
- Moghal, A.A.B.; Lateef, M.A.; Mohammed, S.A.S.; Ahmad, M.; Usman, A.R.A.; Almajed, A. Heavy Metal Immobilization Studies and Enhancement in Geotechnical Properties of Cohesive Soils by EICP Technique. Appl. Sci. 2020, 10, 7568. [Google Scholar] [CrossRef]
- Khanpour-Alikelayeh, E.; Partovinia, A.; Talebi, A.; Kermanian, H. Enhanced biodegradation of light crude oil by immobilized Bacillus licheniformis in fabricated alginate beads through electrospray technique. Environ. Monit. Assess. 2021, 193, 328. [Google Scholar] [CrossRef]
- Pal, D.; Maiti, S.K. An approach to counter sediment toxicity by immobilization of heavy metals using waste fish scale derived biosorbent. Ecotoxicol. Environ. Saf. 2020, 187, 109833. [Google Scholar] [CrossRef]
- Bayat, Z.; Hassanshahian, M.; Cappello, S. Immobilization of Microbes for Bioremediation of Crude Oil Polluted Environments: A Mini Review. Open Microbiol. J. 2015, 9, 48–54. [Google Scholar]
- Bhattacharya, P.; Banerjee, P.; Mallick, K.; Ghosh, S.; Mukhopadhyay, A.M.; Bandyopadhyay, S. Potential of biosorbent developed from fruit peel of Trewianudiflora for removal of hexavalent chromium from synthetic and industrial effluent: Analyzing phytotoxicity in germinating Vigna seeds. J. Environ. Sci. Health 2013, 48, 706–719. [Google Scholar] [CrossRef]
- Sari, A.; Tuzen, M. Biosorption of total chromium from aqueous solution by red algae (Ceramiumvigatum): Equilibrium, kinetics and thermodynamics studies. J. Hazard. Mater. 2008, 160, 349–355. [Google Scholar] [CrossRef]
- Hadjmohammadi, M.R.; Salary, M.; Biparva, P. Removal of Cr (VI) from aqueous solution using pine needles powder as a biosorbent. J. Appl. Sci. Environ. Sanit. 2010, 6, 1–13. [Google Scholar]
- Nandhagopal, K.; Munuswamy, E.; Krishnan, V. Biosorption of chromium vi by ubiquitous dictyota biomass. Int. J. Pharm. Biol. Sci. 2018, 8, 127–131. [Google Scholar]
- Hiew, B.Y.Z.; Lee, L.Y.; Lee, X.J.; Thangalazhy-Gopakumar, S.; Gan, S. Utilisation of environmentally friendly okara-based biosorbent for cadmium(II) removal. Environ. Sci. Pollut. Res. 2021, 28, 40608–40622. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; El Zokm, G.M.; Farag, A.E.; Abdelwahab, M.S. Assessment of heat-inactivated marine Aspergillus flavus as a novel biosorbent for removal of Cd(II), Hg(II), and Pb(II) from water. Environ. Sci. Pollut. Res. 2017, 24, 18218–18228. [Google Scholar] [CrossRef]
- Serencam, H.; Ozdes, D.; Duran, C.; Tufekci, M. Biosorption properties of Morus alba L. for Cd (II) ions removal from aqueous solutions. Environ. Monit. Assess. 2013, 185, 6003–6011. [Google Scholar] [CrossRef]
- Dinh, V.P.; Xuan, T.D.; Hung, N.Q.; Luu, T.T.; Do, T.T.T.; Nguyen, T.D.; Nguyen, V.D.; Anh, T.T.K.; Tran, N.Q. Primary biosorption mechanism of lead (II) and cadmium (II) cations from aqueous solution by pomelo (Citrus maxima) fruit peels. Environ. Sci. Pollut. Res. 2020, 28, 63504–63515. [Google Scholar] [CrossRef]
- Liu, L.; Fan, S. Removal of cadmium in aqueous solution using wheat straw biochar: Effect of minerals and mechanism. Environ. Sci. Pollut. Res. 2018, 25, 8688–8700. [Google Scholar] [CrossRef]
- Hou, Y.; Cheng, K.; Li, Z.; Ma, X.; Wei, Y.; Zhang, L.; Wang, Y. Biosorption of Cadmium and Manganese Using Free Cells of Klebsiella sp. Isolated from Waste Water. PLoS ONE 2015, 10, e0140962. [Google Scholar] [CrossRef]
- Camacho-Chab, J.C.; Castañeda-Chávez, M.D.R.; Chan-Bacab, M.J.; Aguila-Ramírez, R.N.; Galaviz-Villa, I.; Bartolo-Pérez, P.; Lango-Reynoso, F.; Tabasco-Novelo, C.; Gaylarde, C.; Ortega-Morales, B.O. Biosorption of Cadmium by Non-Toxic Extracellular Polymeric Substances (EPS) Synthesized by Bacteria from Marine Intertidal Biofilms. Int. J. Environ. Res. Public Health 2018, 15, 314. [Google Scholar] [CrossRef]
- Mahmoudi, E.; Azizkhani, S.; Mohammad, A.W.; Ng, L.Y.; Benamor, A.; Ang, W.L.; Ba-Abbad, M. Simultaneous removal of Congo red and cadmium(II) from aqueous solutions using graphene oxide-silica composite as a multifunctional adsorbent. J. Environ. Sci. 2020, 98, 151–160. [Google Scholar] [CrossRef]
- Yu, X.L.; He, Y. Optimal ranges of variables for an effective adsorption of lead(II) by the agricultural waste pomelo (Citrus grandis) peels using Doehlert designs. Sci. Rep. 2018, 8, 729. [Google Scholar] [CrossRef]
- Haq, A.U.; Saeed, M.; Anjum, S.; Bokhari, T.H.; Usman, M.; Tubbsum, S. Evaluation of Sorption Mechanism of Pb (II) and Ni (II) onto Pea (Pisum sativum) Peels. J. Oleo Sci. 2017, 66, 735–743. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust. J. Hazard. Mater. 2009, 170, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraja, G.; Krishnaiah, N.; Subbaiah, M.V.; Krishnaiah, A. Biosorption of Pb(II) from aqueous solution by Solanum melongena leaf powder as a low-cost biosorbent prepared from agricultural waste. Colloids Surf. B Biointerfaces 2014, 114, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Sarada, B.; Prasad, M.K.; Kumar, K.K.; Murthy, C.H.V. Potential use of leaf biomass, Araucaria heterophylla for removal of Pb+2. Int. J. Phytoremediation 2013, 15, 756–773. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hou, B.; Wang, J.; Tian, B.; Bi, J.; Wang, N.; Li, X.; Huang, X. Nanomaterials for the Removal of Heavy Metals. Nanomaterials 2019, 9, 424. [Google Scholar] [CrossRef]
- Ahmed, S.; Ahmad, M.; Swami, B.L.; Ikram, S. A review on plants extract mediated synthesis ofsilver nanoparticles for antimicrobial applications:A green expertise. J. Adv. Res. 2016, 7, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Vidu, R.; Matei, E.; Predescu, A.M.; Alhalaili, B.; Pantilimon, C.; Tarcea, C.; Predescu, C. Removal of Heavy Metals from Wastewaters: A Challenge from Current Treatment Methods to Nanotechnology Applications. Toxics 2020, 8, 101. [Google Scholar] [CrossRef]
- Christopher, F.C.; Anbalagan, S.; Kumar, P.S.; Pannerselvam, S.R.; Vaidyanathan, V.K. Surface adsorption of poisonous Pb(II) ions from water using chitosan functionalised magnetic nanoparticles. IET Nanobiotechnol. 2017, 11, 433–442. [Google Scholar] [CrossRef]
- Farghali, A.A.; Bahgat, M.; Enaiet Allah, A.; Khedr, M.H. Adsorption of Pb(II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef Univ. J. Basic Appl. Sci. 2013, 2, 61–71. [Google Scholar] [CrossRef]
- Wang, C.; Fan, X.; Wang, P.; Hou, J.; Ao, Y.; Miao, L. Adsorption behavior of lead on aquatic sediments contaminated with cerium dioxide nanoparticles. Environ. Pollut. 2016, 219, 416–424. [Google Scholar] [CrossRef]
- Khanna, M.; Mathur, A.; Dubey, A.K.; McLaughlin, J.; Moirangthem, I.; Wadhwa, S.; Singh, D.; Kumar, R. Rapid removal of lead(II) ions from water using iron oxide-tea waste nanocomposite—A kinetic study. IET Nanobiotechnol. 2020, 14, 275–280. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, Y.; Zhou, X.; Dai, C.; Keller, A.A. A new insight on the core-shell structure of zerovalent iron nanoparticles and its application for Pb(II) sequestration. J. Hazard. Mater. 2013, 2, 685–693. [Google Scholar] [CrossRef]
- Li, Z.; Gong, Y.; Zhao, D.; Dang, Z.; Lin, Z. Enhanced removal of zinc and cadmium from water using carboxymethyl cellulose-bridged chlorapatite nanoparticles. Chemosphere 2021, 263, 128038. [Google Scholar] [CrossRef]
- Koju, N.K.; Song, X.; Wang, Q.; Hu, Z.; Colombo, C. Cadmium removal from simulated groundwater using alumina nanoparticles: Behaviors and mechanisms. Environ. Pollut. 2018, 240, 255–266. [Google Scholar] [CrossRef]
- Devi, V.; Selvaraj, M.; Selvam, P.; Kumar, A.A.; Sankara, S.; Dinakaran, K. Preparation and characterization of CNSR functionalized Fe3O4 magnetic nanoparticles: An efficient adsorbent for the removal of cadmium ion from water. J. Environ. Chem. Eng. 2017, 5, 4539–4546. [Google Scholar] [CrossRef]
- Diep, P.; Mahadevan, R.; Yakunin, A.F. Heavy Metal Removal by Bioaccumulation Using Genetically Engineered Microorganisms. Front. Bioeng. Biotechnol. 2018, 6, 157. [Google Scholar] [CrossRef]
- Deng, S.; Yu, Q.; Huang, J.; Yu, G. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry. Water Res. 2010, 18, 5188–5195. [Google Scholar] [CrossRef]
- Timkova, I.; Sedláková-Kaduková, J.; Pristaš, P. Biosorption and Bioaccumulation Abilities of Actinomycetes/Streptomycetes Isolated from Metal Contaminated Sites. Separations 2018, 5, 54. [Google Scholar] [CrossRef]
- Ahluwalia, S.S. Microbial removal of hexavalent chromium and scale up potential. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 383–398. [Google Scholar]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef]
- Yilmazer, P.; Saracoglu, N. Bioaccumulation and biosorption of copper (II) and chromium (III) from aqueous solutions by Pichia stipitis yeast. J. Chem. Technol. Biotechnol. 2009, 84, 604–610. [Google Scholar] [CrossRef]
- Jacob, J.M.; Karthik, C.; Saratale, R.G.; Kumar, S.S.; Prabakar, D.; Kadirvelu, K.; Pugazhendhi, A. Biological approaches to tackle heavy metal pollution: A survey of literature. J. Environ. Manag. 2018, 217, 56–70. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, N.E.; El-Khateeb, A.Y.; Ghoniem, A.A.; El-Hersh, M.S.; Saber, W.I.A. Innovative low-cost biosorption process of Cr6+ by Pseudomonas alcaliphila NEWG-2. Sci. Rep. 2010, 10, 14043–14061. [Google Scholar] [CrossRef] [PubMed]
- Tekerlekopoulou, A.G.; Tsiflikiotou, M.; Akritidou, L.; Viennas, A.; Tsiamis, G.; Pavlou, S.; Bourtzis, K.; Vayenas, D.V. Modelling of biological Cr (VI) removal in draw-fill reactors using microorganisms in suspended and attached growth systems. Water Res. 2013, 47, 623–636. [Google Scholar] [CrossRef]
- Humphries, A.C.; Nott, K.P.; Hall, L.D.; Macaskie, L.E. Reduction of Cr (VI) by immobilized cells of Desulfovibrio vulgaris NCIMB 8303 and Microbacterium sp. NCIMB 13776. Biotechnol. Bioeng. 2005, 90, 589–596. [Google Scholar] [CrossRef]
- Ibrahim, A.S.S.; El-Tayeb, A.M.; Elbadawi, B.Y.; Al-Salamah, A.A.; Antranikian, G. Hexavalent chromate reduction by alkaliphilic Amphibacillus sp. KSUCr3 is mediated by copper-dependent membrane-associated Cr (VI). Extremophiles 2012, 16, 659–668. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, Y.; Lei, C.; Liu, P.; Gao, M. Chromate reduction by a chromate-resistant bacterium Microbacterium sp. World J. Microbiol. Biotechnol. 2012, 28, 1585–1592. [Google Scholar] [CrossRef]
- Henson, M.W.; Santo Domingo, J.W.; Kourtev, P.S.; Jensen, R.V.; Dunn, J.A.; Learman, D.R. Metabolic and genomic analysis elucidates strain-level variation in Microbacterium spp. isolated from chromate contaminated sediment. PeerJ 2015, 3, 1395–1412. [Google Scholar] [CrossRef]
- Pattanapipitpaisal, P.; Brown, N.L.; Macaskie, L.E. Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr (VI)-contaminated site. Appl. Microbiol. Biotechnol. 2001, 57, 257–261. [Google Scholar]
- Ahemad, M. Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J. Genet. Eng. Biotechnol. 2015, 13, 51–58. [Google Scholar] [CrossRef]
- Kubrak, O.I.; Lushchak, O.V.; Lushchak, J.V.; Torous, I.M.; Storey, J.M.; Storey, K.B.; Lushchak, V.I. Chromium effects on free radical processes in goldfish tissues: Comparison of Cr (III) and Cr (VI) exposures on oxidative stress markers, glutathione status and antioxidant enzymes. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010, 152, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.S.; Praveenkumar, R.; Ilavarasi, A.; Rajeshwari, K.; Thajuddin, N. Biochemical changes of fresh water cyanobacteria Dolichospermum flos-aquae NTMS07 to chromium-induced stress with special reference to antioxidant enzymes and cellular fatty acids. Bull. Environ. Contam. Toxicol. 2013, 90, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Joutey, N.T.; Sayel, H.; Bahafid, W.; El Ghachtouli, N. Mechanisms of hexavalent chromium resistance and removal by microorganisms. Rev. Environ. Contam. Toxicol. 2015, 233, 45–69. [Google Scholar] [PubMed]
- Zahoor, A.; Rehman, A. Isolation of Cr (VI) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater. J. Environ. Sci. 2009, 21, 814–820. [Google Scholar] [CrossRef]
- Balamurugan, D.; Udayasooriyan, C.; Kamaladevi, B. Chromium (VI) reduction by Pseudomonas putida and Bacillus subtilis isolated from contaminated soils. Int. J. Environ. Sci. 2014, 5, 522–529. [Google Scholar]
- Srivastava, S.; Thakur, I.S. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent. Biodegradation 2017, 18, 637–646. [Google Scholar] [CrossRef]
- Mwandira, W.; Nakashima, K.; Kawasaki, S.; Arabelo, A.; Banda, K.; Nyambe, I.; Chirwa, M.; Ito, M.; Sato, T.; Igarashi, T.; et al. Biosorption of Pb (II) and Zn (II) from aqueous solution by Oceanobacillus profundus isolated from an abandoned mine. Sci. Rep. 2020, 10, 21189. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, P.; Wang, C.; Zhang, S.H.; Cheng, S. Isolation and characterization of pb-resistant strains and the removal of Pb(II). Fresenius Environ. Bull. 2015, 24, 1150–1157. [Google Scholar]
- Mohseni, M.; Khosravi, F.; Mohajerani, M.; Chaichi, M.J. Bioremediation Activity of Pb (II) Resistance Citrobacter sp. MKH2 Isolated from Heavy Metal Contaminated Sites in Iran. J. Sci. Islam. Repub. Iran 2014, 25, 105–110. [Google Scholar]
- Heidari, P.; Panico, A. Sorption Mechanism and Optimization Study for the Bioremediation of Pb(II) and Cd(II) Contamination by Two Novel Isolated Strains Q3 and Q5 of Bacillus sp. Int. J. Environ. Res. Public Health 2020, 17, 4059. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Wang, H.; Hu, H.; Pang, L.; Huang, B.; Zhu, R. Isolation, identification and heavy metals biosorption of a lead and cadmium-tolerant strain. Sheng Wu Gong Cheng Xue Bao 2020, 36, 1600–1609. [Google Scholar] [PubMed]
- Chen, H.; Zhong, C.; Berkhouse, H.; Zhang, Y.; Lv, Y.; Lu, W.; Yang, Y.; Zhou, J. Removal of cadmium by bioflocculant produced by Stenotrophomonas maltophilia using phenol-containing wastewater. Chemosphere 2016, 155, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Choinska-Pulit, A.; Sobolczyk-Bednarek, J.; Łaba, W. Optimization of copper, lead and cadmium biosorption onto newly isolated bacterium using a Box-Behnken design. Ecotoxicol. Environ. Saf. 2018, 149, 275–283. [Google Scholar] [CrossRef]
- Saravanan, A.; Jayasree, R.; Hemavathy, R.V.; Jeevanantham, S.; Hamsini, S.; Senthil Kumar, P.; Yaashikaa, P.R.; Manivasagan, V.; Yuvaraj, D. Phytoremediation of Cr(VI) ion contaminated soil using Black gram (Vigna mungo): Assessment of removal capacity. J. Environ. Chem. Eng. 2019, 7, 103052. [Google Scholar] [CrossRef]
- Chen, R.; Sheehan, T.; Ng, J.L.; Brucksa, M.; Su, X. Capacitive deionization and electrosorption for heavy metal removal. Environ. Sci. Water Res. Technol. 2020, 6, 258–282. [Google Scholar] [CrossRef]
- Singh, N.; Singh, V.; Rai, S.N.; Vamanu, E.; Singh, M.P. Metagenomic Analysis of Garden Soil-Derived Microbial Consortia and Unveiling Their Metabolic Potential in Mitigating Toxic Hexavalent Chromium. Life 2022, 12, 2094. [Google Scholar] [CrossRef] [PubMed]
- Pandey, L.K.; Bergey, E.A. Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool. Sci. Total. Environ. 2016, 550, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Kiran Marella, T.; Saxena, A.; Tiwari, A. Diatom mediated heavy metal remediation: A review. Bioresour. Technol. 2020, 305, 123068. [Google Scholar] [CrossRef]
- Renu.; Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse. Desalin 2017, 7, 387–419. [Google Scholar] [CrossRef]
- Elbasiouny, H.; Darwesh, M.; Elbeltagy, H.; Abo-Alhamd, F.G.; Amer, A.A.; Elsegaiy, M.A.; Khattab, I.A.; Elsharawy, E.A.; Ebehiry, F.; El-Ramady, H.; et al. Ecofriendly remediation technologies for wastewater contaminated with heavy metals with special focus on using water hyacinth and black tea wastes: A review. Environ. Monit. Assess. 2021, 193, 449. [Google Scholar] [CrossRef]
- Borozan, A.B.; Misca, C.D.; Morar, A.; Obistioiu, D.; Raba, D.N.; Pirvulescu, L.; Caba, I.L.; Alexa, E.; Poiana, M.A.; Bordean, D.M.; et al. Soil pollution with heavy metals and bioremediation methods. AgroLife Sci. J. 2021, 10, 54–66. [Google Scholar] [CrossRef]
Heavy Metals | CPCB, 2000 (Dischargeable Limit in Industrial Effluent) |
---|---|
Cr (VI) | 1.00–2.00 mg/L |
Cd (II) | 0.20–2.00 mg/L |
Pb (II) | 0.10 mg/L |
Heavy Metals | US EPA, 2018 | WHO, 2011 |
---|---|---|
Cr (total) (mg/L) | 0.10 mg/L | 0.05 |
Cd (II) (mg/L) | 0.005 mg/L | 0.003 |
Pb (II) (mg/L) | 0.015 mg/L | 0.01 |
Biosorbent | Biosorption Capacity (mg/g) | pH | Temperature (°C) | Biosorbent Dose (g/L) | Initial Concentration (mg/L) | Reference |
---|---|---|---|---|---|---|
Trewia nudiflorafruit peel powder | 294.12 | 1–2 | 20 | 0.75 | 22–248 | [77] |
Ceramium virgatumdry biomass | 26.5 | 1.5 | 20 | 10 | 10 | [78] |
Pine needle powder | 48 | 2–3 | 25 | 10 | 50 | [79] |
Dictyota dichotomabiomass | 9.02 | 4 | 27 | 20 | 40 | [80] |
Cupressus lusitanicaBark | 305.4 | 1.5 | 28 | 10 | 100 | [69] |
Biosorbent | Biosorption Capacity (mg/g) | pH | Temperature (°C) | Reference |
---|---|---|---|---|
Okara waste | 14.80 | 6.2 | 70 | [81] |
Foxtail millet shell | 12.48 | 5 | 25 | [58] |
Heat-inactivated marine Aspergillus flavus | 174.25 | 7 | 20 | [82] |
Morus alba L. pomace | 21.69 | 6 | 40 | [83] |
Pomelo fruit peel | 13.35 | 5.5 | 30 | [84] |
Wheat straw biochar | 69.80 | 5 | 25 | [85] |
Klebsiella sp. biomass | 170.4 | 5 | 30 | [86] |
Extracellular Polymeric Substances (EPS) synthesized by microbactan | 97 | 7 | 28 | [87] |
Biosorbent | Biosorption Capacity (mg/g) | pH | Temperature (°C) | Reference |
---|---|---|---|---|
Heat-inactivated marine Aspergillus flavus | 207.2 | 6 | 20 | [88] |
Pomelo fruit peel | 47.18 | 5.5 | 30 | [84] |
Citrus grandis peels | 2.13 | 3 | 50 | [89] |
Pea (Pisum sativum) peels | 140.84 | 6 | 30 | [90] |
Meranti sawdust | 34.24 | 6 | 30 | [91] |
Solanum melongena leaves | 71.42 | 5 | 40 | [92] |
Araucaria heterophylla (green plant) biomass | 9.64 | 5 | 30 | [93] |
Nanoparticles/Nanocomposites | Heavy Metals | Biosorption Capacity (mg/g) | pH | Temperature (°C) | Reference |
---|---|---|---|---|---|
Chitosan-functionalized magnetic nanoparticles | Pb (II) | 498.6 | 6 | 30 | [98] |
CuO nanostructures | Pb (II) | 115–125 | 6.5 | -- | [99] |
Cerium dioxide nanoparticles (CeO2 NPs) | Pb (II) | 4.99 | 6.8 | 30 | [100] |
Iron oxide–tea waste nanocomposite | Pb (II) | 18.83 | -- | 25 | [101] |
Nanoscale zerovalent iron (nZVI) | Pb (II) | 1667 | 4.5 | 35 | [102] |
Carboxymethyl cellulose bridged chlorapatite nanoparticles | Cd (II) | 150.2 | 7 | -- | [103] |
Alumina nanoparticles | Cd (II) | 24.20 | 8 | 27 | [104] |
CNSR-coated magnetic nanoparticles | Cd (II) | 54.6 | 10 | 30–50 | [105] |
Oxide–silica composite | Cd (II) | 43.45 | 6 | 50 | [88] |
Bacteria | Removal Efficiency (%) | Optimum pH | Optimum Temperature | Initial Cr (VI) Concentration (mg/L) | Reference |
---|---|---|---|---|---|
Staphylococcus capitis | 89 | 7 | 37 | -- | [124] |
Bacillussp. JDM-2-1 | 86 | 6 | 37 | -- | [124] |
Bacillus subtilis (Bacteria) | 95.19 | 7 | 37 | -- | [125] |
Acinetobactersp. | 75 | 7 | 75 | -- | [126] |
Bacteria | Removal Efficiency (%) | Optimum pH | Optimum Temperature | Initial Pb(II) Concentration (mg/L) | Reference |
---|---|---|---|---|---|
Oceanobacillus profundus KBZ 3-2 | 97 | 6 | 30 | 50 | [127] |
Acinetobacter sp. strain THKPS16 | 71.2 | 5 | 35 | 35 | [128] |
Citrobacter sp. Strain MKH2 | 95.06 | - | 30 | 80 | [129] |
Bacillus sp. Strain Q3 | 93.8 | 5.8 | 38.8 | 115.4 | [130] |
Bacillus sp. Strain Q3 | 76.4 | 6.2 | 34.3 | 127.4 | [130] |
Bacteria | Removal Efficiency (%) | Optimum pH | Optimum Temperature | Initial Cd (II) Concentration (mg/L) | Reference |
---|---|---|---|---|---|
Bacillus sp. Strain Q3 | 58 | 5 | 38.6 | 50.6 | [130] |
Bacillus sp. Strain Q3 | 78 | 5 | 38.3 | 50 | [130] |
Cedecea sp. strain SC19 | 51 | 7 | 37 | 120 | [131] |
Stenotrophomonas maltophilia ZZC-06 | 81.43% | 6 | 30 | 10 | [132] |
Pseudomonas azotoformans strain JAW1 | 44.67 | 6 | 30 | 25 | [133] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.; Singh, N.; Rai, S.N.; Kumar, A.; Singh, A.K.; Singh, M.P.; Sahoo, A.; Shekhar, S.; Vamanu, E.; Mishra, V. Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics 2023, 11, 147. https://doi.org/10.3390/toxics11020147
Singh V, Singh N, Rai SN, Kumar A, Singh AK, Singh MP, Sahoo A, Shekhar S, Vamanu E, Mishra V. Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics. 2023; 11(2):147. https://doi.org/10.3390/toxics11020147
Chicago/Turabian StyleSingh, Veer, Nidhi Singh, Sachchida Nand Rai, Ashish Kumar, Anurag Kumar Singh, Mohan P. Singh, Ansuman Sahoo, Shashank Shekhar, Emanuel Vamanu, and Vishal Mishra. 2023. "Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches" Toxics 11, no. 2: 147. https://doi.org/10.3390/toxics11020147
APA StyleSingh, V., Singh, N., Rai, S. N., Kumar, A., Singh, A. K., Singh, M. P., Sahoo, A., Shekhar, S., Vamanu, E., & Mishra, V. (2023). Heavy Metal Contamination in the Aquatic Ecosystem: Toxicity and Its Remediation Using Eco-Friendly Approaches. Toxics, 11(2), 147. https://doi.org/10.3390/toxics11020147