Removing Mn, Cu and Fe from Real Wastewaters with Macrophytes: Reviewing the Relationship between Environmental Factors and Plants’ Uptake Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search and Data Selection
2.2. Meta-Analysis
2.3. Statistical Data Analysis
3. Results
3.1. Literature Search
3.2. Accumulation of Fe, Cu, and Mn in Plant Tissues
3.3. Correlations between Environmental Factors and the Removal and Concentration of Metals in Plant Tissues
4. Discussion
4.1. Accumulation of Fe, Cu and Mn in Plant Tissues
4.2. Correlations between Environmental Factors and the Removal and Concentration of Metals in Plant Tissues
5. Conclusions Remarks
- (i)
- Shorter exposure times or test durations increased the removal of Fe, Cu and Mn from the wastewater, but hindered the uptake of Fe and Cu.
- (ii)
- Shorter daylengths increased the plants’ ability to absorb the three metals and remove them from the wastewater.
- (iii)
- Lower pH increased the removal of Cu and Mn from the wastewater, but decreased the uptake of Mn.
- (iv)
- Higher concentrations of P and DO increased the uptake and concentration of Cu in plant tissues.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strokal, M.; Bai, Z.; Franssen, W.; Hofstra, N.; Koelmans, A.A.; Ludwig, F.; Ma, L.; van Puijenbroek, P.; Spanier, J.E.; Vermeulen, L.C.; et al. Urbanization: An increasing source of multiple pollutants to rivers in the 21st century. NPJ Urban Sustain. 2021, 1, 24. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals-Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Abbas, Z.; Rizwan, M.; Zaheer, I.E.; Yavas, I.; Ünay, A.; Abdel-Daim, M.M.; Bin-Jumah, M.; Hasanuzzaman, M.; Kalderis, D. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability 2020, 12, 1927. [Google Scholar] [CrossRef]
- Barbosa, J.S.; Cabral, T.M.; Ferreira, D.N.; Agnez-Lima, L.F.; Batistuzzo de Medeiros, S.R. Genotoxicity assessment in aquatic environment impacted by the presence of heavy metals. Ecotoxicol. Environ. Saf. 2010, 73, 320–325. [Google Scholar] [CrossRef]
- Rezania, S.; Taib, S.M.; Din, M.F.M.; Dahalan, F.A.; Kamyab, H. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. J. Hazard. Mater. 2016, 318, 587–599. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Rout, G.R.; Sahoo, S. Role of Iron in plant growth and metabolism. Rev. Agric. Sci. 2015, 3, 1–24. [Google Scholar] [CrossRef]
- Rehman, M.; Liu, L.; Wang, Q.; Saleem, M.H.; Bashir, S.; Ullah, S.; Peng, D. Copper environmental toxicology, recent advances, and future outlook: A review. Environ. Sci. Pollut. Res. 2019, 26, 18003–18016. [Google Scholar] [CrossRef]
- Broadley, M.; Brown, P.; Cakmak, I.; Rengel, Z.; Zhao, F. Function of Nutrients: Micronutrients; Academic Press: Cambridge, MA, USA, 2011; ISBN 9780123849052. [Google Scholar]
- Queiroz, H.M.; Ying, S.C.; Abernathy, M.; Barcellos, D.; Gabriel, F.A.; Otero, X.L.; Nóbrega, G.N.; Bernardino, A.F.; Ferreira, T.O. Manganese: The overlooked contaminant in the world largest mine tailings dam collapse. Environ. Int. 2021, 146, 106284. [Google Scholar] [CrossRef]
- Zhou, Q.; Yang, N.; Li, Y.; Ren, B.; Ding, X.; Bian, H.; Yao, X. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 2020, 22, e00925. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Singh Sidhu, G.P.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef] [PubMed]
- Duffus, J.H. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 793–807. [Google Scholar] [CrossRef]
- Appenroth, K.-J. What are “heavy metals” in Plant Sciences? Acta Physiol. Plant. 2010, 32, 615–619. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. In Molecular, Clinical and Environmental Toxicology. Experientia Supplementum; Springer: Basel, Switzerland, 2012; pp. 133–164. [Google Scholar] [CrossRef]
- Renu; Agarwal, M.; Singh, K. Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalin. 2017, 7, 387–419. [Google Scholar] [CrossRef]
- Bhattacharya, P.T.; Misra, S.R.; Hussain, M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Scientifica 2016, 2016, 5464373. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, W.J.H. Haemochromatosis. Medicine 2015, 43, 656–660. [Google Scholar] [CrossRef]
- Okamoto, A.; Yamamuro, M.; Tatarazako, N. Acute toxicity of 50 metals to Daphnia magna. J. Appl. Toxicol. 2015, 35, 824–830. [Google Scholar] [CrossRef]
- USEPA. Drinking Water Health Advisory for Manganese; USEPA: Washington, DC, USA, 2004.
- Henriksson, J. Manganese Taken Up into the CNS via the Olfactory Pathway in Rats Affects Astrocytes. Toxicol. Sci. 2000, 55, 392–398. [Google Scholar] [CrossRef]
- USEPA. Aquatic Life Ambient Freshwater Quality Criteria-Copper; USEPA: Washington, DC, USA, 2007.
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Ansari, A.A.; Naeem, M.; Gill, S.S.; AlZuaibr, F.M. Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egypt. J. Aquat. Res. 2020, 46, 371–376. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ahmad, A.; Said, N.S.M.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Purwanti, I.F.; Hasan, H.A. Macrophytes as wastewater treatment agents: Nutrient uptake and potential of produced biomass utilization toward circular economy initiatives. Sci. Total Environ. 2021, 790, 148219. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Van Le, Q.; Peng, W.; Yang, Y.; Yang, H.; Gu, H.; Lam, S.S.; Sonne, C. A review on phytoremediation of contaminants in air, water and soil. J. Hazard. Mater. 2021, 403, 123658. [Google Scholar] [CrossRef]
- Chen, Z.; Cuervo, D.P.; Müller, J.A.; Wiessner, A.; Köser, H.; Vymazal, J.; Kästner, M.; Kuschk, P. Hydroponic root mats for wastewater treatment—A review. Environ. Sci. Pollut. Res. 2016, 23, 15911–15928. [Google Scholar] [CrossRef] [PubMed]
- Colares, G.S.; Dell’Osbel, N.; Wiesel, P.G.; Oliveira, G.A.; Lemos, P.H.Z.; da Silva, F.P.; Lutterbeck, C.A.; Kist, L.T.; Machado, E.L. Floating treatment wetlands: A review and bibliometric analysis. Sci. Total Environ. 2020, 714, 136776. [Google Scholar] [CrossRef] [PubMed]
- Olguín, E.J.; Sánchez-Galván, G. Heavy metal removal in phytofiltration and phycoremediation: The need to differentiate between bioadsorption and bioaccumulation. New Biotechnol. 2012, 30, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 2019, 223, 285–309. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J. 2021, 12, 355–365. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Ravishankar, G.A. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Carr, G.M.; Duthie, H.C.; Taylor, W.D. Models of aquatic plant productivity: A review of the factors that influence growth. Aquat. Bot. 1997, 59, 195–215. [Google Scholar] [CrossRef]
- Mikolajewicz, N.; Komarova, S.V. Meta-analytic methodology for basic research: A practical guide. Front. Physiol. 2019, 10, 203. [Google Scholar] [CrossRef]
- Li, J.; Yu, H.; Luan, Y. Meta-analysis of the copper, zinc, and cadmium absorption capacities of aquatic plants in heavy metal-pollutedwater. Int. J. Environ. Res. Public Health 2015, 12, 14958–14973. [Google Scholar] [CrossRef]
- Audet, P.; Charest, C. Heavy metal phytoremediation from a meta-analytical perspective. Environ. Pollut. 2007, 147, 231–237. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Q.; Zhou, Q.; Ma, L.; Wu, Y.; Liu, Q.; Wang, S.; Feng, Y. Cadmium uptake from soil and transport by leafy vegetables: A meta-analysis. Environ. Pollut. 2020, 264, 114677. [Google Scholar] [CrossRef] [PubMed]
- Tőzsér, D.; Magura, T.; Simon, E. Heavy metal uptake by plant parts of willow species: A meta-analysis. J. Hazard. Mater. 2017, 336, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zeng, S.; Liu, S.; Li, Z.; Jing, L. Metal accumulation by plants growing in China: Capacity, synergy, and moderator effects. Ecol. Eng. 2020, 148, 105790. [Google Scholar] [CrossRef]
- Yu, H.; Li, J.; Luan, Y. Meta-analysis of soil mercury accumulation by vegetables. Sci. Rep. 2018, 8, 1261. [Google Scholar] [CrossRef]
- Fabbri, S.; Silva, C.; Hernandes, E.; Octaviano, F.; Di Thommazo, A.; Belgamo, A. Improvements in the StArt tool to better support the systematic review process. In Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering, Limerick, Ireland, 1–3 June 2016; ACM: New York, NY, USA, 2016; pp. 1–5. [Google Scholar]
- USDA. 2020 The PLANTS Database, National Plant Data Team; NRCS, United States Department of Agriculture: Greensboro, NC, USA, 2020.
- Parwin, R.; Karar Paul, K. Phytoremediation of Kitchen Wastewater Using Eichhornia crassipes. J. Environ. Eng. 2019, 145, 04019023. [Google Scholar] [CrossRef]
- Lovie, A.D. Who discovered Spearman’s rank correlation? Br. J. Math. Stat. Psychol. 1995, 48, 255–269. [Google Scholar] [CrossRef]
- Croux, C.; Dehon, C. Influence functions of the Spearman and Kendall correlation measures. Stat. Methods Appl. 2010, 19, 497–515. [Google Scholar] [CrossRef] [Green Version]
- May, J.O.; Looney, S.W. Biometrics & Biostatistics Sample Size Charts for Spearman and Kendall Coefficients. J. Biom. Biostat. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Diedenhofen, B.; Musch, J. Cocor: A comprehensive solution for the statistical comparison of correlations. PLoS ONE 2015, 10, e0121945. [Google Scholar] [CrossRef]
- Bokhari, S.H.; Ahmad, I.; Mahmood-Ul-Hassan, M.; Mohammad, A. Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phytoremediat. 2016, 18, 25–32. [Google Scholar] [CrossRef]
- Bharti, S.; Banerjee, T.K. Phytoremediation of the coalmine effluent. Ecotoxicol. Environ. Saf. 2012, 81, 36–42. [Google Scholar] [CrossRef]
- Lakra, K.C.; Lal, B.; Banerjee, T.K. Application of phytoremediation technology in decontamination of a fish culture pond fed with coal mine effluent using three aquatic macrophytes. Int. J. Phytoremediat. 2019, 21, 840–848. [Google Scholar] [CrossRef]
- Mazumdar, K.; Das, S. Multi-metal effluent removal by Centella asiatica (L.) Urban: Prospects in phytoremediation. Environ. Technol. Innov. 2021, 22, 101511. [Google Scholar] [CrossRef]
- Mishra, S.; Mohanty, M.; Pradhan, C.; Patra, H.K.; Das, R.; Sahoo, S. Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes—A case study at JK Paper mill, Rayagada, India. Environ. Monit. Assess. 2013, 185, 4347–4359. [Google Scholar] [CrossRef]
- Soda, S.; Hamada, T.; Yamaoka, Y.; Ike, M.; Nakazato, H.; Saeki, Y.; Kasamatsu, T.; Sakurai, Y. Constructed wetlands for advanced treatment of wastewater with a complex matrix from a metal-processing plant: Bioconcentration and translocation factors of various metals in Acorus gramineus and Cyperus alternifolius. Ecol. Eng. 2012, 39, 63–70. [Google Scholar] [CrossRef]
- Vaseem, H.; Banerjee, T.K. Phytoremediation of the toxic effluent generated during recovery of precious metals from polymetallic sea nodules. Int. J. Phytoremediat. 2012, 14, 457–466. [Google Scholar] [CrossRef]
- Das, S.; Mazumdar, K. Phytoremediation potential of a novel fern, Salvinia cucullata, Roxb. Ex Bory, to pulp and paper mill effluent: Physiological and anatomical response. Chemosphere 2016, 163, 62–72. [Google Scholar] [CrossRef]
- Hamzah, M.F.; Yusof, N.; Alimon, H. Microbial assisted phytoremediation of palm oil mill discharge (POMFD) wastewater. J. OIL PALM Res. 2016, 28, 320–330. [Google Scholar] [CrossRef]
- Kumar, V.; Chopra, A.K. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environ. Technol. 2018, 39, 12–23. [Google Scholar] [CrossRef]
- Kumari, M.; Tripathi, S.D. Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicol. Environ. Saf. 2015, 112, 80–86. [Google Scholar] [CrossRef]
- Lakra, K.C.; Lal, B.; Banerjee, T.K. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology. Int. J. Phytoremediat. 2017, 19, 530–536. [Google Scholar] [CrossRef]
- Adhianto, L.; Banerjee, S.; Fagan, M.; Krentel, M.; Marin, G.; Mellor-Crummey, J.; Tallent, N.R. HPCTOOLKIT: Tools for performance analysis of optimized parallel programs. Concurr. Comput. Pract. Exp. 2010, 22, 685–701. [Google Scholar] [CrossRef]
- Royall, R.M. The effect of sample size on the meaning of significance tests. Am. Stat. 1986, 40, 313–315. [Google Scholar] [CrossRef]
- Vymazal, J. Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci. Total Environ. 2016, 544, 495–498. [Google Scholar] [CrossRef]
- Nikolakopoulou, M.; Argerich, A.; Drummond, J.D.; Gacia, E.; Martí, E.; Sorolla, A.; Sabater, F. Emergent Macrophyte Root Architecture Controls Subsurface Solute Transport. Water Resour. Res. 2018, 54, 5958–5972. [Google Scholar] [CrossRef]
- Akhtar, M.; Sarwar, N.; Ashraf, A.; Ejaz, A.; Ali, S.; Rizwan, M. Beneficial role of Azolla sp. in paddy soils and their use as bioremediators in polluted aqueous environments: Implications and future perspectives. Arch. Agron. Soil Sci. 2021, 67, 1242–1255. [Google Scholar] [CrossRef]
- Yruela, I. Copper in plants: Acquisition, transport and interactions. Funct. Plant Biol. 2009, 36, 409–430. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.B.; Tavares, F.V.; Martinez, C.B.; Colares, I.G.; Martins, C.d.M.G. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation. Ecotoxicol. Environ. Saf. 2018, 155, 117–124. [Google Scholar] [CrossRef]
- Alejandro, S.; Höller, S.; Meier, B.; Peiter, E. Manganese in Plants: From Acquisition to Subcellular Allocation. Front. Plant Sci. 2020, 11, 300. [Google Scholar] [CrossRef]
- Hua, J.; Zhang, C.; Yin, Y.; Chen, R.; Wang, X. Phytoremediation potential of three aquatic macrophytes in manganese-contaminated water. WATER Environ. J. 2012, 26, 335–342. [Google Scholar] [CrossRef]
- Kumar Yadav, K.; Gupta, N.; Kumar, A.; Reece, L.M.; Singh, N.; Rezania, S.; Ahmad Khan, S. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecol. Eng. 2018, 120, 274–298. [Google Scholar] [CrossRef]
- Song, U.; Park, H. Importance of biomass management acts and policies after phytoremediation. J. Ecol. Environ. 2017, 41, 13. [Google Scholar] [CrossRef]
- Kovacs, H.; Szemmelveisz, K. Disposal options for polluted plants grown on heavy metal contaminated brownfield lands—A review. Chemosphere 2017, 166, 8–20. [Google Scholar] [CrossRef]
- Vocciante, M.; Caretta, A.; Bua, L.; Bagatin, R.; Franchi, E.; Petruzzelli, G.; Ferro, S. Enhancements in phytoremediation technology: Environmental assessment including different options of biomass disposal and comparison with a consolidated approach. J. Environ. Manag. 2019, 237, 560–568. [Google Scholar] [CrossRef]
- Connorton, J.M.; Balk, J.; Rodríguez-Celma, J. Iron homeostasis in plants—A brief overview. Metallomics 2017, 9, 813–823. [Google Scholar] [CrossRef]
- Printz, B.; Lutts, S.; Hausman, J.F.; Sergeant, K. Copper trafficking in plants and its implication on cell wall dynamics. Front. Plant Sci. 2016, 7, 601. [Google Scholar] [CrossRef]
- Demidchik, V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environ. Exp. Bot. 2015, 109, 212–228. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.V.; Wenzel, W.W.; Rinklebe, J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation—A review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar] [CrossRef]
- Król, A.; Mizerna, K.; Bożym, M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J. Hazard. Mater. 2020, 384, 121502. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Shams, M.S.; Khalifa, M.R.; El-Dali, M.A.; Rinklebe, J. Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicol. Environ. Saf. 2017, 142, 375–387. [Google Scholar] [CrossRef]
- Xin, J.; Tang, J.; Liu, Y.; Zhang, Y.; Tian, R. Pre-aeration of the rhizosphere offers potential for phytoremediation of heavy metal-contaminated wetlands. J. Hazard. Mater. 2019, 374, 437–446. [Google Scholar] [CrossRef]
- Gupta, D.K.; Chatterjee, S.; Datta, S.; Veer, V.; Walther, C. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 2014, 108, 134–144. [Google Scholar] [CrossRef]
- Bolan, N.S.; Adriano, D.C.; Naidu, R. Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. Rev. Environ. Contam. Toxicol. 2003, 177, 1–44. [Google Scholar] [CrossRef]
- Puig, S. Function and Regulation of the Plant COPT Family of High-Affinity Copper Transport Proteins. Adv. Bot. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Carrió-Seguí, À.; Romero, P.; Curie, C.; Mari, S.; Peñarrubia, L. Copper transporter COPT5 participates in the crosstalk between vacuolar copper and iron pools mobilisation. Sci. Rep. 2019, 9, 4648. [Google Scholar] [CrossRef]
- Ågren, G.I.; Wetterstedt, J.Å.M.; Billberger, M.F.K. Nutrient limitation on terrestrial plant growth—Modeling the interaction between nitrogen and phosphorus. New Phytol. 2012, 194, 953–960. [Google Scholar] [CrossRef]
- Kraiser, T.; Gras, D.E.; Gutiérrez, A.G.; González, B.; Gutiérrez, R.A. A holistic view of nitrogen acquisition in plants. J. Exp. Bot. 2011, 62, 1455–1466. [Google Scholar] [CrossRef]
- Bonanno, G.; Vymazal, J. Compartmentalization of potentially hazardous elements in macrophytes: Insights into capacity and efficiency of accumulation. J. Geochem. Explor. 2017, 181, 22–30. [Google Scholar] [CrossRef]
- Bonanno, G. Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol. Environ. Saf. 2011, 74, 1057–1064. [Google Scholar] [CrossRef]
- Headley, T.R.; Tanner, C.C. Constructed Wetlands With Floating Emergent Macrophytes: An Innovative Stormwater Treatment Technology. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2261–2310. [Google Scholar] [CrossRef]
- Jackson, S.D. Plant responses to photoperiod. New Phytol. 2009, 181, 517–531. [Google Scholar] [CrossRef]
- Suzuki, N.; Koussevitzky, S.; Mittler, R.; Miller, G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012, 35, 259–270. [Google Scholar] [CrossRef]
Study | Country | Family | Initial Metal Concentration in the Wastewater (mg L−1) | Ref. | ||
---|---|---|---|---|---|---|
Fe | Cu | Mn | ||||
1 | India | Pontederiaceae | 0.153–0.975 | 0.062 | __ | [43] |
2 | Pakistan | Lemnaceae | __ | 0.032–0.062 | __ | [48] |
3 | India | Azollaceae, Lemnaceae | 22.91 | 2.04 | 9.61 | [49] |
4 | India | Araceae, Pontederiaceae, Salviniaceae | 9.01 | 0.56 | 14.25 | [50] |
5 | India | Apiaceae | 4.15 | 1.32 | 2.56 | [51] |
6 | India | Araceae, Lemnaceae Pontederiaceae, Rapaceae Onagraceae, Hydrocharitaceae | __ | 0.23 | __ | [52] |
7 | Japan | Acoraceae, Cyperaceae | 0.104 | 0.135 | 0.007 | [53] |
8 | India | Azollaceae, Lemnaceae | 0.762 | 1.432 | 4.957 | [54] |
9 | India | Salviniaceae | 3.9 | 0.684 | 230 | [55] |
10 | Malaysia | Araceae, Gramineae, Onagraceae | 5 | __ | __ | [56] |
11 | India | Trapaceae | 6.75 | 4.64 | 2.16 | [57] |
12 | India | Gramineae, Typhaceae | 0.145 | 0.11 | __ | [58] |
13 | India | Araceae, Salviniaceae | 18.21 | 0.93 | 8.47 | [59] |
Comparison | ln(BCF) | ln[HM]plant | ||||
---|---|---|---|---|---|---|
Mean Rank | U | p-Value | Mean Rank | U | p-Value | |
Floating–Fe vs. Emergent–Fe | 8.64 | 16.0 | 0.012 * | 9.86 | 33.0 | 0.247 ns |
15.71 | 13.29 | |||||
Floating–Cu vs. Emergent–Cu | 11.06 | 28.0 | 0.089 ns | 11.39 | 34.0 | 0.199 ns |
16.83 | 15.83 | |||||
Floating–Mn vs. Emergent–Mn | 6.00 | 0.0 | 0.005 * | 6.27 | 3.0 | 0.038 * |
13.00 | 12.00 |
Factors | Fe | Cu | Mn | ||||||
---|---|---|---|---|---|---|---|---|---|
ln(BCF) | ln[HM]plant | %R | ln(BCF) | ln[HM]plant | %R | ln(BCF) | ln[HM]plant | %R | |
[HM]wastewater | −0.703 a | −0.184 ns | 0.876 a | −0.422 a | −0.117 ns | 0.146 ns | −0.233 ns | 0.179 ns | 0.366 ns |
pH | 0.366 ns | 0.368 ns | −0.374 ns | −0.212 ns | −0.226 ns | −0.616 a | 0.539 a | 0.303 ns | −0.543 a |
t | 0.727 a | 0.649 | −0.759 ab | 0.380 ns | 0.462 a | −0.574 a | 0.431 ns | 0.526 ns | −0.759 a |
Nitrogen | 0.254 ns | 0.485 ns | −0.441 ns | −0.138 ns | 0.229 ns | −0.465 ns | __ | __ | __ |
Phosphorus | 0.036 ns | 0.291 ns | 0.103 ns | 0.601 a | 0.842 ab | 0.126 ns | __ | __ | __ |
DO | 0.127 ns | 0.461 ns | −0.438 ns | 0.506 a | 0.526 b | 0.038 ns | 0.410 ns | 0.148 ns | −0.48 ns |
Photoperiod | 0.220 ns | −0.235 ns | −0.437 b | −0.596 a | −0.627 b | 0.450 ns | −0.760 a | −0.755 | −0.25 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coimbra, E.C.L.; Borges, A.C. Removing Mn, Cu and Fe from Real Wastewaters with Macrophytes: Reviewing the Relationship between Environmental Factors and Plants’ Uptake Capacity. Toxics 2023, 11, 158. https://doi.org/10.3390/toxics11020158
Coimbra ECL, Borges AC. Removing Mn, Cu and Fe from Real Wastewaters with Macrophytes: Reviewing the Relationship between Environmental Factors and Plants’ Uptake Capacity. Toxics. 2023; 11(2):158. https://doi.org/10.3390/toxics11020158
Chicago/Turabian StyleCoimbra, Eder Carlos Lopes, and Alisson Carraro Borges. 2023. "Removing Mn, Cu and Fe from Real Wastewaters with Macrophytes: Reviewing the Relationship between Environmental Factors and Plants’ Uptake Capacity" Toxics 11, no. 2: 158. https://doi.org/10.3390/toxics11020158
APA StyleCoimbra, E. C. L., & Borges, A. C. (2023). Removing Mn, Cu and Fe from Real Wastewaters with Macrophytes: Reviewing the Relationship between Environmental Factors and Plants’ Uptake Capacity. Toxics, 11(2), 158. https://doi.org/10.3390/toxics11020158