Hypericum perforatum L. Nanoemulsion Mitigates Cisplatin-Induced Chemobrain via Reducing Neurobehavioral Alterations, Oxidative Stress, Neuroinflammation, and Apoptosis in Adult Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Preparation of HP L. Ethanolic Extract
2.2. Development of Nanoemulsion (NE)
2.2.1. Construction of Pseudo-Ternary Phase Diagram
2.2.2. Selection of Formulations and Stability Tests
2.2.3. Preparation of HP. Loaded NE (HP.NE)
2.2.4. In Vitro Dissolution Study
2.3. In Vivo Animal Study
2.3.1. Animals
2.3.2. Experimental Protocol
2.3.3. Neurobehavioral Assessments
2.3.4. Euthanasia and Brain Sampling
2.3.5. Biochemical Assay
Oxidative Biomarkers Assay
Evaluation of Pro-Inflammatory Cytokine Levels
Quantitative of COX-2, TP-53, PON-3, and GPX Gene Expression by qRT-PCR
2.3.6. Histopathological Analysis
2.3.7. Immunohistochemistry (IHC) Analysis for Inflammation and Cell Proliferation Biomarkers
2.4. Statistical Analysis
3. Results
3.1. Development of HP. NE
3.2. Effect of HP L. and HP.NE Administration on the Neurobehavioral Parameters of the Cis-Intoxicated Rats
3.3. Effect of HP L. and HP.NE Administration on the Levels of Oxidative Biomarkers of the Cis-Intoxicated Rats
3.4. Effect of HP L. and HP.NE Administration on the Levels of Pro-Inflammatory Cytokines in Cis-Intoxicated Rats
3.5. Effect of HP L. and HP.NE Administration on the Expression Levels of PON-3 and GPX Genes in Cis-Intoxicated Rats
3.6. Effect of HP L. and HP.NE Administration on the Expression Levels of COX-2 and TP53 Genes in Cis-Intoxicated Rats
3.7. Histopathological Investigation
3.8. Immunohistochemical Investigation of NF-ƘB and Ki-67 Protein Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Üstün, R.; Oğuz, E.K.; Şeker, A.; Korkaya, H. Thymoquinone Prevents Cisplatin Neurotoxicity in Primary DRG Neurons. Neurotoxicology 2018, 69, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, M.; Alizadeh, A.; Heydari, P.; Kafami, M.; Hosseini, M.; Beheshti, F.; Marefati, N.; Ghanbarabadi, M. Effect of Vitamin E on Cisplatin-Induced Memory Impairment in Male Rats. Acta Neuropsychiatr. 2021, 33, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, R.K. Review of Cisplatin and Oxaliplatin in Current Immunogenic and Monoclonal Antibody Treatments. Oncol. Rev. 2014, 8, 36–43. [Google Scholar] [CrossRef] [PubMed]
- O’Farrell, E.; MacKenzie, J.; Collins, B. Clearing the Air: A Review of Our Current Understanding of “Chemo Fog”. Curr. Oncol. Rep. 2013, 15, 260–269. [Google Scholar] [CrossRef]
- Kleih, M.; Böpple, K.; Dong, M.; Gaißler, A.; Heine, S.; Olayioye, M.A.; Aulitzky, W.E.; Essmann, F. Direct Impact of Cisplatin on Mitochondria Induces ROS Production that Dictates Cell Fate of Ovarian Cancer Cells. Cell Death Dis. 2019, 10, 851. [Google Scholar] [CrossRef]
- Arafa, M.H.; Atteia, H.H. Protective Role of Epigallocatechin Gallate in a Rat Model of Cisplatin-Induced Cerebral Inflammation and Oxidative Damage: Impact of Modulating NF-ΚB and Nrf2. Neurotox. Res. 2020, 37, 380–396. [Google Scholar] [CrossRef]
- Gorgun, M.F.; Zhuo, M.; Englander, E.W. Cisplatin Toxicity in Dorsal Root Ganglion Neurons Is Relieved by Meclizine via Diminution of Mitochondrial Compromise and Improved Clearance of DNA Damage. Mol. Neurobiol. 2017, 54, 7883–7895. [Google Scholar] [CrossRef]
- Oliveira, A.I.; Pinho, C.; Sarmento, B.; Dias, A.C.P. Neuroprotective Activity of Hypericum perforatum and Its Major Components. Front. Plant Sci. 2016, 7, 1004. [Google Scholar] [CrossRef]
- Marrelli, M.; Statti, G.; Conforti, F.; Menichini, F. New Potential Pharmaceutical Applications of Hypericum Species. Mini Rev. Med. Chem. 2016, 16, 710–720. [Google Scholar] [CrossRef]
- Prakash, D.J.; ArulKumar, S.; Sabesan, M. Effect of Nanohypericum (Hypericum perforatum Gold Nanoparticles) Treatment on Restraint Stressinduced Behavioral and Biochemical Alteration in Male Albino Mice. Pharmacogn. Res. 2010, 2, 330. [Google Scholar] [CrossRef]
- Fernandes, C.P.; de Almeida, F.B.; Silveira, A.N.; Gonzalez, M.S.; Mello, C.B.; Feder, D.; Apolinário, R.; Santos, M.G.; Carvalho, J.C.T.; Tietbohl, L.A.C.; et al. Development of an Insecticidal Nanoemulsion with Manilkara Subsericea (Sapotaceae) Extract. J. Nanobiotechnol. 2014, 12, 22. [Google Scholar] [CrossRef]
- Tsai, Y.-J.; Chen, B.-H. Preparation of Catechin Extracts and Nanoemulsions from Green Tea Leaf Waste and Their Inhibition Effect on Prostate Cancer Cell PC-3. Int. J. Nanomed. 2016, 11, 1907–1926. [Google Scholar] [CrossRef]
- Li, F.; Song, S.; Guo, Y.; Zhao, Q.; Zhang, X.; Pan, W.; Yang, X. Preparation and Pharmacokinetics Evaluation of Oral Self-Emulsifying System for Poorly Water-Soluble Drug Lornoxicam. Drug Deliv. 2015, 22, 487–498. [Google Scholar] [CrossRef]
- Morsi, N.; Ibrahim, M.; Refai, H.; El Sorogy, H. Nanoemulsion-Based Electrolyte Triggered in Situ Gel for Ocular Delivery of Acetazolamide. Eur. J. Pharm. Sci. 2017, 104, 302–314. [Google Scholar] [CrossRef]
- Khalil, H.M.A.; Mahmoud, D.B.; El-Shiekh, R.A.; Bakr, A.F.; Boseila, A.A.; Mehanna, S.; Naggar, R.A.; Eliwa, H.A. Antidepressant and Cardioprotective Effects of Self-Nanoemulsifying Self-Nanosuspension Loaded with Hypericum perforatum on Post-Myocardial Infarction Depression in Rats. AAPS PharmSciTech 2022, 23, 243. [Google Scholar] [CrossRef]
- Baghcheghi, Y.; Hosseini, M.; Beheshti, F.; Salmani, H.; Anaeigoudari, A. Thymoquinone Reverses Learning and Memory Impairments and Brain Tissue Oxidative Damage in Hypothyroid Juvenile Rats. Arq. Neuro-Psiquiatr. 2018, 76, 32–40. [Google Scholar] [CrossRef]
- Elbardisy, B.; Galal, S.; Abdelmonsif, D.A.; Boraie, N. Intranasal Tadalafil Nanoemulsions: Formulation, Characterization and Pharmacodynamic Evaluation. Pharm. Dev. Technol. 2019, 24, 1083–1094. [Google Scholar] [CrossRef]
- Owoeye, O.; Adedara, I.A.; Farombi, E.O. Pretreatment with Taurine Prevented Brain Injury and Exploratory Behaviour Associated with Administration of Anticancer Drug Cisplatin in Rats. Biomed. Pharmacother. 2018, 102, 375–384. [Google Scholar] [CrossRef]
- Ridzuan, N.A.; Teoh, S.L.; Rashid, N.A.; Othman, F.; Baharum, S.N.; Hussan, F. Polygonum Minus Ethanolic Extracts Attenuate Cisplatin–Induced Oxidative Stress in the Cerebral Cortex of Rats via Its Antioxidant Properties. Asian Pac. J. Trop. Biomed. 2019, 9, 196. [Google Scholar] [CrossRef]
- Khalil, H.M.A.; Azouz, R.A.; Hozyen, H.F.; Aljuaydi, S.H.; AbuBakr, H.O.; Emam, S.R.; Al-Mokaddem, A.K. Selenium Nanoparticles Impart Robust Neuroprotection against Deltamethrin-Induced Neurotoxicity in Male Rats by Reversing Behavioral Alterations, Oxidative Damage, Apoptosis, and Neuronal Loss. Neurotoxicology 2022, 91, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.M.A.; Khalil, I.A.; Al-Mokaddem, A.K.; Hassan, M.; El-Shiekh, R.A.; Eliwa, H.A.; Tawfek, A.M.; El-Maadawy, W.H. Ashwagandha-Loaded Nanocapsules Improved the Behavioral Alterations, and Blocked MAPK and Induced Nrf2 Signaling Pathways in a Hepatic Encephalopathy Rat Model. Drug Deliv. Transl. Res. 2022, 13, 252–274. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, J.D. Theory and Practice of Histological Techniques; Elsevier Health Sciences: Amsterdam, The Netherlands, 2008; ISBN 978-0-443-10279-0. [Google Scholar]
- Ali, K.A.; El-Naa, M.M.; Bakr, A.F.; Mahmoud, M.Y.; Abdelgawad, E.M.; Matoock, M.Y. The Dual Gastro- and Neuroprotective Effects of Curcumin Loaded Chitosan Nanoparticles against Cold Restraint Stress in Rats. Biomed. Pharmacother. 2022, 148, 112778. [Google Scholar] [CrossRef]
- Elghazawy, N.H.; Zaafar, D.; Hassan, R.R.; Mahmoud, M.Y.; Bedda, L.; Bakr, A.F.; Arafa, R.K. Discovery of New 1,3,4-Oxadiazoles with Dual Activity Targeting the Cholinergic Pathway as Effective Anti-Alzheimer Agents. ACS Chem. Neurosci. 2022, 13, 1187–1205. [Google Scholar] [CrossRef]
- Meirelles, G.; Bridi, H.; Stolz, E.D.; Teixeira, H.F.; von Poser, G.L.; Rates, S.M.K. Nanoemulsion Improves Antinociceptive Activity of HP1, a Benzopyran from Hypericum Polyanthemum. Planta Med. Int. Open 2017, 4, e82–e88. [Google Scholar] [CrossRef]
- Kandeil, M.A.; Gomaa, S.B.; Mahmoud, M.O. The Effect of Some Natural Antioxidants against Cisplatin-Induced Neurotoxicity in Rats: Behavioral Testing. Heliyon 2020, 6, e04708. [Google Scholar] [CrossRef]
- Ongnok, B.; Chattipakorn, N.; Chattipakorn, S.C. Doxorubicin and Cisplatin Induced Cognitive Impairment: The Possible Mechanisms and Interventions. Exp. Neurol. 2020, 324, 113118. [Google Scholar] [CrossRef]
- Lomeli, N.; Di, K.; Czerniawski, J.; Guzowski, J.F.; Bota, D.A. Cisplatin-Induced Mitochondrial Dysfunction Is Associated with Impaired Cognitive Function in Rats. Free. Radic. Biol. Med. 2017, 102, 274–286. [Google Scholar] [CrossRef]
- Kraeuter, A.-K.; Guest, P.C.; Sarnyai, Z. The Y-Maze for Assessment of Spatial Working and Reference Memory in Mice. In Pre-Clinical Models: Techniques and Protocols; Guest, P.C., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; pp. 105–111. ISBN 978-1-4939-8994-2. [Google Scholar]
- Bezu, M.; Maliković, J.; Kristofova, M.; Engidawork, E.; Höger, H.; Lubec, G.; Korz, V. Spatial Working Memory in Male Rats: Pre-Experience and Task Dependent Roles of Dopamine D1- and D2-Like Receptors. Front. Behav. Neurosci. 2017, 11, 196. [Google Scholar] [CrossRef] [Green Version]
- Almutairi, M.M.; Alanazi, W.A.; Alshammari, M.A.; Alotaibi, M.R.; Alhoshani, A.R.; Al-Rejaie, S.S.; Hafez, M.M.; Al-Shabanah, O.A. Neuro-Protective Effect of Rutin against Cisplatin-Induced Neurotoxic Rat Model. BMC Complement. Altern. Med. 2017, 17, 472. [Google Scholar] [CrossRef]
- Deponte, M. Glutathione Catalysis and the Reaction Mechanisms of Glutathione-Dependent Enzymes. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 3217–3266. [Google Scholar] [CrossRef]
- Turan, M.; Cayir, A.; Cetin, N.; Suleyman, H.; Turan, I.S.; Tan, H. An Investigation of the Effect of Thiamine Pyrophosphate on Cisplatin-Induced Oxidative Stress and DNA Damage in Rat Brain Tissue Compared with Thiamine: Thiamine and Thiamine Pyrophosphate Effects on Cisplatin Neurotoxicity. Hum. Exp. Toxicol. 2014, 33, 14–21. [Google Scholar] [CrossRef]
- Xie, A.; Gao, J.; Xu, L.; Meng, D. Shared Mechanisms of Neurodegeneration in Alzheimer’s Disease and Parkinson’s Disease. BioMed Res. Int. 2014, 2014, e648740. [Google Scholar] [CrossRef]
- Gupta, P.; Makkar, T.K.; Goel, L.; Pahuja, M. Role of Inflammation and Oxidative Stress in Chemotherapy-Induced Neurotoxicity. Immunol. Res. 2022, 70, 725–741. [Google Scholar] [CrossRef]
- Domingo, I.K.; Latif, A.; Bhavsar, A.P. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int. J. Mol. Sci. 2022, 23, 7227. [Google Scholar] [CrossRef]
- Prabhakaran, J.; Molotkov, A.; Mintz, A.; Mann, J.J. Progress in PET Imaging of Neuroinflammation Targeting COX-2 Enzyme. Molecules 2021, 26, 3208. [Google Scholar] [CrossRef]
- Liu, X.; Yao, C.; Tang, Y.; Liu, X.; Duan, C.; Wang, C.; Han, F.; Xiang, Y.; Wu, L.; Li, Y.; et al. Role of P53 Methylation in Manganese-Induced Cyclooxygenase-2 Expression in BV2 Microglial Cells. Ecotoxicol. Environ. Saf. 2022, 241, 113824. [Google Scholar] [CrossRef]
- Manohar, S.; Jamesdaniel, S.; Salvi, R. Cisplatin Inhibits Hippocampal Cell Proliferation and Alters the Expression of Apoptotic Genes. Neurotox Res. 2014, 25, 369–380. [Google Scholar] [CrossRef]
- Bisht, A.; Dickens, M.; Rutherfurd-Markwick, K.; Thota, R.; Mutukumira, A.N.; Singh, H. Chlorogenic Acid Potentiates the Anti-Inflammatory Activity of Curcumin in LPS-Stimulated THP-1 Cells. Nutrients 2020, 12, 2706. [Google Scholar] [CrossRef]
- Girsang, E.; Lister, I.N.E.; Ginting, C.N.; Nasution, S.L.; Suhartina, S.; Munshy, U.Z.; Rizal, R.; Widowati, W. Antioxidant and Anti-Inflammatory Activity of Chlorogenic Acid on Lead-Induced Fibroblast Cells. J. Phys. Conf. Ser. 2019, 1374, 012006. [Google Scholar] [CrossRef]
- Maslin, L.A.; Weeks, B.R.; Carroll, R.J.; Byrne, D.H.; Turner, N.D. Chlorogenic Acid and Quercetin in a Diet with Fermentable Fiber Influence Multiple Processes Involved in DSS-Induced Ulcerative Colitis but Do Not Reduce Injury. Nutrients 2022, 14, 3706. [Google Scholar] [CrossRef] [PubMed]
- Abdel Motaal, A.; Ezzat, S.M.; Tadros, M.G.; El-Askary, H.I. In Vivo Anti-Inflammatory Activity of Caffeoylquinic Acid Derivatives from Solidago Virgaurea in Rats. Pharm. Biol. 2016, 54, 2864–2870. [Google Scholar] [CrossRef] [PubMed]
- Soquetta, M.B.; de Terra, L.M.; Bastos, C.P. Green Technologies for the Extraction of Bioactive Compounds in Fruits and Vegetables. CyTA J. Food 2018, 16, 400–412. [Google Scholar] [CrossRef]
- Nakanishi, T.; Mukai, K.; Yumoto, H.; Hirao, K.; Hosokawa, Y.; Matsuo, T. Anti-Inflammatory Effect of Catechin on Cultured Human Dental Pulp Cells Affected by Bacteria-Derived Factors. Eur. J. Oral Sci. 2010, 118, 145–150. [Google Scholar] [CrossRef]
- Gomez del Rio, M.A.; Sanchez-Reus, M.I.; Iglesias, I.; Pozo, M.A.; Garcia-Arencibia, M.; Fernandez-Ruiz, J.; Garcia-Garcia, L.; Delgado, M.; Benedi, J. Neuroprotective Properties of Standardized Extracts of Hypericum perforatum on Rotenone Model of Parkinson’s Disease. CNS Neurol. Disord.-Drug Targets-CNS Neurol. Disord. 2013, 12, 665–679. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Rodrigues, C.F.; Sharopov, F.; Docea, A.O.; Can Karaca, A.; Sharifi-Rad, M.; Kahveci Karıncaoglu, D.; Gülseren, G.; Şenol, E.; Demircan, E.; et al. Diet, Lifestyle and Cardiovascular Diseases: Linking Pathophysiology to Cardioprotective Effects of Natural Bioactive Compounds. Int. J. Environ. Res. Public Health 2020, 17, 2326. [Google Scholar] [CrossRef]
- Farcas, A.D.; Mot, A.C.; Zagrean-Tuza, C.; Ticolea, M.; Sevastre, B.; Kulak, M.; Silaghi-Dumitrescu, R.; Parvu, A. Remarkable Rutin-Rich Hypericum Capitatum Extract Exhibits Anti-Inflammatory Effects on Turpentine Oil-Induced Inflammation in Rats. BMC Complement. Altern. Med. 2019, 19, 289. [Google Scholar] [CrossRef]
- Fuda, H.; Watanabe, M.; Hui, S.-P.; Joko, S.; Okabe, H.; Jin, S.; Takeda, S.; Miki, E.; Watanabe, T.; Chiba, H. Anti-Apoptotic Effects of Novel Phenolic Antioxidant Isolated from the Pacific Oyster (Crassostrea Gigas) on Cultured Human Hepatocytes under Oxidative Stress. Food Chem. 2015, 176, 226–233. [Google Scholar] [CrossRef]
- Diao, J.; Ou, J.; Dai, H.; Li, H.; Huang, W.; Hua, H.; Xie, T.; Wang, M.; Yang, Y. Antioxidant and Antiapoptotic Polyphenols from Green Tea Extract Ameliorate CCl4-Induced Acute Liver Injury in Mice. Chin. J. Integr. Med. 2020, 26, 736–744. [Google Scholar] [CrossRef]
- Foroutanfar, A.; Mehri, S.; Kamyar, M.; Tandisehpanah, Z.; Hosseinzadeh, H. Protective Effect of Punicalagin, the Main Polyphenol Compound of Pomegranate, against Acrylamide-Induced Neurotoxicity and Hepatotoxicity in Rats. Phytother. Res. 2020, 34, 3262–3272. [Google Scholar] [CrossRef]
- Zirak, N.; Shafiee, M.; Soltani, G.; Mirzaei, M.; Sahebkar, A. Hypericum perforatum in the Treatment of Psychiatric and Neurodegenerative Disorders: Current Evidence and Potential Mechanisms of Action. J. Cell. Physiol. 2019, 234, 8496–8508. [Google Scholar] [CrossRef]
- Javadinia, S.S.; Abbaszadeh-Goudarzi, K.; Mahdian, D.; Hosseini, A.; Ghalenovi, M.; Javan, R. A Review of the Protective Effects of Quercetin-Rich Natural Compounds for Treating Ischemia-Reperfusion Injury. Biotech. Histochem. 2022, 97, 237–246. [Google Scholar] [CrossRef]
- Wu, P.-S.; Ding, H.-Y.; Yen, J.-H.; Chen, S.-F.; Lee, K.-H.; Wu, M.-J. Anti-Inflammatory Activity of 8-Hydroxydaidzein in LPS-Stimulated BV2 Microglial Cells via Activation of Nrf2-Antioxidant and Attenuation of Akt/NF-ΚB-Inflammatory Signaling Pathways, as well as Inhibition of COX-2 Activity. J. Agric. Food Chem. 2018, 66, 5790–5801. [Google Scholar] [CrossRef]
- Cui, L.; Xu, F.; Wu, K.; Li, L.; Qiao, T.; Li, Z.; Chen, T.; Sun, C. Anticancer Effects and Possible Mechanisms of Lycopene Intervention on N-Methylbenzylnitrosamine Induced Esophageal Cancer in F344 Rats Based on PPARγ1. Eur. J. Pharmacol. 2020, 881, 173230. [Google Scholar] [CrossRef]
- Dost, T.; Ozkayran, H.; Gokalp, F.; Yenisey, C.; Birincioglu, M. The Effect of Hypericum perforatum (St. John’s Wort) on Experimental Colitis in Rat. Dig. Dis. Sci. 2009, 54, 1214–1221. [Google Scholar] [CrossRef]
- Novelli, M.; Masiello, P.; Beffy, P.; Menegazzi, M. Protective Role of St. John’s Wort and Its Components Hyperforin and Hypericin against Diabetes through Inhibition of Inflammatory Signaling: Evidence from In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2020, 21, 8108. [Google Scholar] [CrossRef]
- Yang, Z.; Cai, X.; Xu, A.; Xu, F.; Liang, Q. Bone Marrow Stromal Cell Transplantation through Tail Vein Injection Promotes Angiogenesis and Vascular Endothelial Growth Factor Expression in Cerebral Infarct Area in Rats. Cytotherapy 2015, 17, 1200–1212. [Google Scholar] [CrossRef]
- Sherif, I.O.; Al-Shaalan, N.H.; Sabry, D. Neuroprotective Potential of Bone Marrow-Derived Mesenchymal Stem Cells Following Chemotherapy. Biomedicines 2021, 9, 750. [Google Scholar] [CrossRef]
F# | HP L. Extract % w/v | Oil % w/w | SCoSmix % w/w | Water % w/w | Centrifugation Test | Dilution Test |
---|---|---|---|---|---|---|
F1 | - | 10 | 80 | 10 | clear | clear |
F2 | - | 10 | 70 | 20 | clear | clear |
F3 | - | 20 | 70 | 10 | clear | clear |
F4 | 1.5 | 10 | 80 | 10 | - | - |
F5 | 1.5 | 10 | 70 | 20 | - | - |
F6 | 1.5 | 20 | 70 | 10 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, H.M.A.; El Henafy, H.M.A.; Khalil, I.A.; Bakr, A.F.; Fahmy, M.I.; Younis, N.S.; El-Shiekh, R.A. Hypericum perforatum L. Nanoemulsion Mitigates Cisplatin-Induced Chemobrain via Reducing Neurobehavioral Alterations, Oxidative Stress, Neuroinflammation, and Apoptosis in Adult Rats. Toxics 2023, 11, 159. https://doi.org/10.3390/toxics11020159
Khalil HMA, El Henafy HMA, Khalil IA, Bakr AF, Fahmy MI, Younis NS, El-Shiekh RA. Hypericum perforatum L. Nanoemulsion Mitigates Cisplatin-Induced Chemobrain via Reducing Neurobehavioral Alterations, Oxidative Stress, Neuroinflammation, and Apoptosis in Adult Rats. Toxics. 2023; 11(2):159. https://doi.org/10.3390/toxics11020159
Chicago/Turabian StyleKhalil, Heba M. A., Hanan M. A. El Henafy, Islam A. Khalil, Alaa F. Bakr, Mohamed I. Fahmy, Nancy S. Younis, and Riham A. El-Shiekh. 2023. "Hypericum perforatum L. Nanoemulsion Mitigates Cisplatin-Induced Chemobrain via Reducing Neurobehavioral Alterations, Oxidative Stress, Neuroinflammation, and Apoptosis in Adult Rats" Toxics 11, no. 2: 159. https://doi.org/10.3390/toxics11020159
APA StyleKhalil, H. M. A., El Henafy, H. M. A., Khalil, I. A., Bakr, A. F., Fahmy, M. I., Younis, N. S., & El-Shiekh, R. A. (2023). Hypericum perforatum L. Nanoemulsion Mitigates Cisplatin-Induced Chemobrain via Reducing Neurobehavioral Alterations, Oxidative Stress, Neuroinflammation, and Apoptosis in Adult Rats. Toxics, 11(2), 159. https://doi.org/10.3390/toxics11020159