Levels of Heavy Metals in Grapevine Soil and Leaf Samples in Response to Seasonal Change and Farming Practice in the Cape Winelands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Site Characteristics
2.3. Soil and Leaf Sampling
2.4. Sample Preparation and Analysis
2.5. Contamination and Ecological Risk Assessment
2.6. Statistical Analysis
3. Results
3.1. Heavy Metals in Soil Samples
3.1.1. Levels of Heavy Metals in Soil Samples
3.1.2. Effect of Seasonal Variation on Heavy Metal Deposits in the Soil
3.1.3. Effect of Agricultural Practice on Heavy Metal Deposits in the Soil
3.2. Heavy Metals in Plant Samples
3.2.1. Levels of Heavy Metals in Plant Samples
3.2.2. Effect of Agricultural Practice on Heavy Metal Uptake by Plant Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alagić, S.Č.; Tošić, S.B.; Dimitrijević, M.D.; Antonijević, M.M.; Nujkić, M.M. Assessment of the quality of polluted areas based on the content of heavy metals in different organs of the grapevine (Vitis vinifera) cv Tamjanika. Environ. Sci. Pollut. Res. 2015, 22, 7155–7175. [Google Scholar] [CrossRef]
- Alagić, S.Č.; Tošić, S.B.; Dimitrijević, M.D.; Petrović, J.V.; Medić, D.V. The Characterization of Heavy Metals in the Grapevine (Vitis vinifera) Cultivar Rkatsiteli and Wild Blackberry (Rubus fruticosus) from East Serbia by ICP-OES and BAFs. Commun. Soil Sci. Plant Anal. 2016, 47, 2034–2045. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Not. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef]
- Ceniceros-Gómez, A.E.; Macías-Macías, K.Y.; de la Cruz-Moreno, J.E.; Gutiérrez-Ruiz, M.E.; Martínez-Jardines, L.G. Characterization of mining tailings in México for the possible recovery of strategic elements. J. S. Am. Earth Sci. 2018, 88, 72–79. [Google Scholar] [CrossRef]
- Wang, L.; Ji, B.; Hu, Y.; Liu, R.; Sun, W. A review on in situ phytoremediation of mine tailings. Chemosphere 2017, 184, 594–600. [Google Scholar] [CrossRef]
- Onakpa, M.M.; Njan, A.A.; Kalu, O.C. A review of heavy metal contamination of food crops in Nigeria. Ann. Glob. Health 2018, 84, 488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Li, C.; Zhou, K.; Qin, W.; Tian, C.; Qi, M.; Yan, X.; Han, W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil Sediment Contam. Int. J. 2019, 28, 380–394. [Google Scholar] [CrossRef]
- Bora, F.-D.; Bunea, C.-I.; Rusu, T.; Pop, N. Vertical distribution and analysis of micro-, macroelements and heavy metals in the system soil-grapevine-wine in vineyard from North-West Romania. Chem. Cent. J. 2015, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Prabagar, S.; Dharmadasa, R.M.; Lintha, A.; Thuraisingam, S.; Prabagar, J. Accumulation of heavy metals in grape fruit, leaves, soil and water: A study of influential factors and evaluating ecological risks in Jaffna, Sri Lanka. Environ. Sustain. Indic. 2021, 12, 100147. [Google Scholar] [CrossRef]
- Fernandes Veludo, A. Measurement and Analyses of 25 CUPs in the Atmosphere in Three Agricultural Regions of the Western Cape, South Africa. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2021. [Google Scholar]
- Brunetto, G.; Ferreira, P.A.A.; Melo, G.W.; Ceretta, C.A.; Toselli, M. Heavy metals in vineyards and orchard soils. Rev. Bras. Frutic. 2017, 39, e263. [Google Scholar] [CrossRef] [Green Version]
- Liang, Q.; Xue, Z.-J.; Wang, F.; Sun, Z.-M.; Yang, Z.-X.; Liu, S.-Q. Contamination and health risks from heavy metals in cultivated soil in Zhangjiakou City of Hebei Province, China. Environ. Monit. Assess. 2015, 187, 754. [Google Scholar] [CrossRef]
- Mondol, M.; Chamon, A.; Faiz, B.; Elahi, S. Seasonal variation of heavy metal concentrations in Water and plant samples around Tejgaon industrial Area of Bangladesh. J. Bangladesh Acad. Sci. 2011, 35, 19–41. [Google Scholar] [CrossRef] [Green Version]
- Ullah, S.; Gerzabek, M.; Mondol, M.; Rashid, M.; Islam, M. Heavy metal pollution of soils and water and their transfer into plants in Bangladesh. In Proceedings of the Extended Abstracts: 5th International Conference on the Biogeochemistry of Trace Elements, Vienna, Austria, 11–15 July 1999; pp. 260–261. [Google Scholar]
- Oluyemi, E.; Feuyit, G.; Oyekunle, J.; Ogunfowokan, A. Seasonal variations in heavy metal concentrations in soil and some selected crops at a landfill in Nigeria. Afr. J. Environ. Sci. Technol. 2008, 2, 089–096. Available online: http://academicjournals.org/AJest (accessed on 1 December 2020).
- Osobamiro, M.T.; Adewuyi, G.O. Levels of heavy metals in the soil: Effects of season, agronomic practice and soil geology. J. Agric. Chem. Environ. 2015, 4, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Chen, L.; Ma, K.; Zhou, H.; Wang, J. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China. CATENA 2000, 39, 69–78. [Google Scholar] [CrossRef]
- Fu, B.J.; Guo, X.D.; Chen, L.D.; Ma, K.M.; Li, J.R. Soil nutrient changes due to land use changes in Northern China: A case study in Zunhua County, Hebei Province. Soil Use Manag. 2001, 17, 294–296. [Google Scholar] [CrossRef]
- Raiesi, F. A minimum data set and soil quality index to quantify the effect of land use conversion on soil quality and degradation in native rangelands of upland arid and semiarid regions. Ecol. Indic. 2017, 75, 307–320. [Google Scholar] [CrossRef]
- Forbes, S.L.; Cohen, D.A.; Cullen, R.; Wratten, S.D.; Fountain, J. Consumer attitudes regarding environmentally sustainable wine: An exploratory study of the New Zealand marketplace. J. Clean. Prod. 2009, 17, 1195–1199. [Google Scholar] [CrossRef] [Green Version]
- Seufert, V.; Ramankutty, N.; Mayerhofer, T. What is this thing called organic?—How organic farming is codified in regulations. Food Policy 2017, 68, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Adamczewska-Sowińska, K.; Sowiński, J. Polyculture Management: A Crucial System for Sustainable Agriculture Development. In Soil Health Restoration and Management; Meena, R.S., Ed.; Springer Singapore: Singapore, 2020; pp. 279–319. [Google Scholar]
- Shennan, C.; Krupnik, T.J.; Baird, G.; Cohen, H.; Forbush, K.; Lovell, R.J.; Olimpi, E.M. Organic and Conventional Agriculture: A Useful Framing? Annu. Rev. Environ. Resour. 2017, 42, 317–346. [Google Scholar] [CrossRef]
- CWD. Cape Winelands District Annual Report 2020/21; CWD: Cape Town, South Africa, 2021; p. 180.
- Ammann, A.A. Inductively coupled plasma mass spectrometry (ICP MS): A versatile tool. J. Mass Spectrom. 2007, 42, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Álvarez, E.P.; Garcia, R.; Barrulas, P.; Dias, C.; Cabrita, M.J.; Garde-Cerdán, T. Classification of wines according to several factors by ICP-MS multi-element analysis. Food Chem. 2019, 270, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Voica, C.; Dehelean, A.; Iordache, A.; Geana, I. Method validation for determination of metals in soils by ICP-MS. Rom. Rep. Phys. 2012, 64, 221–231. [Google Scholar]
- Castanheiro, A.; Hofman, J.; Nuyts, G.; Joosen, S.; Spassov, S.; Blust, R.; Lenaerts, S.; De Wael, K.; Samson, R. Leaf accumulation of atmospheric dust: Biomagnetic, morphological and elemental evaluation using SEM, ED-XRF and HR-ICP-MS. Atmos. Environ. 2020, 221, 117082. [Google Scholar] [CrossRef]
- Berg, B.; Laskowski, R. Methods in Studies of Organic Matter Decay. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2005; Volume 38, pp. 291–331. [Google Scholar]
- WHO. Guidlines for Drinking Water Quality; World Health Organization: Hal Ghaxaq, Malta, 2015. [Google Scholar]
- FAO/WHO. Codex Alimentarious Commission on Food Standards Programme. In Proceedings of the Codex Committee on Contaminants in Foods, 5th Session, The Hague, The Netherlands, 23 November–1 December 2006; CF5 INF/1. WHO Press: Geneva, Switzerland, 2011. [Google Scholar]
- Mkhize, T.A. Assessment of Heavy Metal Contamination in Soils around Krugersdorp Mining Area, Johannesburg, South Africa. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2020. [Google Scholar]
- Vannini, A.; Grattacaso, M.; Canali, G.; Nannoni, F.; Di Lella, L.A.; Protano, G.; Biagiotti, S.; Loppi, S. Potentially Toxic Elements (PTEs) in Soils and Bulbs of Elephant Garlic (Allium ampeloprasum L.) Grown in Valdichiana, a Traditional Cultivation Area of Tuscany, Italy. Appl. Sci. 2021, 11, 7023. [Google Scholar] [CrossRef]
- Herselman, J.E. The Concentration of Selected Trace Metals in South African Soils. Ph.D. Thesis, University of Stellenbosch, Stellenbosch, South Africa, 2007. [Google Scholar]
- Lijzen, J.; Baars, A.; Otte, P.; Rikken, M.; Swartjes, F.; Verbruggen, E.; Van Wezel, A. Technical Evaluation of the Intervention Values for Soil/Sediment and Groundwater. Human and Ecotoxicological Risk Assessment and Derivation of Risk Limits for Soil, Aquatic Sediment and Groundwater; RIVM Rapport 711701023; National Institute for Public Health and the Environment: Bilthove, The Netherlands, 2001. [Google Scholar]
- Li, Y.; Qu, X.; Zhang, M.; Peng, W.; Yu, Y.; Gao, B. Anthropogenic Impact and Ecological Risk Assessment of Thallium and Cobalt in Poyang Lake Using the Geochemical Baseline. Water 2018, 10, 1703. [Google Scholar] [CrossRef] [Green Version]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Meadows, M.E. The Cape Winelands. In Landscapes and Landforms of South Africa; Grab, S., Knight, J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 103–109. [Google Scholar]
- Tassiopoulos, D.; Nuntsu, N.; Haydam, N. Wine Tourists in South Africa: A Demographic and Psychographic Study. J. Wine Res. 2004, 15, 51–63. [Google Scholar] [CrossRef]
- Zhang, M.-K.; Liu, Z.-Y.; Wang, H. Use of Single Extraction Methods to Predict Bioavailability of Heavy Metals in Polluted Soils to Rice. Commun. Soil Sci. Plant Anal. 2010, 41, 820–831. [Google Scholar] [CrossRef]
- Jordanova, V.K.; Delzanno, G.L.; Henderson, M.G.; Godinez, H.C.; Jeffery, C.A.; Lawrence, E.C.; Morley, S.K.; Moulton, J.D.; Vernon, L.J.; Woodroffe, J.R.; et al. Specification of the near-Earth space environment with SHIELDS. J. Atmos. Sol. Terr. Phys. 2018, 177, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Dong, S.; Su, X. Copper and other heavy metals in grapes: A pilot study tracing influential factors and evaluating potential risks in China. Sci. Rep. 2018, 8, 17407. [Google Scholar] [CrossRef] [Green Version]
- Schulte, E.; Kelling, A. Understanding Plant Nutrients: Soil and Applied Copper. Univ. Wis. Ext. 2004, A2527. Available online: http://corn.agronomy.wisc.edu/Management/pdfs/a2527.pdf (accessed on 11 January 2023).
- Laczi, E.; Luca, E.; Dumitraş, A.; Hoaghia, A.; Boancă, P. Irrigation and Fertilization Management Effect on Chinese Cabbage Chemical Composition. Commun. Soil Sci. Plant Anal. 2017, 48, 63–72. [Google Scholar] [CrossRef]
- González-Martín, M.I.; Revilla, I.; Betances-Salcedo, E.V.; Vivar-Quintana, A.M. Pesticide residues and heavy metals in commercially processed propolis. Microchem. J. 2018, 143, 423–429. [Google Scholar] [CrossRef]
- Raji, M.I.O.; Ibrahim, Y.K.E.; Tytler, B.A.; Ehinmidu, J.O. Assessment and Seasonal Variations of Heavy Metals and Mineral Elements in River Sokoto, North-western Nigeria. Niger. J. Basic Appl. Sci. 2016, 24, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Okoro, H.; Ximba, B.J.; Tamba, O.; Fatoki, O.S.; Adekola, F.A.; Snyman, R.G.; Yahya, W.B. Distribution and seasonal variations of selected heavy metals in seawater from Cape Town harbour of Western Cape Province, Republic of South Africa. Zimb. J. Sci. Technol. 2017, 11, 82–97. [Google Scholar]
- CSIR. Environmental Baseline Description; Western Cape Government: Cape Town, South Africa, 2014; pp. 50–163.
- Fabrizio, D.; Stefania, F. Heavy Metal Pollution in Soil: A Survey on West-Central Sardinian Long-Term Vineyards (Italy); Agricultural Research Agency of Sardinia (AGRIS): Bonassai, Italy, 2012. [Google Scholar]
- Formicki, G.; Stawarz, R.; Greń, A.; Muchacka, R. Cadmium, copper, lead and zinc concentrations in low quality wines and alcohol containing drinks from Italy, Bulgaria and Poland. J. Microbiol. Biotechnol. Food Sci. 2012, 1, 753–757. [Google Scholar]
Coordinates | Site | Town | Grapevine Cultivars Sampled | Farming Practice |
---|---|---|---|---|
Y = −34.0170461 X = 18.7550072 | A * | Stellenbosch | Cabernet sauvignon and Cabernet franc | Conventional |
Y = −33.8347509 X = 18.591131 | B * | Eikenbosch | Sauvignon blanc and Cabernet franc | Conventional |
Y = −33.9205238 X = 19.1186237 | C * | Franschhoek | Merlot and Cabernet sauvignon | Sem-organic |
Y = −33.4056598 X = 19.2374146 | D | Wolseley | Shiraz, Sèmillon, Merlot, and Sauvignon blanc | Organic (certified) |
Y = −33.836914 X = 19.9131483 | E * | Robertson | Chardonnay, Sauvignon, and Sauvignon blanc | Conventional |
Y = −32.96663 X = 18.75134 | F | Piketberg | Cabernet sauvignon, Cabernet sauvignon, Merlot, and Shiraz | Organic (certified) |
Igeo Class | Igeo Value | Soil Quality Based on Igeo Value | Er | Ecological Risk of Single Metal |
---|---|---|---|---|
0 | <0 | Uncontaminated | Er ˂ 40 | Low risk |
1 | 0–1 | Uncontaminated to moderately contaminated | 40 ≤ Er ˂ 80 | Moderate risk |
2 | 1–2 | Moderately contaminated | 80 ≤ Er ˂ 160 | Considerable risk |
3 | 2–3 | Moderately contaminated to heavily contaminated | 160 ≤ Er ˂ 320 | High risk |
4 | 3–4 | Heavily contaminated | Er ≥ 320 | Very high risk |
5 | 4–5 | Heavily to extremely contaminated | ||
6 | >5 | Extremely contaminated |
Sites | Heavy Metal Concentrations (SEM) mg kg−1 in Soils | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
* FP | Cr | Co | Ni | Cu | Zn | As | Cd | Hg | Pb | |
A *** | C | 42.933 ± 1.622 | 5.399 ± 0.964 | 15.568 ± 0.654 | 18.471 ± 2.508 | 27.171 ± 0.913 | 23.177 ± 1.917 | 0.019 ± 0.002 | 0.042 ± 0.0005 | 17.488 ± 0.763 |
B *** | C | 48.849 ± 14.948 | 5.673 ± 1.592 | 13.155 ± 3.609 | 9.343 ± 0.891 | 20.271 ± 2.884 | 29.166 ± 11.442 | 0.024 ± 0.004 | 0.030 ± 0.011 | 11.929 ± 1.498 |
C *** | O^ | 13.505 ± 0.749 | 1.987 ± 0.001 | 4.695 ± 0.158 | 10.719 ± 1.876 | 35.406 ± 18.001 | 4.074 ± 1.752 | 0.044 ± 0.025 | 0.032 ± 0.0004 | 19.285 ± 3.452 |
D | O | 34.763 ± 14.738 | 2.267 ± 0.835 | 7.931 ± 1.800 | 41.275 ± 7.365 | 25.167 ± 6.477 | 9.751 ± 0.126 | 0.027 ± 0.013 | 0.018 ± 0.010 | 7.896 ± 0.270 |
E *** | C | 23.586 ± 2.578 | 4.129 ± 0.087 | 11.112 ± 1.281 | 14.266 ± 1.101 | 23.690 ± 1.353 | 4.900 ± 0.826 | 0.022 ± 0.0004 | 0.019 ± 0.003 | 10.376 ± 0.557 |
F | O | 58.738 ± 2.988 | 10.550 ± 0.7047 | 26.812 ± 0.369 | 37.687 ± 0.071 | 44.980 ± 1.651 | 6.455 ± 0.515 | 0.032 ± 0.005 | 0.015 ± 0.0002 | 17.550 ± 1.821 |
** FAO/WHO-ML | 100 | 50 | 50 | 100 | 50 | 20 | 3.0 | - | 100 |
Heavy Metal | Season | Farming Practice | Cf | Er | Igeo |
---|---|---|---|---|---|
Winter | Conventional | 5.992 ± 0.916 | 11.984 ± 1.832 | 1.964 ± 0.222 | |
Cr | Organic | 4.899 ± 2.114 | 9.798 ± 4.228 | 1.447 ± 0.604 | |
Summer | Conventional | 7.223 ± 2.123 | 14.446 ± 4.246 | 2.126 ± 0.466 | |
Organic | 7.358 ± 2.567 | 14.716 ± 5.135 | 2.034 ± 0.672 | ||
Winter | Conventional | 0.236 ± 0.006 | 1.179 ± 0.029 | −2.670 ± 0.035 | |
Co | Organic | 0.285 ± 0.190 | 1.424 ± 0.951 | −3.059 ± 0.952 | |
Conventional | 0.327 ± 0.053 | 1.636 ± 0.267 | −2.239 ± 0.256 | ||
Summer | Organic | 0.264 ± 0.124 | 1.319 ± 0.618 | −2.815 ± 0.654 | |
Winter | Conventional | 3.582 ± 0.452 | 17.908 ± 2.261 | 1.232 ± 0.187 | |
Ni | Organic | 3.571 ± 2.020 | 17.853 ± 10.100 | 0.804 ± 0.779 | |
Summer | Conventional | 4.161 ± 0.649 | 20.805 ± 3.245 | 1.432 ± 0.249 | |
Organic | 4.095 ± 2.011 | 20.475 ± 10.055 | 1.085 ± 0.728 | ||
Winter | Conventional | 4.449 ± 0.809 | 22.249 ± 4.043 | 1.512 ± 0.297 | |
Cu | Organic | 9.014 ± 3.047 | 45.068 ± 15.234 | 2.329 ± 0.674 | |
Summer | Conventional | 4.964 ± 1.076 | 24.820 ± 5.381 | 1.661 ± 0.303 | |
Organic | 11.049 ± 3.576 | 55.248 ± 17.883 | 2.669 ± 0.597 | ||
Winter | Conventional | 1.908 ± 0.231 | 1.908 ± 0.231 | 0.324 ± 0.188 | |
Zn | Organic | 2.344 ± 0.840 | 2.344 ± 0.840 | 0.476 ± 0.474 | |
Summer | Conventional | 2.044 ± 0.149 | 2.044 ± 0.149 | 0.439 ± 0.102 | |
Organic | 3.520 ± 0.524 | 3.520 ± 0.524 | 1.198 ± 0.218 | ||
Winter | Conventional | 0.809 ± 0.282 | 8.091 ± 2.822 | −1.135 ± 0.643 | |
As | Organic | 0.348 ± 0.067 | 3.479 ± 0.669 | −2.157 ± 0.260 | |
Summer | Conventional | 1.099 ± 0.528 | 10.990 ± 5.276 | −0.980 ± 0.988 | |
Organic | 0.328 ± 0.111 | 3.281 ± 1.115 | −2.432 ± 0.640 | ||
Winter | Conventional | 0.036 ± 0.004 | 1.097 ± 0.134 | −5.379 ± 0.173 | |
Cd | Organic | 0.037 ± 0.011 | 1.121 ± 0.339 | −5.451 ± 0.414 | |
Summer | Conventional | 0.034 ± 0.001 | 1.029 ± 0.042 | −5.453 ± 0.059 | |
Organic | 0.073 ± 0.020 | 2.179 ± 0.617 | −4.483 ± 0.407 | ||
Winter | Conventional | 0.186 ± 0.049 | 7.436 ± 1.961 | −3.105 ± 0.357 | |
Hg | Organic | 0.122 ± 0.046 | 4.865 ± 1.837 | −3.844 ± 0.572 | |
Summer | Conventional | 0.221 ± 0.057 | 8.834 ± 2.267 | −2.890 ± 0.456 | |
Organic | 0.168 ± 0.035 | 6.720 ± 1.387 | −3.232 ± 0.339 | ||
Winter | Conventional | 4.242 ± 0.671 | 21.209 ± 3.354 | 1.466 ± 0.215 | |
Pb | Organic | 5.139 ± 1.460 | 25.693 ± 7.301 | 1.639 ± 0.463 | |
Summer | Conventional | 4.622 ± 0.813 | 23.110 ± 4.065 | 1.578 ± 0.257 | |
Organic | 4.835 ± 1.106 | 24.176 ± 5.530 | 1.598 ± 0.376 |
Sites | Heavy Metal Concentration (SEM) mg kg−1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
* FP | Cr | Co | Ni | Cu | Zn | As | Cd | Hg | Pb | |
A *** | C | 0.959 ± 0.057 ab | 0.240 ± 0.053 a | 0.566 ± 0.049 a | 4.230 ± 0.328 a | 27.906 ± 2.230 ab | 0.318 ± 0.046 ab | 0.007 ± 0.001 ab | 0.017 ± 0.002 ab | 0.373 ± 0.045 ab |
B *** | C | 1.335 ± 0.164 a | 0.269 ± 0.047 a | 0.574 ± 0.047 a | 4.256 ± 0.458 a | 23.987 ± 3.138 ab | 0.454 ± 0.102 a | 0.008 ± 0.0008 ab | 0.017 ± 0.001 ab | 0.619 ± 0.057 a |
C *** | O^ | 0.620 ± 0.081 b | 0.107 ± 0.011 a | 0.431 ± 0.058 a | 3.957 ± 0.364 a | 32.289 ± 5.858 a | 0.119 ± 0.030 b | 0.018 ± 0.005 a | 0.018 ± 0.002 ab | 0.307 ± 0.063 b |
D | O | 0.572 ± 0.063 b | 0.103 ± 0.018 a | 0.461 ± 0.069 a | 87.098 ± 19.481 b | 24.192 ± 2.730 b | 0.125 ± 0.022 b | 0.002 ± 0.0004 b | 0.020 ± 0.0005 ab | 0.295 ± 0.083 b |
E *** | C | 0.699 ± 0.069 b | 0.200 ± 0.044 a | 0.821 ± 0.203 a | 6.082 ± 0.885 a | 24.789 ± 1.437 ab | 0.106 ± 0.009 b | 0.016 ± 0.006 ab | 0.014 ± 0.002 a | 0.165 ± 0.035 b |
F | O | 0.973 ± 0.131 ab | 0.298 ± 0.106 aa | 1.104 ± 0.372 a | 60.603 ± 7.971 bc | 16.848 ± 1.937 ab | 0.117 ± 0.021 b | 0.004 ± 0.001 ab | 0.023 ± 0.003 b | 0.197 ± 0.034 b |
** FAO/WHO-ML | 1.3 | 50 | 10 | 10 | 99.4 | 0.0005 | 0.02 | 0.1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahlungulu, A.; Kambizi, L.; Akinpelu, E.A.; Nchu, F. Levels of Heavy Metals in Grapevine Soil and Leaf Samples in Response to Seasonal Change and Farming Practice in the Cape Winelands. Toxics 2023, 11, 193. https://doi.org/10.3390/toxics11020193
Mahlungulu A, Kambizi L, Akinpelu EA, Nchu F. Levels of Heavy Metals in Grapevine Soil and Leaf Samples in Response to Seasonal Change and Farming Practice in the Cape Winelands. Toxics. 2023; 11(2):193. https://doi.org/10.3390/toxics11020193
Chicago/Turabian StyleMahlungulu, Amanda, Learnmore Kambizi, Enoch Akinbiyi Akinpelu, and Felix Nchu. 2023. "Levels of Heavy Metals in Grapevine Soil and Leaf Samples in Response to Seasonal Change and Farming Practice in the Cape Winelands" Toxics 11, no. 2: 193. https://doi.org/10.3390/toxics11020193
APA StyleMahlungulu, A., Kambizi, L., Akinpelu, E. A., & Nchu, F. (2023). Levels of Heavy Metals in Grapevine Soil and Leaf Samples in Response to Seasonal Change and Farming Practice in the Cape Winelands. Toxics, 11(2), 193. https://doi.org/10.3390/toxics11020193