NO2, BC and PM Exposure of Participants in the Polluscope Autumn 2019 Campaign in the Paris Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Presentation of the Campaign
2.2. Sensor Qualification Tests
2.3. Data Analysis
2.3.1. Pre-Processing Phase
2.3.2. Environment Assignment
2.3.3. Post-Processing/Validation
2.4. Measurement from the Air Quality Network
2.5. Additional Experiments in Specific Environments
3. Results and Discussion
3.1. Results of All Participants in the Autumn 2019 Polluscope Campaign
3.2. Results for the Participants According to the Environments
3.2.1. Case Study
3.2.2. Results for All Participants
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santé Publique France: Pollution de L’air Ambiant: Nouvelles Estimations de son Impact sur la Santé des Français. 2021. Available online: https://www.santepubliquefrance.fr/presse/2021/pollution-de-l-air-ambiant-nouvelles-estimations-de-son-impact-sur-la-sante-des-francais (accessed on 20 April 2022).
- Impact de la Pollution de l’air sur la Mortalité: L’Ineris Contribue à L’étude de Santé Publique France-Focus sur l’effet du Confinement Ineris. Available online: https://www.ineris.fr/fr/ineris/actualites/impact-pollution-air-mortalite-ineris-contribue-etude-sante-publique-france-focus (accessed on 19 December 2022).
- Bardana, E.J. Indoor pollution and its impact on respiratory health. Ann. Allergy Asthma Immunol. 2001, 87, 33–40. [Google Scholar] [CrossRef]
- Savouré, M.; Lequy, É.; Bousquet, J.; Chen, J.; de Hoogh, K.; Goldberg, M.; Vienneau, D.; Zins, M.; Nadif, R.; Jacquemin, B. Long-term exposures to PM2.5, black carbon and NO2 and prevalence of current rhinitis in French adults: The Constances Cohort. Environ. Int. 2021, 157, 106839. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.-H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A. Air Pollution and Noncommunicable Diseases. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef] [Green Version]
- Organisation Mondiale de la Santé. Lignes Directrices OMS Relatives à la Qualité de L’air: Particules (PM2,5 et PM10), Ozone, Dioxyde D’azote, Dioxyde de Soufre et Monoxyde de Carbone: Résumé D’orientation. Organisation Mondiale de la Santé: Genève, Switzerland, 2021. Available online: https://apps.who.int/iris/bitstream/handle/10665/346555/9789240035423-fre.pdf?sequence=1&isAllowed=y (accessed on 18 April 2022).
- Hall, E.S.; Gilliam, J.H. Reference and Equivalent Methods Used to Measure National Ambient Air Quality Standards (NAAQS) Criteria Air Pollutants -Volume I; Environmental Protection Agency: Washington, DC, USA, 2016. [CrossRef]
- Agence Nationale de la Recherche: Observatoire Participatif pour la Surveillance de L’exposition Individuelle à la Pollution de L’air en Lien avec la Santé–POLLUSCOPE. 2021. Available online: https://anr.fr/Projet-ANR-15-CE22-0018 (accessed on 22 April 2022).
- Castell, N.; Dauge, F.R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 2017, 99, 293–302. [Google Scholar] [CrossRef]
- Languille, B.; Gros, V.; Nicolas, B.; Honoré, C.; Kaufmann, A.; Zeitouni, K. Personal Exposure to BC, PM and NO2 in the Paris Region Measured by Portable Sensors Worn by Volunteers. Toxics 2022, 10, 33. [Google Scholar] [CrossRef]
- Ma, J.; Tao, Y.; Kwan, M.-P.; Chai, Y. Assessing Mobility-Based Real-Time Air Pollution Exposure in Space and Time Using Smart Sensors and GPS Trajectories in Beijing. In Smart Spaces and Places; Bian, L., Ed.; Routledge: Oxford, UK, 2021; pp. 102–116. [Google Scholar]
- Borghi, F.; Spinazzè, A.; Fanti, G.; Campagnolo, D.; Rovelli, S.; Keller, M.; Cattaneo, A.; Cavallo, D.M. Commuters’ Personal Exposure Assessment and Evaluation of Inhaled Dose to Different Atmospheric Pollutants. Int. J. Environ. Res. Public Health 2020, 17, 3357. [Google Scholar] [CrossRef]
- Merritt, A.-S.; Georgellis, A.; Andersson, N.; Bero Bedada, G.; Bellander, T.; Johansson, C. Personal exposure to black carbon in Stockholm, using different intra-urban transport modes. Sci. Total Environ. 2019, 674, 279–287. [Google Scholar] [CrossRef]
- Dons, E.; Int Panis, L.; Van Poppel, M.; Theunis, J.; Willems, H.; Torfs, R.; Wets, G. Impact of time–activity patterns on personal exposure to black carbon. Atmos. Environ. 2011, 45, 3594–3602. [Google Scholar] [CrossRef]
- Paunescu, A.-C.; Attoui, M.; Bouallala, S.; Sunyer, J.; Momas, I. Personal measurement of exposure to black carbon and ultrafine particles in schoolchildren from PARIS cohort (Paris, France). Indoor Air 2017, 27, 766–779. [Google Scholar] [CrossRef]
- Williams, R.D.; Knibbs, L.D. Daily personal exposure to black carbon: A pilot study. Atmos. Environ. 2016, 132, 296–299. [Google Scholar] [CrossRef] [Green Version]
- Agrawaal, H.; Jones, C.; Thompson, J.E. Personal Exposure Estimates via Portable and Wireless Sensing and Reporting of Particulate Pollution. Int. J. Environ. Res. Public Health 2020, 17, 843. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Gong, P.; Cong, N.; Li, Z.; Zhao, Y.; Chen, Y. Assessment of personal exposure to particulate air pollution: The first result of City Health Outlook (CHO) project. BMC Public Health 2019, 19, 711. [Google Scholar] [CrossRef] [Green Version]
- Milà, C.; Salmon, M.; Sanchez, M.; Ambrós, A.; Bhogadi, S.; Sreekanth, V.; Nieuwenhuijsen, M.; Kinra, S.; Marshall, J.D.; Tonne, C. When, Where, and What? Characterizing Personal PM 2.5 Exposure in Periurban India by Integrating GPS, Wearable Camera, and Ambient and Personal Monitoring Data. Environ. Sci. Technol. 2018, 52, 13481–13490. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.M.; Sousan, S.; Streuber, D.; Zhao, K. GeoAir—A Novel Portable, GPS-Enabled, Low-Cost Air-Pollution Sensor: Design Strategies to Facilitate Citizen Science Research and Geospatial Assessments of Personal Exposure. Sensors 2021, 21, 3761. [Google Scholar] [CrossRef]
- AirParif: La Surveillance du Carbone Suie en Ile-De-France. 2021. Available online: https://www.airparif.asso.fr/actualite/2021/la-surveillance-du-carbone-suie-en-ile-de-france (accessed on 12 March 2022).
- Viegi, Simoni, Scognamiglio, Baldacci, Pistelli, Carrozzi, Annesi-Maesano: Indoor air pollution and airway disease. State Art. 2004, 8, 1401–1415.
- AirParif: Bilan 2019 de la Qualité de L’air-Iles de France. 2019. Available online: https://www.airparif.asso.fr/sites/default/files/documents/2020-06/bilan-2019_0.pdf (accessed on 14 March 2022).
- Leung, D.Y.C. Outdoor-indoor air pollution in urban environment: Challenges and opportunity. Front. Environ. Sci. 2015, 2–69. [Google Scholar] [CrossRef] [Green Version]
- ADEME: Emission de Particules et de NOx par les Véhicules Routiers. 2014. Available online: https://www.actu-environnement.com/media/pdf/news-22081-emissions-vehicules.pdf (accessed on 29 November 2022).
- AirParif: Bilan 2018 de la Qualité de L’air-Iles de France. 2018. Available online: https://www.airparif.asso.fr/sites/default/files/pdf/bilan-2018.pdf (accessed on 14 March 2022).
- AirParif: Le Carbone Suie: Enjeu Présent et Future. 2014. Available online: https://www.airparif.asso.fr/sites/default/files/documents/2021-02/NUMERO42.pdf (accessed on 12 March 2022).
- Isiugo, K.; Jandarov, R.; Cox, J.; Chillrud, S.; Grinshpun, S.A.; Hyttinen, M.; Yermakov, M.; Wang, J.; Ross, J.; Reponen, T. Predicting indoor concentrations of black carbon in residential environments. Atmos. Environ. 2019, 201, 223–230. [Google Scholar] [CrossRef]
- AirParif: La Réglementation en France. 2021. Available online: https://www.airparif.asso.fr/la-reglementation-en-france (accessed on 12 March 2022).
- Pollution de L’air: Nouvelles Connaissances sur les Particules de L’air Ambiant et L’impact du Trafic Routier. Available online: https://www.anses.fr/fr/content/pollution-de-l%E2%80%99air-nouvelles-connaissances-sur-les-particules-de-l%E2%80%99air-ambiant-et-l%E2%80%99impact (accessed on 3 February 2022).
- AethLabs: MicroAeth AE51 Quick Start Guide. 2016. Available online: https://aethlabs.com/sites/all/content/microaeth/ae51/microAeth%20AE51%20Operating%20Manual%20Rev%2006%20Updated%20Jul%202016.pdf (accessed on 8 March 2021).
- Envea: Solution Miniature pour Mesure en Continu et en temps Réel de la Pollution. 2020. Available online: https://www.envea.global/design/medias/envea_cairsens_micro-capteurs-pollution-qualite-air-odeurs_fr.pdf (accessed on 8 March 2021).
- Plantower: Digital Universal Particle Concentration Sensor PMS7003 Series Sata Manual. 2016. Available online: https://download.kamami.pl/p564008-PMS7003%20series%20data%20manua_English_V2.5.pdf (accessed on 8 March 2021).
- Languille, B.; Gros, V.; Bonnaire, N.; Pommier, C.; Honoré, C.; Debert, C.; Gauvin, L.; Srairi, S.; Annesi-Maesano, I.; Chaix, B.; et al. A methodology for the characterization of portable sensors for air quality measure with the goal of deployment in citizen science. Sci. Total Environ. 2020, 708, 134698. [Google Scholar] [CrossRef]
- Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer. Atmos. Chem. Phys. 2015, 15, 2985–3005. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.; Cruz Minguillón, M.; Moreno, T.; Querol, X.; de Miguel, E.; Capdevila, M.; Centelles, S.; Lazaridis, M. Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. J. Aerosol Sci. 2015, 90, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Boor, B.E. Urban aerosol size distributions: A global perspective. Atmos. Chem. Phys. 2021, 21, 8883–8914. [Google Scholar] [CrossRef]
- Palshikar, G.K. Simple algorithms for peak detection in time-series. In Proceedings of the 1st International Conference Advanced Data Analysis, Business Analytics and Intelligence, Pune, India, January 2009; Volume 122. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. Jair 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Yoon, J.; Jarrett, D.; van der Schaar, M. Time-series Generative Adversarial Networks. In Advances in Neural Information Processing Systems 32 (Nips 2019); Wallach, H., Larochelle, H., Beygelzimer, A., d’Alche-Buc, F., Fox, E., Garnett, R., Eds.; Neural Information Processing Systems (nips): La Jolla, CA, USA, 2019. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Advances in Neural Information Processing Systems 27 (nips 2014); Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; Neural Information Processing Systems (nips): La Jolla, CA, USA, 2014; pp. 2672–2680. [Google Scholar]
- Garcia-Ceja, E.; Galván-Tejada, C.E.; Brena, R. Multi-view stacking for activity recognition with sound and accelerometer data. Inf. Fusion. 2018, 40, 45–56. [Google Scholar] [CrossRef]
- Chaix, B.; Kestens, Y.; Duncan, S.; Merrien, C.; Thierry, B.; Pannier, B.; Brondeel, R.; Lewin, A.; Karusisi, N.; Perchoux, C. Active transportation and public transportation use to achieve physical activity recommendations? A combined GPS, accelerometer, and mobility survey study. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 124. [Google Scholar] [CrossRef]
- El Hafyani, H.; Abboud, M.; Zuo, J.; Zeitouni, K.; Taher, Y.; Chaix, B.; Wang, L. Learning the micro-environment from rich trajectories in the context of mobile crowd sensing: Application to air quality monitoring. Geoinformatica 2022. [Google Scholar] [CrossRef]
- Al-Faydhi, A.M.E. PHOTOLYSIS AND LIFETIME OF NO2, N2O AND HNO 3 USING ANALYTICAL SOFTWARE PROGRAM. Mod. Phys. Lett. B 2009, 23, 1827–1842. [Google Scholar] [CrossRef]
- Degraeuwe, B.; Thunis, P.; Clappier, A.; Weiss, M.; Lefebvre, W.; Janssen, S.; Vranckx, S. Impact of passenger car NOx emissions and NO2 fractions on urban NO2 pollution–Scenario analysis for the city of Antwerp, Belgium. Atmos. Environ. 2016, 126, 218–224. [Google Scholar] [CrossRef]
- Ma, C.-J.; Kang, G.-U. In-car and Near-road Exposure to PM2.5 and BC. Ajae 2020, 14, 146–154. [Google Scholar] [CrossRef]
- Mehel, A. Contribution à l’amélioration de la qualité de l’air oar la caractérisation et le contrôle des écoulement. Rapport HDR, Université Paris-Saclay: Gif-sur-Yvette, France, 2021. [Google Scholar]
- Murzyn, F.; Sioutas, C.; Cavellin, L.D.; Joly, F.; Baudic, A.; Mehel, A.; Cuvelier, P.; Varea, E.; Rouland, B.P. Assessment of air quality in car cabin in and around Paris from on-board measurements and comparison with 2007 data. J. Aerosol Sci. 2021, 158, 105822. [Google Scholar] [CrossRef]
- Garcia, J.N.P.M.; Coelho, L.M.R.; Gouveia, C.M.P.; Cerdeira, R.S.S.; Louro, C.S.C.; Ferreira, T.M.F.B.; Baptista, M.N.A. Analyses of human exposure to urban air quality in a children population. Int. J. Environ. Pollut. 2010, 40, 94. [Google Scholar] [CrossRef]
- Lee, J.-B.; Kim, K.-H.; Kim, H.-J.; Cho, S.-J.; Jung, K.; Kim, S.-D. Emission Rate of Particulate Matter and Its Removal Efficiency by Precipitators in Under-Fired Charbroiling Restaurants. Sci. World J. 2011, 11, 1077–1088. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, A.; Tecce, N.; Derudi, M.; Gelosa, S.; Nano, G.; Cavallo, D.M. Assessment of Modeled Indoor Air Concentrations of Particulate Matter, Gaseous Pollutants, and Volatile Organic Compounds Emitted from Candles. Hum. Ecol. Risk Assess. Int. J. 2014, 20, 962–979. [Google Scholar] [CrossRef]
- Cha, Y.; Tu, M.; Elmgren, M.; Silvergren, S.; Olofsson, U. Variation in Airborne Particulate Levels at a Newly Opened Underground Railway Station. Aerosol Air Qual. Res. 2019, 19, 737–748. [Google Scholar] [CrossRef]
Sensors | Pollutants | Average IPI Index Campaign 2019 Qualification | Average Pearson Correlation Coefficients |
---|---|---|---|
AE51 | BC | 0.75 | 0.83 |
Cairsens | NO2 | 0.69 | 0.66 |
Canarin II | PM1 | 0.83 | 0.93 |
PM2.5 | 0.82 | 0.93 | |
PM10 | 0.75 | 0.83 |
First-Level Learners | Associated Prediction Probabilities | True Label | ||||||
---|---|---|---|---|---|---|---|---|
Temperature | Humidity | Speed | NO2 | Temperature | Humidity | Speed | NO2 | |
Indoor | Indoor | Outdoor | Transport | 0.6 | 0.7 | 0.5 | 0.6 | Indoor |
PM1 (µg·m−3) | PM2.5 (µg·m−3) | PM10 (µg·m−3) | NO2 (µg·m−3) | BC (ng·m−3) | ||
---|---|---|---|---|---|---|
Day | Mean | 7 | 11 | 13 | 16 | 846 |
Hour | Mean (STD) | 6 (8) | 10 (12) | 11 (14) | 17 (10) | 769 (764) |
Median | 3 | 5 | 6 | 15 | 528 | |
Minute | p95 | 22 | 32 | 35 | 28 | 2844 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouillon, L.; Gros, V.; Abboud, M.; El Hafyani, H.; Zeitouni, K.; Alage, S.; Languille, B.; Bonnaire, N.; Naude, J.-M.; Srairi, S.; et al. NO2, BC and PM Exposure of Participants in the Polluscope Autumn 2019 Campaign in the Paris Region. Toxics 2023, 11, 206. https://doi.org/10.3390/toxics11030206
Bouillon L, Gros V, Abboud M, El Hafyani H, Zeitouni K, Alage S, Languille B, Bonnaire N, Naude J-M, Srairi S, et al. NO2, BC and PM Exposure of Participants in the Polluscope Autumn 2019 Campaign in the Paris Region. Toxics. 2023; 11(3):206. https://doi.org/10.3390/toxics11030206
Chicago/Turabian StyleBouillon, Laura, Valérie Gros, Mohammad Abboud, Hafsa El Hafyani, Karine Zeitouni, Stéphanie Alage, Baptiste Languille, Nicolas Bonnaire, Jean-Marc Naude, Salim Srairi, and et al. 2023. "NO2, BC and PM Exposure of Participants in the Polluscope Autumn 2019 Campaign in the Paris Region" Toxics 11, no. 3: 206. https://doi.org/10.3390/toxics11030206
APA StyleBouillon, L., Gros, V., Abboud, M., El Hafyani, H., Zeitouni, K., Alage, S., Languille, B., Bonnaire, N., Naude, J. -M., Srairi, S., Campos Y Sansano, A., & Kauffmann, A. (2023). NO2, BC and PM Exposure of Participants in the Polluscope Autumn 2019 Campaign in the Paris Region. Toxics, 11(3), 206. https://doi.org/10.3390/toxics11030206