Uptake of Radionuclides by Bryophytes in the Chornobyl Exclusion Zone
Abstract
:1. Introduction
- (1)
- Immediately after the incident, deposition of contaminated dust or precipitation led to the exposure of parts above the ground. Thereby, exposure rates were high enough to kill coniferous trees in the particularly affected “Red Forest” [2] and to cause pathologic leaf-fall and morphological abnormalities in deciduous trees [3].
- (2)
- After approximately one year, most radioisotopes mitigated to the soil. Subsequently, plants may have absorbed radioisotopes via their root systems, especially if the chemical properties of the radioisotopes were similar to essential nutrients, as in the case of 137Cs and potassium. This uptake was more pronounced on the sandy podzol soils in the close vicinity to the plants due to their weaker ion-binding capacity [1].
2. Materials and Methods
2.1. Sampling and Identification of Bryophytes
2.2. γ-Ray Spectroscopy of 137Cs and 241Am
2.3. Quantification of 90Sr
2.4. Statistical Analysis
3. Results and Discussion
3.1. Moss Diversity in the Study Area
3.2. 137Cesium
3.3. 241Americium
3.4. 90Strontium
4. Conclusions
- In the Chornobyl exclusion zone, a diverse flora of mosses can be found, with the highest abundance on abandoned streets and on newly formed banks of the drying cooling pond.
- 137Cs is generally accumulated by mosses, especially by the genus Bryum (Bryaceaea), which is known to accumulate heavy metals. Furthermore, 137Cs has been washed out from the very top layer of the soil, where it would be accessible for moss rhizoids. In the newly formed banks of the cooling pond, 137Cs is still available for mosses.
- 241Am uptake seems to be controlled predominantly by bioavailability, which is higher in podzol than in the cooling pond, where little degradation of hot particles takes place.
- 90Sr is taken up by mosses from soil but virtually not from mussel shells, in spite of its similarity to Ca.
- The presence or lack of functional or reduced vascular tissue in mosses does not seem to influence the uptake of any of the investigated radionuclides.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, J.T.; Beresford, N.A. Introduction. In Chernobyl: Catastrophe and Consequences, 1st ed.; Smith, J.T., Beresford, N.A., Eds.; Springer: Berlin, Germany, 2005; pp. 1–34. [Google Scholar]
- Smith, J.T.; Beresford, N.A.; Shaw, G.; Moberg, L. Radioactivity in Terrestrial Ecosystems. In Chernobyl: Catastrophe and Consequences, 1st ed.; Smith, J.T., Beresford, N.A., Eds.; Springer: Berlin, Germany, 2005; pp. 81–137. [Google Scholar]
- Kryshev, I.I.; Sazykina, T.; Beresford, N.A. Effects on Wildlife. In Chernobyl: Catastrophe and Consequences, 1st ed.; Smith, J.T., Beresford, N.A., Eds.; Springer: Berlin, Germany, 2005; pp. 267–287. [Google Scholar]
- Frahm, J.-P. Moose Als Bioindikatoren; Quelle & Meyer: Wiesbaden, Germany, 1998; 187p. [Google Scholar]
- Papastefanou, C.; Manolopoulou, M.; Sawidis, T. Lichens and mosses: Biological monitors of radioactive fallout from the Chernobyl reactor accident. J. Environ. Radioact. 1989, 9, 199–207. [Google Scholar] [CrossRef]
- Smidt, S.; Bauer, H.; Fürst, A.; Jandl, R.; Mutsch, F.; Seidel, C.; Zechmeister, H. Schwermetalle und Radionuklide in Österreichischen Waldökosystemen. Austrian J. For. Sci. 2011, 28, 251–278. [Google Scholar]
- Zarubina, N. The influence of biotic and abiotic factors on 137Cs accumulation in higher fungi after the accident at Chernobyl NPP. J. Environ. Radioact. 2016, 161, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Zarubina, N.E. 137Cs and 40K in the needles and branches of scotch pine (Pinus sylvestris L.) on the territory of chornobyl exclusion zone. Nucl. Phys. At. Energy 2019, 20, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Çevik, U.; Çelik, N. Ecological half-life of Cs-137 in mosses and lichens in the Ordu province, Turkey. J. Environ. Radioact. 2008, 100, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Wang, J.; Zhong, Q.; Bi, Q.; Zhu, R.; Du, J. Radionuclide and trace metal accumulation in a variety of mosses used as bioindicators for atmospheric deposition. Sci. Total Environ. 2021, 797, 149224. [Google Scholar] [CrossRef] [PubMed]
- Frahm, J.-P.; Frey, W. Moosflora, 4th ed.; UTB: Stuttgart, Germany, 2004; 538p. [Google Scholar]
- Ahrens, M.; Nebel, M. Die Moose Baden-Württembergs: Band 1; Eugen Ulmer: Stuttgart, Germany, 2000; Volume 1, 512p. [Google Scholar]
- Ahrens, M.; Nebel, M. Die Moose Baden-Württembergs: Band 2; Eugen Ulmer: Stuttgart, Germany, 2001; Volume 2, 529p. [Google Scholar]
- International Agency for Atomic Energy. Environmental Impact Assessment of the Drawdown of the Chernobyl NPP Cooling Pond as a Basis for Its Decommissioning and Remediation; International Atomic Energy Agency: Vienna, Austria, 2019. [Google Scholar]
- Traxler, L.; Wollenberg, A.; Steinhauser, G.; Chyzhevskyi, I.; Dubchak, S.; Großmann, S.; Günther, A.; Gupta, D.K.; Iwannek, K.-H.; Kirieiev, S.; et al. Survival of the Basidiomycete Schizophyllum commune in soil under hostile environmental conditions in the Chernobyl exclusion zone. J. Hazard. Mater. 2021, 403, 124002. [Google Scholar] [CrossRef] [PubMed]
- Google Inc. Google Earth Pro 2018, V9.0; Google Inc.: Mountain View, CA, USA, 2018.
- Rosenberg, B.L.; Ball, J.E.; Shozugawa, K.; Korschinek, G.; Hori, M.; Nanba, K.; Johnson, T.E.; Brandl, A.; Steinhauser, G. Radionuclide pollution inside the Fukushima Daiichi exclusion zone, Part 1: Depth profiles of Radiocesium and Strontium-90 in soil. Appl. Geochem. 2017, 85, 201–208. [Google Scholar] [CrossRef]
- Kocadag, M.; Musilek, A.; Steinhauser, G. On the interference of 210Pb in the determination of 90Sr using a strontium specific resin. Nucl. Technol. Radiat. Prot. 2013, 28, 163–168. [Google Scholar] [CrossRef]
- Weller, A.; Hori, M.; Shozugawa, K.; Steinhauser, G. Rapid ultra-trace determination of Fukushima-derived radionuclides in food. Food Control 2018, 85, 376–384. [Google Scholar] [CrossRef]
- Meili, M.; Braf, L.; Konitzer, K. Sediment resuspension as a long-term secondary source of Chernobyl 137Cs in lake ecosystems: The example of Blacksåstjärn (Sweden). In Freshwater and Estuarine Radioecology (Studies in Environmental Science); Desmet, G., Blust, R.J., Comans, R.N.J., Fernandez, J.A., Hilton, J., de Bettencourt, A., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 68, pp. 225–233. [Google Scholar]
- Smith, J.T.; Beresford, N.A. Radioactive fallout and environmental transfers. In Chernobyl: Catastrophe and Consequences, 1st ed.; Smith, J.T., Beresford, N.A., Eds.; Springer: Berlin, Germany, 2005; pp. 35–80. [Google Scholar]
- Adlassnig, W.; Lichtscheidl, I.; Sassmann, S.; Lendl, T.; Wernitznig, S.; Hallberg, K.B.; Hofhansl, F.; Lang, I. Heavy metal household of the former mining site Schwarzwand (Salzburg, Austria): Spontaneous self cleaning by plants and biofilms. Appl. Geochem. 2013, 35, 196–206. [Google Scholar] [CrossRef]
- Cuculovic, A.; Cuculovic, R.; Cvetic-Antic, T.; Veselinovic, D. Mosses as biomonitors for radioactivity following the Chernobyl Accident. Arch. Biol. Sci. 2011, 63, 1117–1125. [Google Scholar] [CrossRef]
- Schopfer, P.; Brennicke, A. Pflanzenphysiologie, 7th ed.; Springer: Berlin, Germany, 2010; 702p. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: San Diago, CA, USA, 1995; 898p. [Google Scholar]
- Steinhauser, G. Anthropogenic radioactive particles in the environment. J. Radioanal. Nucl. Chem. 2018, 318, 1629–1639. [Google Scholar] [CrossRef]
- Yavnyuk, A.A.; Efremova, N.N.; Protsenko, O.N.; Gudkov, D.I.; Nazarov, A.B. Fluctuating asymmetry of Zebra Mussel (Dreissena polymorpha Pall.) and floating pondweed (Potamogeton natans L.) in water bodies within the Chernobyl accident exclusion zone. Radioprotection 2009, 44, 475–479. [Google Scholar] [CrossRef] [Green Version]
- Gudkov, D.I.; Kuzmenko, M.I.; Kireev, S.I.; Nazarov, A.B.; Klenus, V.G.; Kaglyan, A.E.; Kulachinsky, A.V.; Zub, L.N. Radionuclides in components of aquatic ecosystems of the Chernobyl accident restriction zone. In 20 Years after the Chernobyl Accident: Past, Present and Future; Nova Publishers: New York, NY, USA, 2006; pp. 265–284. [Google Scholar]
- Kinney, R.M.; Manos, C.G.; Mills, E.L.; Mellina, E.; Lisk, D.J. Zebra Mussels (Dreissena polymorpha) as a biomonitoring tool for Sr90 contamination. Chemosphere 1994, 28, 729–735. [Google Scholar] [CrossRef]
- Martínez-Cortés, T.; Pomar, F.; Merino, F.; Novo-Uzal, E. A Proteomic approach to Physcomitrella patens rhizoid exudates. J. Plant Physiol. 2014, 171, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Jeske-Kaczanowska, A. Mobility and distribution of barium and strontium in profiles of podzolic soils. Soil Sci. Annu. 2013, 64, 2–7. [Google Scholar] [CrossRef]
- Mishra, S.; Arae, H.; Zamostyan, P.; Ishikawa, T.; Yonehara, H.; Sahoo, S. Sorption-desorption characteristics of uranium, cesium and strontium in typical podzol soils from Ukraine. Radiat. Prot. Dosim. 2012, 152, 238–242. [Google Scholar] [CrossRef] [PubMed]
ID | Species | Family 1 | Vascicel 2 | Position 3 | Habitat and Substrate | |
---|---|---|---|---|---|---|
#01 | Polytrichum juniperinum | Polytrichaceae (acrocarpous) | + | 51°20′54.5″ N | 30°07′40.9″ E | Open, sandy patches in a meadow, on podzol |
#02 | Polytrichum piliferum | Polytrichaceae (acrocarpous) | + | 51°20′54.5″ N | 30°07′40.9″ E | Open, sandy patches in a meadow, on podzol |
#03 | Ceratodon purpureus | Dicranaceae (acrocarpous) | ± | 51°20′54.5″ N | 30°07′40.9″ E | Open, sandy patches in a meadow, on podzol |
#04 | Polytrichum piliferum | Polytrichaceae (acrocarpous) | + | 51°22′24.9″ N | 30°08′36.3″ E | Sandy road on the main dam of the cooling pond |
#05 | Polytrichum piliferum | Polytrichaceae (acrocarpous) | + | 51°22′24.3″ N | 30°08′36.3″ E | Sandy road on the main dam of the cooling pond |
#06 | Bryum caespiticium | Bryaceae (acrocarpous) | ± | 51°22′23.4″ N | 30°08′37.7″ E | Sandy road on the main dam of the cooling pond |
#07 | Ceratodon purpureus | Dicranaceae (acrocarpous) | ± | 51°22′28.0″ N | 30°08′26.5″ E | Deciduous forest 4, on waste material (wood and plastic) |
#08 | Homalothecium philippeanum | Brachytheciaceae (pleurocarpous) | − | 51°22′28.0″ N | 30°08′26.5″ E | Deciduous forest 4, on waste material (wood and plastic) |
#09 | Plagiomnium cuspidatum | Mniaceae (acrocarpous) | ± | 51°22′28.0″ N | 30°08′26.5″ E | Deciduous forest 4, on waste material (wood and plastic) |
#10 | Bryum imbricatum | Bryaceae (acrocarpous) | ± | 51°22′11.5″ N | 30°08′26.5″ E | Shrubbery 5 on a newly formed island of the cooling pond, on sandy mud |
#11 | Bryum argenteum | Bryaceae (acrocarpous) | ± | 51°22′11.5″ N | 30°08′37.5″ E | Shrubbery 5 on a newly formed island of the cooling pond, on sandy mud |
#12 | Bryum cf. badium | Bryaceae (acrocarpous) | ± | 51°22′11.5″ N | 30°08′37.5″ E | Shrubbery 5 on a newly formed island of the cooling pond, on sandy mud |
#13 | Bryum argenteum | Bryaceae (acrocarpous) | ± | 51°22′25.1″ N | 30°08′19.3″ E | Asphalt parking space, no vegetation besides mosses |
#14 | Ceratodon purpureus | Dicranaceae (acrocarpous) | ± | 51°22′25.1″ N | 30°08′19.3″ E | Asphalt parking space, no vegetation besides mosses |
#15 | Brachythecium glaveosum | Brachytheciaceae (pleurocarpous) | − | 51°22′26.0″ N | 30°08′19.3″ E | Road side in a deciduous forest 4, on gravel |
#16 | Marchantia polymorpha | Marchantiaceae (thallose liverworts) | − | 51°20′12.1″ N | 30°09′08.1″ E | Shrubbery 5 on the newly formed shore of the cooling pond, on shells (Unio sp., Unionidae) |
#17 | Bryum × intermedium | Bryaceae (acrocarpous) | ± | 51°20′12.1″ N | 30°09′57.8″ E | Shrubbery 5 on the newly formed shore of the cooling pond, on shells (Unio sp., Unionidae) |
#18 | Pleurozium schreberi | Hypnaceae (pleurocarpous) | − | 51°22′06.9″ N | 30°08′05.7″ E | Open forest dominated by Pinus sylvestris (Pinaceae), on raw humus |
#19 | Dicranum polysetum | Dicranaceae (acrocarpous) | ± | 51°22′06.9″ N | 30°08′05.7″ E | Open forest dominated by Pinus sylvestris (Pinaceae), on raw humus |
#20 | Amblystegium serpens | Amblystegiaceae (pleurocarpous) | − | 51°22′07.2″ N | 30°08′05.7″ E | Swampy meadow, between grasses |
#21 | Orthotrichum speciosum | Orthotrichaceae (acrocarpous) | − | 51°22′27.0″ N | 30°08′05.3″ E | Deciduous forest 4, on the bark of Robinia pseudacacia (Fabaceae), 2 m above the ground |
#22 | Polytrichum juniperinum | Polytrichaceae (acrocarpous) | + | 51°24′16.9″ N | 30°03′13.2″ E | Former garden of a housing complex in Prypiat, on gravel and garden soil |
#23 | Amblystegium serpens | Amblystegiaceae (pleurocarpous) | − | 51°24′08.0″ N | 30°03′13.2″ E | Concrete floor of a decaying factory building in Prypiat |
#24 | Tortula calcicolens | Pottiaceae (acrocarpous) | ± | 51°24′27.4″ N | 30°02′31.6″ E | Asphalt parking space in Prypiat, no vegetation besides mosses |
#25 | Dicranum polysetum | Dicranaceae (acrocarpous) | ± | 51°24′26.7″ N | 30°03′53.8″ E | Concrete bollard in Prypiat |
ID | Species | 137Cs | 241Am | 90Sr (Uncertainty) | ||
---|---|---|---|---|---|---|
Radionuclides (Uncertainty) | Detection Limit | Radionuclides (Uncertainty) | Detection Limit | |||
#01 | Polytrichum juniperinum | 6.0 (5.9–8.4) | 0.402 | 0.24 (0.23–0.34) | 0.035 | Not determined |
#02 | Polytrichum piliferum | 3.6 (2.9–4.2) | 0.208 | 0.14 (0.12–0.17) | 0.04 | Not determined |
#03 | Ceratodon purpureus | 5.5 (4.9–6.9) | 0.309 | 0.22 (0.19–0.29) | 0.044 | Not determined |
#04 | Polytrichum piliferum | 3.1 (2.7–3.4) | 0.450 | 0.08 < A < 0.17 1 | 0.171 | Not determined |
#05 | Polytrichum piliferum | 6.5 (5.6–6.9) | 0.758 | 0.31 (0.25–0.35) | 0.127 | Not determined |
#06 | Bryum caespiticium | 10.9 (9.6–11.5) | 0.325 | 0.43 (0.37–0.46) | 0.066 | Not determined |
#07 | Ceratodon purpureus | 0.6 (0.5–0.7) | 0.053 | <0.001 2 | 4.36 × 10−4 | Not determined |
#08 | Homalothecium philippeanum | 0.9 (0.9–1.2) | 0.126 | <0.001 2 | 8.86 × 10−4 | Not determined |
#09 | Plagiomnium cuspidatum | 0.6 (0.6–0.8) | 0.107 | <0.001 2 | 5.12 × 10−4 | Not determined |
#10 | Bryum imbricatum | 248 (219–261) | 6.49 | <0.011 2 | 0.021 | <0.45 2 |
#11 | Bryum argenteum | 37.1 (30.8–43.4) | 1.20 | <0.003 2 | 4.32 × 10−3 | 0.64 (0.63–0.65) |
#12 | Bryum cf. badium | 157 (136.4–166.1) | 3.63 | <0.006 2 | 0.011 | <0.38 2 |
#13 | Bryum argenteum | 8.4 (6.9–9.9) | 0.278 | 0.28 (0.23–0.34) | 0.067 | 2.54 (2.53–2.55) |
#14 | Ceratodon purpureus | 3.2 (2.8–3.4) | 0.138 | 0.06 (0–0.08) | 0.039 | Not determined |
#15 | Brachythecium glaveosum | 2.3 (2.1–2.9) | 0.247 | <0.022 2 | 0.077 | Not determined |
#16 | Marchantia polymorpha | 185 (154–216) | 5.90 | <0.011 2 | 0.021 | <0.47 2 |
#17 | Bryum × intermedium | 297 (259–317) | 9.04 | <0.017 2 | 0.034 | 0.76 (0.75–0.77) |
#18 | Pleurozium schreberi | 3.0 (2.7–3.9) | 0.289 | <0.001 2 | 7.53 × 10−4 | Not determined |
#19 | Dicranum polysetum | 15.9 (13.3–18.5) | 1.22 | <0.004 2 | 8.00 × 10−3 | 12.14 (12.13–12.15) |
#20 | Amblystegium serpens | 2.9 (2.4–3.4) | 0.244 | <0.002 2 | 2.11 × 10−3 | Not determined |
#21 | Orthotrichum speciosum | 0.8 (0.8–1) | 0.069 | <0.001 2 | 3.60 × 10−4 | Not determined |
#22 | Polytrichum juniperinum | 3.0 (2.4–3.6) | 0.276 | <0.001 2 | 1.57 × 10−3 | Not determined |
#23 | Amblystegium serpens | 0.9 (0.8–1.2) | 0.109 | 0.04 (0.03–0.05) | 0.026 | Not determined |
#24 | Tortula calcicolens | 4.8 (4.1–5) | 0.627 | 0.32 (0.27–0.36) | 0.107 | Not determined |
#25 | Dicranum polysetum | 0.8 (0.8–1.1) | 0.068 | 0.015 (0.01–0.02) | 0.013 | Not determined |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schmidt, B.; Kegler, F.; Steinhauser, G.; Chyzhevskyi, I.; Dubchak, S.; Ivesic, C.; Koller-Peroutka, M.; Laarouchi, A.; Adlassnig, W. Uptake of Radionuclides by Bryophytes in the Chornobyl Exclusion Zone. Toxics 2023, 11, 218. https://doi.org/10.3390/toxics11030218
Schmidt B, Kegler F, Steinhauser G, Chyzhevskyi I, Dubchak S, Ivesic C, Koller-Peroutka M, Laarouchi A, Adlassnig W. Uptake of Radionuclides by Bryophytes in the Chornobyl Exclusion Zone. Toxics. 2023; 11(3):218. https://doi.org/10.3390/toxics11030218
Chicago/Turabian StyleSchmidt, Brigitte, Felix Kegler, Georg Steinhauser, Ihor Chyzhevskyi, Sergiy Dubchak, Caroline Ivesic, Marianne Koller-Peroutka, Aicha Laarouchi, and Wolfram Adlassnig. 2023. "Uptake of Radionuclides by Bryophytes in the Chornobyl Exclusion Zone" Toxics 11, no. 3: 218. https://doi.org/10.3390/toxics11030218
APA StyleSchmidt, B., Kegler, F., Steinhauser, G., Chyzhevskyi, I., Dubchak, S., Ivesic, C., Koller-Peroutka, M., Laarouchi, A., & Adlassnig, W. (2023). Uptake of Radionuclides by Bryophytes in the Chornobyl Exclusion Zone. Toxics, 11(3), 218. https://doi.org/10.3390/toxics11030218