Occupational Exposure and Health Impact Assessment of Diisocyanates in Finland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Air Measurement and Biomonitoring Data
2.2. Exposure Reconstruction Using Human Biomonitoring Data
2.3. Health Impact Assessment
Estimated Number of Exposed Workers in Finland
3. Results
3.1. Air Monitoring and Biomonitoring Results
3.2. Health Impact Assessment
4. Discussion
4.1. Occupational Exposure to Diisocyanates in Finland
4.2. Exposure Reconstruction, Health Impact Assessment and Related Uncertainties
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scholten, B.; Kenny, L.; Duca, R.C.; Pronk, A.; Santonen, T.; Galea, K.S.; Loh, M.; Huumonen, K.; Sleeuwenhoek, A.; Creta, M.; et al. Biomonitoring for Occupational Exposure to Diisocyanates: A Systematic Review. Ann. Work Expo. Health 2020, 64, 569–585. [Google Scholar] [CrossRef]
- Rother, D.; Schlüter, U. Occupational Exposure to Diisocyanates in the European Union. Ann. Work Expo. Health 2021, 65, 893–907. [Google Scholar] [CrossRef] [PubMed]
- Human Biomonitoring Initiative (HBM4EU) D4.9 Scoping Documents HBM4EU priority substances—Diisocyanates 2018. Available online: https://www.hbm4eu.eu/hbm4eu-substances/diisocyanates/ (accessed on 29 December 2022).
- Health Council of the Netherlands. DECOS. Di- and Triisocyanates. Health-Based Recommendation on Occupational Exposure Limits (No. 2018/20); The State Secretary of Social Affairs en Employment: The Hague, The Netherlands, 2018. [Google Scholar]
- ECHA, Committee for Risk Assessment (RAC). Opinion on Scientific Evaluation of Occupational Exposure Limits for Diisocyanates. ECHA/RAC/A77-O-0000006826-64-01/F; ECHA: Helsinki, Finland, 2020.
- Von Der Leyen, U. European Commission Regulation (EU) 2020/1149 of 3 August 2020 amending Annex XVII to Regulation (EC) No 1907/2006 of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) as Regards Diisocyanates; The European Parliament: Brussels, Belgium, 2020.
- Jones, K.; Johnson, P.D.; Baldwin, P.E.J.; Coldwell, M.; Cooke, J.; Keen, C.; Harding, A.-H.; Smith, D.; Cocker, J. Exposure to Diisocyanates and Their Corresponding Diamines in Seven Different Workplaces. Ann. Work. Expo. Health 2017, 61, 383–393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bello, D.; Herrick, C.A.; Smith, T.J.; Woskie, S.R.; Streicher, R.P.; Cullen, M.R.; Liu, Y.; Redlich, C.A. Skin exposure to isocyanates: Reasons for concern. Environ. Health Perspect. 2007, 115, 328–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redlich, C.A.; Herrick, C.A. Lung/skin connections in occupational lung disease. Curr. Opin. Allergy Clin. Immunol. 2008, 8, 115–119. [Google Scholar] [CrossRef]
- Redlich, C.A. Skin exposure and asthma: Is there a connection? Proc. Am. Thorac. Soc. 2010, 7, 134–137. [Google Scholar] [CrossRef] [Green Version]
- Scholten, B.; Westerhout, J.; Pronk, A.; Stierum, R.; Vlaanderen, J.; Vermeulen, R.; Jones, K.; Santonen, T.; Portengen, L. A physiologically-based kinetic (PBK) model for work-related diisocyanate exposure: Relevance for the design and reporting of biomonitoring studies and opportunities for further improvement. 2023; Submitted. [Google Scholar]
- Geens, T.; Dugardin, S.; Schockaert, A.; De Cooman, G.; van Sprundel, M. Air exposure assessment of TDI and biological monitoring of TDA in urine in workers in polyurethane foam industry. Occup. Environ. Med. 2012, 69, 93–98. [Google Scholar] [CrossRef]
- Tinnerberg, H.; Broberg, K.; Lindh, C.H.; Jönsson, B.A. Biomarkers of Exposure in Monday Morning Urine Samples as a Long-Term Measure of Exposure to Aromatic Diisocyanates. Int. Arch. Occup. Environ. Health 2014, 87, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Henriks-Eckerman, M.L.; Mäkelä, E.A.; Laitinen, J.; Ylinen, K.; Suuronen, K.; Vuokko, A.; Sauni, R. Role of dermal exposure in systemic intake of methylenediphenyl diisocyanate (MDI) among construction and boat building workers. Toxicol. Lett. 2015, 232, 595–600. [Google Scholar] [CrossRef]
- Bello, A.; Xue, Y.; Gore, R.; Woskie, S.; Bello, D. Assessment and control of exposures to polymeric methylene diphenyl diisocyanate (pMDI) in spray polyurethane foam applicators. Int. J. Hyg. Environ. Health 2019, 222, 804–815. [Google Scholar] [CrossRef]
- Lyons, M.A.; Yang, R.S.; Mayeno, A.N.; Reisfeld, B. Computational toxicology of chloroform: Reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data. Environ. Health Perspect. 2008, 116, 1040–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maître, A.; Berode, M.; Perdrix, A.; Stoklov, M.; Mallion, J.M.; Savolainen, H. Urinary hexane diamine as an indicator of occupational exposure to hexamethylene diisocyanate. Int. Arch. Occup. Environ. Health 1996, 69, 65–68. [Google Scholar] [CrossRef] [PubMed]
- Sennbro, C.J.; Littorin, M.; Tinnerberg, H.; Jönsson, B.A. Upper reference limits for biomarkers of exposure to aromatic diisocyanates. Int. Arch. Occup. Environ. Health 2005, 78, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, C.; Nikkilä, K.; Henriks-Eckerman, M.L.; Peltonen, K.; Engströrm, K. Biological monitoring of aromatic diisocyanates in workers exposed to thermal degradation products of polyurethanes. J. Environ. Monit. 2002, 4, 711–716. [Google Scholar] [CrossRef] [PubMed]
- National Health and Nutrition Examination Survey (NHANES). Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables, March 2021; Centers for Disease Control and Prevention, National Center for Environmental Health: Atlanta, GA, USA, 2021.
- Robert, A.; Ducos, P.; Francin, J.M.; Marsan, P. Biological monitoring of workers exposed to 4,4′-methylenediphenyl diisocyanate (MDI) in 19 French polyurethane industries. Int. Arch. Occup. Environ. Health 2007, 80, 412–422. [Google Scholar] [CrossRef]
- Collins, J.J.; Anteau, S.; Conner, P.R.; Cassidy, L.D.; Doney, B.; Wang, M.L.; Kurth, L.; Carson, M.; Molenaar, D.; Redlich, C.A.; et al. Incidence of Occupational Asthma and Exposure to Toluene. Diisocyanate in the United States Toluene Diisocyanate Production Industry. J. Occup. Environ. Med. 2017, 59, S22–S27. [Google Scholar] [CrossRef]
- Pronk, A.; Preller, L.; Doekes, G.; Wouters, I.M.; Rooijackers, J.; Lammers, J.W.; Heederik, D. Different respiratory phenotypes are associated with isocyanate exposure in spray painters. Eur. Respir. J. 2009, 33, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Kauppinen, T.; Uuksulainen, S.; Saalo, A.; Mäkinen, I.; Pukkala, E. Use of the Finnish Information System on Occupational Exposure (FINJEM) in Epidemiologic, Surveillance, and Other Applications. Ann. Occup. Hyg. 2014, 58, 380–396. [Google Scholar]
- ECHA. Background Document to the Opinion on the Annex XV Dossier Proposing Restrictions on Diisocyanates. ECHA/RAC/RESO-0000001412-86-174/F; ECHA/SEAC/RES-O-0000006573-71-02/F; ECHA: Helsinki, Finland, 2018.
- The Advisory Committee on Safety and Health at Work (ACSH). Opinion on an EU Binding Occupational Exposure Limit Value (BOEL) for Diisocyanates under the Chemical Agents Directive 98/24/EC. Doc. 007-21 Adopted on 24/11/2021; European Commission: Brussels, Belgium, 2021.
- American Conference of Governmental Industrial Hygienists (ACGIH) 1,6-Hexamethylene diisocyanate BEI. ACGIH, Cincinnati, USA. 2015. Available online: https://www.acgih.org/16-hexamethylene-diisocyanate/ (accessed on 29 December 2022).
- American Conference of Governmental Industrial Hygienists (ACGIH) Toluene diisocyanate-2,4- or 2,6- or mixture of isomers BEI. ACGIH, Cincinnati, USA. 2016. Available online: https://www.acgih.org/toluene-diisocyanate-24-or-26-or-as-a-mixture/ (accessed on 29 December 2022).
- Leng, G. Hexamethylene Diisocyanate (HDI) [BAT Value Documentation, 2012]. MAK-Collect. Occup. Health Saf. 2022, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Leng, G.; Drexler, H.; Hartwig, A.; MAK Commission; Arand, M. Toluene diisocyanates Addendum for evaluation of a BAT value. MAK Collect. Occup. Health Saf. 2021, 6, Doc042. [Google Scholar]
- Sparer, J.; Stowe, M.H.; Bello, D.; Liu, Y.; Gore, R.J.; Youngs, F.; Cullen, M.R.; Redlich, C.A.; Woskie, S.R. Isocyanate exposures in autobody shop work: The SPRAY study. J. Occup. Environ. Hyg. 2004, 1, 570–581. [Google Scholar] [CrossRef]
- Creely, K.S.; Hughson, G.W.; Cocker, J.; Jones, K. Assessing Isocyanate Exposures in Polyurethane Industry Sectors Using Biological and Air Monitoring Methods. Ann. Occup. Hyg. 2006, 50, 609–621. [Google Scholar]
- Pronk, A.; Tielemans, E.; Skarping, G.; Bobeldijk, I.; Van Hemmen, J.; Heederik, D.; Preller, L. Inhalation exposure to isocyanates of car body repair shop workers and industrial spray painters. Ann. Occup. Hyg. 2006, 50, 1–14. [Google Scholar] [PubMed] [Green Version]
- Fent, K.W.; Trelles Gaines, L.G.; Thomasen, M.; Flack, S.L.; Herring, A.H.; Whittaker, S.G.; Nylander-French, A. Quantification and Statistical Modeling-Part I: Breathing-Zone Concentrations of Monomeric and Polymeric 1,6-Hexamethylene Diisocanate. Ann. Occup. Hyg. 2009, 53, 677–689. [Google Scholar] [PubMed] [Green Version]
- Bello, A.; Xue, Y.; Gore, R.; Woskie, S.; Bello, D. Exposures and urinary biomonitoring of aliphatic isocyanates in construction metal structure coating. Int. J. Hyg. Environ. Health 2020, 226, 113495. [Google Scholar] [CrossRef] [PubMed]
- Crespo, J.; Galán, J. Exposure to MDI during the process of insulating buildings with sprayed polyurethane foam. Ann. Occup. Hyg. 1999, 43, 415–419. [Google Scholar] [CrossRef] [PubMed]
- Lesage, J.; Stanley, J.; Karoly, W.J.; Lichtenberg, F.W. Airborne methylene diphenyl diisocyanate (MDI) concentrations associated with the aplication of polyurethane spray foam in residential construction. J. Occup. Environ. Hyg. 2007, 4, 145–155. [Google Scholar] [CrossRef]
- Puscasu, S.; Aubin, S.; Cloutier, Y.; Sarazin, P.; Tra, H.V.; Gagné, S. CIP10 optimization for 4,4-methylene diphenyl diisocyanate aerosol sampling and field comparison with impinger method. Ann. Occup. Hyg. 2015, 59, 347–357. [Google Scholar] [CrossRef]
- Kääriä, K.; Hirvonen, A.; Norppa, H.; Piirilä, P.; Vainio, H.; Rosenberg, C. Exposure to 2,4- and 2,6-toluene diisocyanate (TDI) during production of flexible foam: Determination of airborne TDI and urinary 2,4- and 2,6-toluenediamine (TDA). Analyst 2001, 126, 1025–1031. [Google Scholar] [CrossRef]
- Sennbro, C.J.; Lindh, C.H.; Ostin, A.; Welinder, H.; Jönsson, B.A.; Tinnerberg, H. A survey of airborne isocyanate exposure in 13 Swedish polyurethane industries. Ann. Occup. Hyg. 2004, 48, 405–414. [Google Scholar]
- Tinnerberg, H.; Mattsson, C. Usage of air monitoring and biomarkers of isocyanate exposure to assess the effect of a control intervention. Ann. Occup. Hyg. 2008, 52, 187–194. [Google Scholar] [PubMed] [Green Version]
- Austin, S. Biological monitoring of TDI-derived amines in polyurethane foam production. Occup. Med. 2007, 57, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Gui, W.; Wisnewski, A.V.; Neamtiu, I.; Gurzau, E.; Sparer, J.A.; Stowe, M.H.; Liu, J.; Slade, M.D.; Rusu, O.A.; Redlich, C.A. Inception cohort study of workers exposed to toluene diisocyanate at a polyurethane foam factory: Initial one-year follow-up. Am. J. Ind. Med. 2014, 57, 1207–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabbioni, G.; Wesp, H.; Lewalter, J.; Rumler, R. Determination of isocyanate biomarkers in construction site workers. Biomarkers 2007, 12, 468–483. [Google Scholar] [CrossRef]
- Sennbro, C.J.; Lindh, C.H.; Mattsson, C.; Jönsson, B.A.G.; Tinnerberg, H. Biological monitoring of exposure to 1,5-naphthalene diisocyanate and 4,4’-methylenediphenyl diisocyanate. Int. Arch. Occup. Environ. Health 2006, 79, 647–653. [Google Scholar] [CrossRef] [Green Version]
- Cocker, J.; Cain, J.; Baldwin, P.; McNally, K.; Jones, K. A survey of occupational exposure to 4,4′-methylene-bis (2-chloroaniline) (MbOCA) in the UK. Ann. Occup. Hyg. 2009, 53, 499–507. [Google Scholar] [PubMed] [Green Version]
- Keen, C.; Coldwell, M.; McNally, K.; Baldwin, P.; McAlinden, J.; Cocker, J. A follow up study of occupational exposure to 4,4′-methylene-bis(2-chloroaniline) (MbOCA) and isocyanates in polyurethane manufacture in the UK. Toxicol. Lett. 2012, 213, 3–8. [Google Scholar] [CrossRef]
- Säkkinen, K.; Tornaeus, J.; Hesso, A.; Hirvonen, A.; Vainio, H.; Norppa, H.; Rosenberg, C. Protein adducts as biomarkers of exposure to aromatic diisocyanates in workers manufacturing polyurethane (PUR) foam. J. Environ. Monit. 2011, 13, 957–965. [Google Scholar] [CrossRef]
- Gaines, L.G.; Fent, K.W.; Flack, S.L.; Thomasen, J.M.; Ball, L.M.; Richardson, D.B.; Ding, K.; Whittaker, S.G.; Nylander-french, L.A. Urine 1,6-hexamethylene diamine (HDA) levels among workers exposed to 1,6-hexamethylene diisocyanate (HDI). Ann. Occup. Hyg. 2010, 54, 678–691. [Google Scholar]
- Jones, K.; Cocker, J.; Piney, M. Isocyanate exposure control in motor vehicle paint spraying: Evidence from biological monitoring. Ann. Occup. Hyg. 2013, 57, 200–209. [Google Scholar]
- Pronk, A.; Yu, F.; Vlaanderen, J.; Tielemans, E.; Preller, L.; Bobeldijk, I.; Deddens, J.A.; Latza, U.; Baur, X.; Heederik, D. Dermal, inhalation, and internal exposure to 1,6-HDI and its oligomers in car body repair shop workers and industrial spray painters. Occup. Environ. Med. 2006, 63, 624–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cocker, J.; Mason, H.J.; Warren, N.D.; Cotton, R.J. Creatinine adjustment of biological monitoring results. Occup. Med. 2011, 61, 349–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finnish Institute of Occupational Health. Ammattitaudit ja Ammattitautiepäilyt 2018; Työterveyslaitos: Helsinki, Finland, 2022; ISBN 978-952-261-995-2. (In Finnish) [Google Scholar]
- Work-Life Knowledge Service, Recognized Occupational Diseases in the Working-Age Population, Finnish Institute of Occupational Health. 2022. Available online: https://www.tyoelamatieto.fi/en/dashboards/occupational-diseases (accessed on 29 December 2022).
Excess Risk Over Working Life Period | Exposure–Response Relations in μg/m3 NCO in Air 1 |
---|---|
0.1% | <0.025 |
0.5% | 0.027–0.040 |
1% | 0.055–0.070 |
2% | 0.12–0.19 |
3% | 0.22–0.33 |
4% | 0.40–0.48 |
5% | >0.67 |
Exposed Occupation Groups | Estimated Total Number of Workers (n) | Estimated Number of Exposed Workers (Range, %) | Mean Estimated Number of Exposed Workers (n, %) |
---|---|---|---|
Construction workers, finishing tasks | 25,300 | 2500–9000 1 (10–36) | 5700 (23) |
Motor vehicle service and repair workers (painting) | 22,000 | 8100 1–10,600 2 (37–48) | 9300 (42) |
Assemblers of machinery and electric devices | 14,600 | 1500 1 (10) | 1500 (10) |
Furniture manufacture workers | 5300 | 500 1–1000 2 (10–19) | 800 (15) |
Process workers in plastic product industry | 4000 | 800 2–1000 1 (20–25) | 900 (23) |
Total | 71,200 | 18,200 (26) |
Sector | Diisocyanate | Air Monitoring Results (µg/m3 NCO) 1 | |||
---|---|---|---|---|---|
(N of Air Samples) | GM | Median (P50) | P95 | Max | |
Construction | MDI (n = 37) ≥LOQ n = 7 (19%) | 0.01 | <LOQ | 0.2 | 0.9 |
TDI (n = 3) ≥LOQ n = 1 (33%) | - | - | - | 0.06 | |
HDI (n = 6) ≥LOQ n = 0 (0%) | <LOQ | - | - | <LOQ | |
Motor vehicle manufacturing and repair | MDI (n = 60) ≥LOQ n = 27 (45%) | 0.05 | <LOQ | 23.8 | 90.5 |
TDI (n = 7) ≥LOQ n = 4 (57%) | 0.2 | 0.2 | - | 8.6 | |
HDI (n = 81) ≥LOQ n = 63 (78%) | 0.2 | 0.2 | 8.1 | 153.0 | |
Manufacture of polyurethane, plastic products or furniture | MDI (n = 124) ≥LOQ n = 75 (61%) | 0.04 | 0.02 | 0.8 | 12.4 |
TDI (n = 56) ≥LOQ n = 40 (71%) | 0.3 | 0.3 | 8.0 | 22.3 | |
HDI (n = 13) ≥LOQ n = 4 (31%) | 0.02 | <LOQ | - | 0.03 | |
Assembly of industrial products | MDI (n = 154) ≥LOQ n = 76 (49%) | 0.04 | <LOQ | 1.1 | 30.7 |
TDI (n = 51) ≥LOQ n = 25 (49%) | 0.1 | <LOQ | 11.6 | 25.5 | |
HDI (n = 36) ≥LOQ n = 11 (31%) | 0.02 | <LOQ | 0.5 | 1.0 | |
All air monitoring samples 2 | MDI (n = 390) ≥LOQ n = 191 (49%) | 0.03 | <LOQ | 1.2 | 90.5 |
TDI (n = 118) ≥LOQ n = 71 (60%) | 0.2 | 0.1 | 8.2 | 25.5 | |
HDI (n = 138) ≥LOQ n = 80 (58%) | 0.1 | 0.03 | 6.6 | 153.0 | |
IPDI (n = 52) ≥LOQ n = 35 (67%) | 0.03 | 0.03 | 0.3 | 1.5 |
Sector | Metabolite | Urinary Biomonitoring Results (µg/L) 1 | |||
---|---|---|---|---|---|
(N of Urine Samples) | GM | Median (P50) | P95 | Max | |
Construction | MDA (n = 48) ≥LOQ n = 35 (73%) | 0.3 | 0.4 | 1.4 | 4.0 |
TDA (n = 8) ≥LOQ n = 0 (0%) | <LOQ | <LOQ | - | <LOQ | |
HDA (n = 8) ≥LOQ n = 3 (38%) | 0.9 | <LOQ | - | 135.2 | |
Motor vehicle manufacturing and repair | MDA (n = 54) ≥LOQ n = 10 (19%) | 0.3 | <LOQ | 1.1 | 19.6 |
TDA (n = 40) ≥LOQ n = 4 (10%) | 0.2 | <LOQ | - | 0.3 | |
HDA (n = 43) ≥LOQ n = 8 (19%) | 0.4 | <LOQ | 15.7 | 44.4 | |
Manufacture of polyurethane, plastic products or furniture | MDA (n = 82) ≥LOQ n = 24 (29%) | 0.3 | <LOQ | 1.3 | 6.8 |
TDA (n = 70) ≥LOQ n = 11 (16%) | 0.2 | <LOQ | 0.3 | 10.4 | |
HDA (n = 35) ≥LOQ n = 8 (23%) | 0.4 | <LOQ | 16.6 | 20.0 | |
Assembly of industrial products | MDA (n = 177) ≥LOQ n = 47 (27%) | 0.2 | <LOQ | 0.5 | 81.5 |
TDA (n = 98) ≥LOQ n = 8 (8%) | 0.1 | <LOQ | 0.3 | 3.3 | |
HDA (n = 92) ≥LOQ n = 14 (15%) | 0.2 | <LOQ | 2.8 | 34.7 | |
All biomonitoring samples | MDA (n = 366) ≥LOQ n = 119 (33%) | 0.2 | <LOQ | 1.2 | 81.5 |
TDA (n = 222) ≥LOQ n = 25 (11%) | 0.2 | <LOQ | 0.3 | 10.4 | |
HDA (n = 181) ≥LOQ n = 33 (18%) | 0.3 | <LOQ | 9.6 | 135.2 | |
IPDA (n = 155) ≥LOQ n = 13 (8%) | 0.1 | <LOQ | 0.6 | 16.3 |
Sectors | Diisocyanate | Exposure Reconstruction (µg NCO/m3) | ||
---|---|---|---|---|
GM | AM | P95 | ||
Construction 1 | MDI | 0.0003 | 0.28 | 0.93 |
Motor vehicle manufacturing and repair 1 | MDI | 0.06 | 0.68 | 0.73 |
HDI | 0.0001 | 9.7 | 32.3 | |
Manufacture of polyurethane, plastic products or furniture | MDI | 0.0004 | 0.35 | 1.21 |
TDI | 0.0001 | 0.21 | 0.23 | |
HDI | 0.0001 | 4.61 | 37.9 | |
Assemblers of industrial products | MDI | 0.0002 | 1.77 | 0.25 |
TDI | 2 × 10−7 | 0.08 | 0.08 | |
HDI | 3 × 10−16 | 3.75 | 2.49 |
Sectors (Estimated Number of Exposed Workers) | Diisocyanate | Excess Risk (%) | Number of Excess Cases of BHR |
---|---|---|---|
Construction (n = 5700) 1 | MDI | 2.0 | 113 |
Motor vehicle manufacturing and repair (n = 9300) 1 | MDI | 2.6 | 244 |
HDI | 1.5 | 144 | |
Manufacture of polyurethane, plastic products or furniture (n = 1700) | MDI | 2.1 | 35 |
TDI | 0.7 | 12 | |
HDI | 1.5 | 26 | |
Assembly of industrial products (n = 1500) | MDI | 1.6 | 24 |
TDI | 0.6 | 9 | |
HDI | 0.7 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huuskonen, P.; Porras, S.P.; Scholten, B.; Portengen, L.; Uuksulainen, S.; Ylinen, K.; Santonen, T. Occupational Exposure and Health Impact Assessment of Diisocyanates in Finland. Toxics 2023, 11, 229. https://doi.org/10.3390/toxics11030229
Huuskonen P, Porras SP, Scholten B, Portengen L, Uuksulainen S, Ylinen K, Santonen T. Occupational Exposure and Health Impact Assessment of Diisocyanates in Finland. Toxics. 2023; 11(3):229. https://doi.org/10.3390/toxics11030229
Chicago/Turabian StyleHuuskonen, Pasi, Simo P. Porras, Bernice Scholten, Lützen Portengen, Sanni Uuksulainen, Katriina Ylinen, and Tiina Santonen. 2023. "Occupational Exposure and Health Impact Assessment of Diisocyanates in Finland" Toxics 11, no. 3: 229. https://doi.org/10.3390/toxics11030229
APA StyleHuuskonen, P., Porras, S. P., Scholten, B., Portengen, L., Uuksulainen, S., Ylinen, K., & Santonen, T. (2023). Occupational Exposure and Health Impact Assessment of Diisocyanates in Finland. Toxics, 11(3), 229. https://doi.org/10.3390/toxics11030229