Electrokinetic Remediation of Zn-Polluted Soft Clay Using a Novel Electrolyte Chamber Configuration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Simulated Zn-Contaminated Soft Clay
2.3. Novel EKR Experiments
2.4. Test Schemes
3. Results and Discussion
3.1. pH in Electrolytes and Dry Soil
3.2. Heavy Metal Concentration
3.3. Electric Current
3.4. Water Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alshawabkeh, A.N. Electrokinetic soil remediation: Challenges and opportunities. Sep. Sci. Technol. 2009, 44, 2171–2187. [Google Scholar] [CrossRef]
- Shin, S.Y.; Park, S.M.; Baek, K. Soil moisture could enhance electrokinetic remediation of arsenic-contaminated soil. Environ. Sci. Pollut. R. 2017, 24, 9820–9825. [Google Scholar] [CrossRef] [PubMed]
- Hassan, I.; Mohamedelhassan, E.; Yanful, E.K. Solar powered electrokinetic remediation of Cu polluted soil using a novel anode configuration. Electrochim. Acta 2015, 181, 58–67. [Google Scholar] [CrossRef]
- Wen, D.; Fu, R.; Li, Q. Removal of inorganic contaminants in soil by electrokinetic remediation technologies: A review. J. Hazard Mater. 2021, 401, 123345. [Google Scholar] [CrossRef] [PubMed]
- Cameselle, C.; Gouveia, S. Electrokinetic remediation for the removal of organic contaminants in soils. Current Opinion in Electrochemistry 2018, 11, 41–47. [Google Scholar] [CrossRef]
- Andrade, D.C.; dos Santos, E.V. Combination of electrokinetic remediation with permeable reactive barriers to remove organic compounds from soils. Curr. Opin. Electrochem. 2020, 22, 136–144. [Google Scholar] [CrossRef]
- Lageman, R. Electroreclamation applications in the netherlands. Env. Sci. Technol. 1993, 27, 2648–2650. [Google Scholar] [CrossRef]
- Chung, H.I. Field applications on electrokinetic reactive pile technology for removal of Cu from in-situ and excavated soils. Sep. Sci. Technol. 2009, 44, 2341–2353. [Google Scholar] [CrossRef]
- Kim, B.K.; Baek, K.; Ko, S.H.; Yang, T.W. Research and field experiences on electrokinetic remediation in South Korea. Sep. Purif. Technol. 2011, 79, 116–123. [Google Scholar] [CrossRef]
- Li, G.; Guo, S.; Li, S.; Zhang, L.; Wang, S. Comparison of approaching and fixed anodes for avoiding the ‘focusing’effect during electrokinetic remediation of chromium-contaminated soil. Chem. Eng. J. 2012, 203, 231–238. [Google Scholar] [CrossRef]
- Han, D.; Wu, X.; Li, R.; Tang, X.; Xiao, S.; Scholz, M. Critical review of electro-kinetic remediation of contaminated soils and sediments: Mechanisms, performances and technologies. Water Air Soil Pollut. 2021, 232, 335. [Google Scholar] [CrossRef]
- Nogueira, M.G.; Pazos, M.; Sanromán, M.; Cameselle, C. Improving on electrokinetic remediation in spiked Mn kaolinite by addition of complexing agents. Electrochim. Acta 2007, 52, 3349–3354. [Google Scholar] [CrossRef]
- Song, Y.; Cang, L.; Zuo, Y.; Yang, J.; Zhou, D.; Duan, T.; Wang, R. EDTA-enhanced electrokinetic remediation of aged electroplating contaminated soil assisted by combining dual cation-exchange membranes and circulation methods. Chemosphere 2020, 243, 125439. [Google Scholar] [CrossRef] [PubMed]
- Hahladakis, J.N.; Lekkas, N.; Smponias, A.; Gidarakos, E. Sequential application of chelating agents and innovative surfactants for the enhanced electroremediation of real sediments from toxic metals and PAHs. Chemosphere 2014, 105, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Ammami, M.-T.; Benamar, A.; Portet-Koltalo, F. Enhanced Electroremediation of Metals from Dredged Marine Sediment under Periodic Voltage Using EDDS and Citric Acid. J. Mar. Sci. Eng. 2022, 10, 553. [Google Scholar] [CrossRef]
- Park, S.-W.; Lee, J.-Y.; Yang, J.-S.; Kim, K.-J.; Baek, K. Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. J. Hazard. Mater. 2009, 169, 1168–1172. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Z.; Li, A.; Cui, C. Enhanced electrokinetic remediation of heavy metals contaminated soil by biodegradable complexing agents. Environ. Pollut. 2021, 283, 117111. [Google Scholar] [CrossRef]
- Cameselle, C.; Gouveia, S.; Cabo, A. Enhanced electrokinetic remediation for the removal of heavy metals from contaminated soils. Appl. Sci. 2021, 11, 1799. [Google Scholar] [CrossRef]
- Tang, J.; He, J.; Tang, H.; Wang, H.; Sima, W.; Liang, C.; Qiu, Z. Heavy metal removal effectiveness, flow direction and speciation variations in the sludge during the biosurfactant-enhanced electrokinetic remediation. Sep. Purif. Technol. 2020, 246, 116918. [Google Scholar] [CrossRef]
- Beyrami, H. Effect of different treatments on electrokinetic remediation of Zn, Pb and Cd from a contaminated calcareous soil. Chin. J. Chem. Eng. 2021, 38, 255–265. [Google Scholar] [CrossRef]
- Kim, W.-S.; Park, G.-Y.; Kim, D.-H.; Jung, H.-B.; Ko, S.-H.; Baek, K. In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: Influence of electrode configuration. Electrochim. Acta 2012, 86, 89–95. [Google Scholar] [CrossRef]
- Martínez-Huitle, C.A.; Rodrigo, M.A.; Sirés, I.; Scialdone, O. A critical review on latest innovations and future challenges of electrochemical technology for the abatement of organics in water. Appl. Catal. B Environ. 2023, 328, 122430. [Google Scholar] [CrossRef]
- Reuss, F.F. Charge-induced flow. Proc. Imp. Soc. Nat. Mosc. 1809, 3, 327–344. [Google Scholar]
- Cornu, S.; Breeze, D.; Saada, A.; Baranger, P. The influence of pH, electrolyte type, and surface coating on arsenic (V) adsorption onto kaolinites. Soil. Sci. Soc. Am. J. 2003, 67, 1127–1132. [Google Scholar] [CrossRef]
- Miretzky, P.; Munoz, C.; Carrillo-Chávez, A. Experimental Zn (II) retention in a sandy loam soil by very small columns. Chemosphere 2006, 65, 2082–2089. [Google Scholar] [CrossRef] [PubMed]
- Heidari, G.; Mousavi Khoie, S.M.; Yousefi, M.; Ghasemifard, M. Kinetic model of copper electrodeposition in sulfate solution containing trisodium citrate complexing agent. Russ. J. Electrochem. 2016, 52, 470–476. [Google Scholar] [CrossRef]
- Li, J.; Ding, Y.; Wang, K.; Li, N.; Qian, G.; Xu, Y.; Zhang, J. Comparison of humic and fulvic acid on remediation of arsenic contaminated soil by electrokinetic technology. Chemosphere 2020, 241, 125038. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, L.; Yang, T.; Yan, X.; Pei, X.; Huang, X.; Long, G.; Xue, R. Laboratory experiments on HMC coupling mechanisms in innovative clean foundation treatments for Zn-contaminated dredger fills. Sci. Total. Env. 2020, 702, 134939. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ni, P.; Yi, Y. Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils. Sci. Total. Env. 2019, 671, 741–753. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tan, W.; Yao, K. Laboratory experiments on cyclic and progressive electrokinetic remediation and electroosmotic consolidation for Zn-contaminated soft clay. Arab. J. Geosci. 2021, 14, 12. [Google Scholar] [CrossRef]
- Benamar, A.; Tian, Y.; Portet-Koltalo, F.; Ammamid, M.T.; Giusti-Petrucciani, N.; Song, Y.; Boulangé-Lecomtec, C. Enhanced electrokinetic remediation of multi-contaminated dredged sediments and induced effect on their toxicity. Chemosphere 2019, 228, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Zhai, J.; Wang, A.; Li, J.; Xu, C.; Wan, Y. Experimental Study on In-situ Leaching and Electrokinetic Remediation of Composite Heavy Metal-contaminated Soil. Ag. Biotech. 2020, 9, 73–78. [Google Scholar] [CrossRef]
- Bahemmat, M.; Farahbakhsh, M.; Kianirad, M. Humic substances-enhanced electroremediation of heavy metals contaminated soil. J. Hazard Mater. 2016, 312, 307–318. [Google Scholar] [CrossRef] [PubMed]
- McBride, M.B.; Blasiak, J.J. Zinc and copper solubility as a function of pH in an acid soil. Soil Sci. Soc. Am. J. 1979, 43, 866–870. [Google Scholar] [CrossRef]
- Ke, Y.; Min, X.-B.; Chai, L.-Y.; Zhou, B.-S.; Xue, K. Sulfidation behavior of Zn and ZnS crystal growth kinetics for Zn (OH) 2016,2–S–NaOH hydrothermal system. Hydrometallurgy 2016, 161, 166–173. [Google Scholar] [CrossRef]
- Reddy, K.R.; Chinthamreddy, S. Sequentially enhanced electrokinetic remediation of heavy metals in low buffering clayey soils. J. Geotech. Geoenviron. 2003, 129, 263–277. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Particle size analysis | |
Fine sand (%) | 15 |
Silt (%) | 49 |
Clay (%) | 36 |
Water content (%) | 6 |
pH | 6.5 |
Liquid limit (%) | 43 |
Plastic limit (%) | 23 |
Zn (mg/kg) | 44 |
Test Number | Anolyte Solution | Catholyte Solution | Electrolyte Refreshed Time a | Initial Zn Concentration (mg/kg) | Total Processing Time b | Initial Soil Moisture Content (%) | Initial Electrolyte Volume for Each Electrode Chamber (mL) | Applied Voltage (V) |
---|---|---|---|---|---|---|---|---|
FT1 | Distilled water | Distilled water | / | 1983.2 ± 1.4 | 1 day | 55.0 ± 0.5 | 200 | 20 |
FT2 | Distilled water | 0.2 M CA | ||||||
FT3 | 0.2 M CA | 0.2 M CA | ||||||
FT4 | 1.76 M NaCl | 0.2 M CA | ||||||
T5 | 0.1 M EDTA | 0.1 M EDTA | 1 day | 3175.4 ± 2.7 | 17 days | |||
T6 | 0.2 M CA | 0.2 M CA | 1 day or 2 days | 48 days | ||||
T7 | 0.05 M FA | 0.05 M FA | 1 day | 6 days |
Test Number | Extracted Mass of Zn in Electrolytes me (mg) | Initial Zn Mass in Soil m0 (mg) | Removal Efficiency (me/m0) % |
---|---|---|---|
T5 | 99.9 ± 7.6 | 7169.2 ± 12.9 | 1.4 ± 0.1 |
T6 | 6667.2 ± 11.8 | 93.0 ± 0.0 | |
T7 | 56.3 ± 6.3 | 0.8 ± 0.1 |
Test Number | Soil Removal Efficiency (1-c/c0) % | Mass of Zn in the Soil (%) | Mass of Zn in the Electrolyte (%) | Error (%) | |||
---|---|---|---|---|---|---|---|
S1 | S2 | S3 | Average | ||||
T5 | 78.9 ± 0.3 | −28.3 ± 0.1 | 64.1 ± 1.4 | 38.2 ± 0.6 | 61.8 ± 0.6 | 1.4 ± 0.1 | 36.8 ± 0.7 |
T6 | 97.2 ± 0.2 | 96.4 ± 1.1 | 89.8 ± 0.5 | 94.5 ± 0.6 | 5.5 ± 0.6 | 93.0 ± 0.0 | 1.5 ± 0.6 |
T7 | 94.7 ± 0.2 | 72.7 ± 0.3 | 34.3 ± 0.8 | 67.2 ± 0.4 | 32.8 ± 0.4 | 0.8 ± 0.1 | 66.4 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Z.; Tan, W.; Gong, J.; Wei, G. Electrokinetic Remediation of Zn-Polluted Soft Clay Using a Novel Electrolyte Chamber Configuration. Toxics 2023, 11, 263. https://doi.org/10.3390/toxics11030263
Sun Z, Tan W, Gong J, Wei G. Electrokinetic Remediation of Zn-Polluted Soft Clay Using a Novel Electrolyte Chamber Configuration. Toxics. 2023; 11(3):263. https://doi.org/10.3390/toxics11030263
Chicago/Turabian StyleSun, Zhaohua, Wanxia Tan, Jian Gong, and Guowei Wei. 2023. "Electrokinetic Remediation of Zn-Polluted Soft Clay Using a Novel Electrolyte Chamber Configuration" Toxics 11, no. 3: 263. https://doi.org/10.3390/toxics11030263
APA StyleSun, Z., Tan, W., Gong, J., & Wei, G. (2023). Electrokinetic Remediation of Zn-Polluted Soft Clay Using a Novel Electrolyte Chamber Configuration. Toxics, 11(3), 263. https://doi.org/10.3390/toxics11030263