Prediction of the Impact of Land Use and Soil Type on Concentrations of Heavy Metals and Phthalates in Soil Based on Model Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Soil Analysis
2.2.1. Reagents and Standards
2.2.2. Sample Preparation
2.2.3. Instrumental
2.3. Data Analysis
2.3.1. ANN Modeling
2.3.2. The Accuracy of the Model
3. Results and Discussion
3.1. Concentrations and Distribution of HMs and PAEs
3.2. Prediction of the Impact of Land Use and Soil Type on the Concentrations of HMs and PAEs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hattab, N.; Hambli, R.; Motelica-Heino, M.; Bourrat, X. Application of neural network model for the prediction of chromium concentration in phytoremediated contaminated soils. J. Geochem. Explor. 2013, 128, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; An, S.; Xu, Y.; Hou, H.; Chen, F.; Yang, Y.; Zhang, S.; Liu, R. A back propagation neural network model optimized by mind evolutionary algorithm for estimating Cd, Cr, and Pb concentrations in soils using vis-NIR diffuse reflectance spectroscopy. Appl. Sci. 2020, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.P.; Stanforth, A.; Lulla, V.; Luber, G. Developing an applied extreme heat vulnerability index utilizing socioeconomic and environmental data. Appl. Geogr. 2012, 35, 23–31. [Google Scholar] [CrossRef]
- Yun, T.S.; Jeong, Y.J.; Han, T.S.; Youm, K.S. Evaluation of thermal conductivity for thermally insulated concretes. Energ. Build. 2013, 61, 125–132. [Google Scholar] [CrossRef]
- Kleijnen, J.P.C. Design and analysis of simulation experiments. In Statistics and Simulation; Pilz, J., Rasch, D., Melas, V., Moder, K., Eds.; IWS 2015, Springer Proceedings in Mathematics and Statistics; Springer: Cham, Germany, 2015. [Google Scholar]
- Pavlić, B.; Pezo, L.; Marić, B.; Peić Tukuljac, L.; Zeković, Z.; Bodroža Solarov, M.; Teslić, N. Supercritical fluid extraction of raspberry seed oil: Experiments and modelling. J. Supercrit. Fluid. 2020, 157, 104687. [Google Scholar] [CrossRef]
- Kollo, T.; von Rosen, D. Advanced Multivariate Statistics with Matrices; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Pezo, L.; Ćurčić, B.; Filipović, V.S.; Nićetin, M.R.; Koprivica, G.B.; Mišljenović, N.M.; Lević, L.B. Artificial neural network model of pork meat cubes osmotic dehydratation. Hem. Ind. 2013, 67, 465–475. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils; Blackie Academic and Professional, Chapman and Hall: London, UK, 1995. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Guan, Q.; Zhao, R.; Wang, F.; Pan, N.; Yang, L.; Song, N.; Xu, C.; Lin, J. Prediction of heavy metals in soils of an arid area based on multi-spectral data. J. Environ. Manag. 2019, 243, 137–143. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.; Liu, L.; Heng, W.; Chen, C.; Long, J.; Wen, X. Geochemical characteristics of heavy metals of bedrock, soil, and tea in a metamorphic rock area of Guizhou Province, China. Environ. Sci. Pollut Res. 2022, 30, 7402–7414. [Google Scholar] [CrossRef]
- Pan, K.; Wang, W.-X. Trace metal contamination in estuarine and coastal environments in China. Sci. Total Environ. 2012, 421–422, 3–16. [Google Scholar] [CrossRef]
- Cristaldi, A.; Oliveri Conti, G.; Jho, E.H.; Zuccarello, P.; Grasso, A.; Copat, C.; Ferrante, M. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Inno. 2017, 8, 309–326. [Google Scholar] [CrossRef]
- Yan, W.; Liu, D.; Peng, D.; Mahmood, Q.; Chen, T.; Wang, Y.; Li, S.; Chen, J.; Goss, M. Spatial distribution and risk assessment of heavy metals in the farmland along mineral product transportation routes in Zhejiang, China. Soil Use Manag. 2016, 32, 338–349. [Google Scholar] [CrossRef]
- Tian, K.; Huang, B.; Xing, Z.; Hu, W. Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China. Ecol. Indic. 2017, 72, 510–520. [Google Scholar] [CrossRef]
- Wang, B.; Xia, D.; Yu, Y.; Chen, H.; Jia, J. Source apportionment of soil-contamination in Baotou City (North China) based on a combined magnetic and geo-chemical approach. Sci. Total Environ. 2018, 642, 95–104. [Google Scholar] [CrossRef]
- Jing, F.; Chen, X.; Yang, Z.; Guo, B. Heavy metals status, transport mechanisms, sources, and factors affecting their mobility in Chinese agricultural soils. Environ. Earth Sci. 2018, 77, 104. [Google Scholar] [CrossRef]
- Pastora, J.; Hernánde, A.J. Heavy metals, salts and organic residues in old solid urban waste landfills and surface waters in their discharge areas: Determinants for restoring their impact. J. Environ. Manag. 2012, 95, S42–S49. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, H.; Wang, H.; Li, Q.; Li, Y. Effect of soil washing on heavy metal removal and soil quality: A two-sided coin. Ecotoxicol. Environ. Saf. 2020, 203, 110981. [Google Scholar] [CrossRef]
- Mukherjee, N.; Hugé, J.; Sutherland, W.J.; McNeill, J.; van Opstal, M.; Dahdouh-Guebas, F.; Koedam, N. The Delphi technique in ecology and biological conservation: Applications and guidelines. Methods Ecol. Evol. 2015, 6, 1097–1109. [Google Scholar] [CrossRef] [Green Version]
- Moreno, J.D.; Rodríguez, S.J.L.; Poznyak, T.; Chairez, I.; Dorantes-Rosales, H.J. Effect of the type of soil on dimethyl phthalate degradation by ozone. J. Environ. Manag. 2020, 270, 110863. [Google Scholar] [CrossRef]
- Zhang, S.H.; Guo, A.J.; Fan, T.T.; Zhang, R.; Niu, Y.J. Phthalates in residential and agricultural soils from an electronic waste-polluted region in South China: Distribution, compositional profile and sources. Environ. Sci. Pollut. Res. 2019, 26, 12227–12236. [Google Scholar] [CrossRef]
- Jin, D.; Kong, X.; Cui, B.; Bai, Z.; Zhang, H. Biodegradation of di-n-butyl phthalate by a newly isolated halotolerant Sphingobium sp. Int. J. Mol. Sci. 2013, 14, 24046–24054. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, C.D.; Owen, S.A.; Thompson, I.P.; Burns, R.G. Biodegradation of diethyl phthalate in soil by a novel pathway. FEMS Microbiol. Lett. 2000, 186, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Directive 2005/84/EC of the European Parliament and of the Council of 14 December 2005 Amending for the 22nd Time Council Directive 76/769/EEC on the Approximation of the Laws, Regulations and Administrative Provisions of the Member States Relating to Restrictions on the Marketing and Use of Certain Dangerous Substances and Preparations (Phthalates in Toys and Childcare Articles). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32005L0084R(02) (accessed on 5 January 2023).
- Directive 76/768/EEC of 27 July 1976 on the Approximation of the Laws of the Member States Relating to Cosmetic Products. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A31976L0768 (accessed on 5 January 2023).
- Latini, G.; Del Vecchio, A.; Massaro, M.; Verrotti, A.; De Felice, C. In utero exposure to phthalates and fetal development. Curr. Med. Chem. 2006, 13, 2527–2534. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Z.; Jalón-Rojas, I.; Wang, X.H.; Fredj, E.; Zhang, D.; Feng, L.; Li, X. Assessing the potential risk and relationship between microplastics and phthalates in surface seawater of a heavily human-impacted metropolitan bay in northern China. Ecotoxicol. Environ. Saf. 2020, 204, 111067. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, S.; Pradeep, S.; Josh, M.S.; Kumar, S.; Masai, E. A monograph on the remediation of hazardous phthalates. J. Hazard. Mater. 2015, 298, 58–72. [Google Scholar] [CrossRef]
- Sopheak, N.; Sempere, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, fate, behaviour and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Technol. 2015, 49, 4019–4035. [Google Scholar]
- Ćirić, V.I.; Drešković, N.; Mihailović, D.T.; Mimić, G.; Arsenić, I.; Đurđević, V. Which is the response of soils in the Vojvodina Region (Serbia) to climate change using regional climate simulations under the SRES-A1B? Catena 2017, 158, 171–183. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA) Method 3051A. Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils, 2007. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/3051a.pdf (accessed on 20 December 2022).
- Anastassiades, M.; Lehotay, S.J.; Tajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; He, Z.; Wang, L.; Peng, Y.; Luo, M.; Liu, X.J. Multiresidue analysis of 36 pesticides in soil using a modified quick, easy, cheap, effective, rugged, and safe method by liquid chromatography with tandem quadruple linear ion trap mass spectrometry. J. Sep. Sci. 2015, 38, 3047–3054. [Google Scholar] [CrossRef]
- Harris, O.; Xanthos, S.; Galiotos, J.K.; Douvris, C. Investigation of the metal content of sediments around the historically polluted Potomac River basin in Washington DC, United States by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Microchem. J. 2018, 142, 140–143. [Google Scholar] [CrossRef]
- Ochoa-Martínez, C.I.; Ayala-Aponte, A.A. Prediction of mass transfer kinetics during osmotic dehydration of apples using neural networks. LWT-Food Sci. Technol. 2007, 40, 638–645. [Google Scholar] [CrossRef]
- Berrueta, L.A.; Alonso-Salces, R.M.; Héberger, K. Supervised pattern recognition in food analysis. J. Chromatogr. A 2007, 1158, 196–214. [Google Scholar] [CrossRef] [PubMed]
- Taylor, B.J. Methods and Procedures for the Verification and Validation of Artificial Neural Networks; Springer Science and Business Media: New York, NY, USA, 2006. [Google Scholar]
- Aćimović, M.; Pezo, L.; Tešević, V.; Čabarkapa, I.; Todosijević, M. QSRR Model for predicting retention indices of Satureja kitaibelii Wierzb. ex Heuff. essential oil composition. Ind. Crop Prod. 2020, 154, 112752. [Google Scholar] [CrossRef]
- Official Gazette of the RS, no. 30/2018 and 64/2019. Regulation on Limit Values of Polluting, Harmful and Dangerous Substances in Soil. Available online: https://leap.unep.org/countries/rs/national-legislation/regulation-limit-values-polluting-harmful-and-dangerous (accessed on 26 December 2022).
- Golder Associates. Testing of Specific Organic Compounds in Soils in Background Urban Areas. Port Credit and Oakville/Burlington Ontario. In Working paper to Shell Canada Limited and Texaco Canada Limited; Golder Associates: Singapore, 1987. [Google Scholar]
- Chai, C.; Cheng, H.; Ge, W.; Ma, D.; Shi, Y. Phthalic acid esters in soils from vegetable greenhouses in Shandong Peninsula, East China. PLoS ONE 2014, 9, e95701. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.; Kördel, W. Occurrence and fate of phthalates in soil and plants. Sci. Total Environ. 1993, 134, 431–437. [Google Scholar] [CrossRef]
- Wu, W.; Hu, J.; Wang, J.; Chen, X.; Yao, N.; Tao, J.; Zhou, Y.-K. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge micro syringe extraction and gas chromatography. Sci. Total Environ. 2015, 508, 445–451. [Google Scholar] [CrossRef]
- Guo, D.; Wu, Y. Determination of phthalic acid esters of soil in south of Xinjiang cotton fields. Arid. Environ. Monit. 2011, 25, 76–79. [Google Scholar]
- Lü, H.; Mo, C.H.; Zhao, H.M.; Xiang, L.; Katsoyiannis, A.; Li, Y.W.; Cai, Q.Y.; Won, M.H. Soil contamination and sources of phthalates and its health risk in China: A review. Environ. Res. 2018, 164, 417–429. [Google Scholar] [CrossRef]
- Bai, L.Y.; Zeng, X.B.; Li, L.F.; Chang, P.E.N.; Li, S.H. Effects of land use on heavy metal accumulation in soils and sources analysis. Agric. Sci. China 2010, 9, 1650–1658. [Google Scholar]
- Golia, E.E.; Dimirkou, A.; Mitsios, I.K. Levels of heavy metals pollution in different types of soil of central Greece. Bull. Environ. Contam. Toxicol. 2008, 80, 206–210. [Google Scholar] [CrossRef]
- He, L.; Gielen, G.; Bolan, N.S.; Zhang, X.; Qin, H.; Huang, H.; Wang, H. Contamination and remediation of phthalic acid esters in agricultural soils in China: A review. Agron. Sustain. Dev. 2015, 35, 519–534. [Google Scholar] [CrossRef] [Green Version]
- Madsen, P.L.; Thyme, J.B.; Henrikenk, K.; Moldrup, P.; Roslev, P. Kinetics of di-(2-ethylhexyl) phthalate mineralization in sludge-amended soil. Environ. Sci. Technol. 1999, 33, 2601–2606. [Google Scholar] [CrossRef]
- Peterson, D.R.; Staples, C.A. Degradation of phthalate esters in the environment. In Handbook of Environmental Chemistry; Staples, C.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 85–124. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- Chattopadhyay, P.B.; Rangarajan, R. Application of ANN in sketching spatial nonlinearity of unconfined aquifer in agricultural basin. Agr. Water Manag. 2014, 133, 81–91. [Google Scholar] [CrossRef]
- Doumpos, M.; Zopounidis, C. Preference disaggregation and statistical learning for multicriteria decision support: A review. Eur. J. Oper. Res. 2011, 209, 203–214. [Google Scholar] [CrossRef]
- Erbay, Z.; Icier, F. Optimization of hot air drying of olive leaves using response surface methodology. J. Food Eng. 2009, 91, 533–541. [Google Scholar] [CrossRef]
- Turanyi, T.; Tomlin, A.S. Analysis of Kinetics Reaction Mechanisms; Springer: Berlin Heidelberg, Germany, 2014. [Google Scholar]
- Wicke, D.; Matzinger, A.; Sonnenberg, H.; Caradot, N.; Schubert, R.L.; Dick, R.; Heinzmann, B.; Dünnbier, U.; von Seggern, D.; Rouault, P. Micropollutants in urban stormwater runoff of different land uses. Water 2021, 13, 1312. [Google Scholar] [CrossRef]
- Pan, Y.; Ding, L.; Xie, S.; Zeng, M.; Zhang, J.; Peng, H. Spatiotemporal simulation, early warning, and policy recommendations of the soil heavy metal environmental capacity of the agricultural land in a typical industrial city in China: Case of Zhongshan City. J. Clean Prod. 2021, 285, 124849. [Google Scholar] [CrossRef]
- Gautam, K.; Sharma, P.; Dwivedi, S.; Singh, A.; Gaur, V.K.; Varjani, S.; Srivastava, J.K.; Pandey, A.; Chang, J.S.; Ngo, H.H. A review on control and abatement of soil pollution by heavy metals: Emphasis on artificial intelligence in recovery of contaminated soil. Environ. Res. 2023, 225, 115592. [Google Scholar] [CrossRef] [PubMed]
Network Name | Performance | Error | Training Algorithm | Error Function | Hidden Activation | Output Activation | ||
---|---|---|---|---|---|---|---|---|
Train. | Test. | Train. | Test. | |||||
MLP 37-13-5 | 0.960 | 0.476 | 0.004 | 0.057 | BFGS 45 | SOS | Tanh | Exponential |
MLP 37-10-8 | 0.892 | 0.642 | 0.023 | 0.054 | BFGS 32 | SOS | Exponential | Identity |
Output Variable | χ2 | RMSE | MBE | MPE | SSE | AARD | r2 |
---|---|---|---|---|---|---|---|
DMF | 0.522 | 0.705 | 0.051 | 43.700 | 52.943 | 70.911 | 0.861 |
DEF | 0.250 | 0.488 | 0.036 | 192.462 | 25.355 | 34.726 | 0.803 |
DBF | 64.844 | 7.862 | 0.444 | 61.214 | 6592.970 | 463.722 | 0.757 |
BBF | 296.758 | 16.819 | 0.059 | 357.363 | 30,268.944 | 1234.426 | 0.815 |
DEHF | 11.585 | 3.323 | 0.526 | 36.427 | 1152.050 | 350.832 | 0.799 |
As | 1.509 | 1.199 | −0.043 | 19.718 | 153.734 | 136.480 | 0.747 |
Cd | 0.067 | 0.253 | 0.000 | 18.963 | 6.876 | 25.846 | 0.791 |
Cr | 32.772 | 5.589 | 0.458 | 15.202 | 3320.219 | 454.299 | 0.743 |
Cu | 66.890 | 7.985 | 0.493 | 24.300 | 6796.742 | 641.070 | 0.570 |
Ni | 43.827 | 6.464 | 0.037 | 17.973 | 4470.236 | 534.961 | 0.742 |
Pb | 37.049 | 5.943 | −0.420 | 32.281 | 3760.196 | 506.128 | 0.818 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojić, N.; Pezo, L.; Lončar, B.; Pucarević, M.; Filipović, V.; Prokić, D.; Ćurčić, L.; Štrbac, S. Prediction of the Impact of Land Use and Soil Type on Concentrations of Heavy Metals and Phthalates in Soil Based on Model Simulation. Toxics 2023, 11, 269. https://doi.org/10.3390/toxics11030269
Stojić N, Pezo L, Lončar B, Pucarević M, Filipović V, Prokić D, Ćurčić L, Štrbac S. Prediction of the Impact of Land Use and Soil Type on Concentrations of Heavy Metals and Phthalates in Soil Based on Model Simulation. Toxics. 2023; 11(3):269. https://doi.org/10.3390/toxics11030269
Chicago/Turabian StyleStojić, Nataša, Lato Pezo, Biljana Lončar, Mira Pucarević, Vladimir Filipović, Dunja Prokić, Ljiljana Ćurčić, and Snežana Štrbac. 2023. "Prediction of the Impact of Land Use and Soil Type on Concentrations of Heavy Metals and Phthalates in Soil Based on Model Simulation" Toxics 11, no. 3: 269. https://doi.org/10.3390/toxics11030269
APA StyleStojić, N., Pezo, L., Lončar, B., Pucarević, M., Filipović, V., Prokić, D., Ćurčić, L., & Štrbac, S. (2023). Prediction of the Impact of Land Use and Soil Type on Concentrations of Heavy Metals and Phthalates in Soil Based on Model Simulation. Toxics, 11(3), 269. https://doi.org/10.3390/toxics11030269