Combined Exposure to Multiple Metals and Kidney Function in a Midlife and Elderly Population in China: A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exposure Measurement
2.3. Kidney Outcomes Measurement
2.4. Covariates
2.5. Statistical Analyses
3. Results
4. Discussion
4.1. Risk Factors for the Decline in Kidney Function
4.2. Protective Factors for the Decline in Renal Function
4.3. Combined Impacts of Co-Exposure to Various Metals on the Decline in Kidney Function
4.4. Limitation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mills, K.T.; Xu, Y.; Zhang, W.; Bundy, J.D.; Chen, C.S.; Kelly, T.N.; Chen, J.; He, J. A systematic analysis of worldwide population-based data on the global burden of chronic kidney disease in 2010. Kidney Int. 2015, 88, 950–957. [Google Scholar] [CrossRef] [Green Version]
- Kibria, G.M.A.; Crispen, R. Prevalence and trends of chronic kidney disease and its risk factors among US adults: An analysis of NHANES 2003-18. Prev. Med. Rep. 2020, 20, 101193. [Google Scholar] [CrossRef]
- Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, F.; Wang, L.; Wang, W.; Liu, B.; Liu, J.; Chen, M.; He, Q.; Liao, Y.; Yu, X.; et al. Prevalence of chronic kidney disease in China: A cross-sectional survey. Lancet 2012, 379, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Kazancioğlu, R. Risk factors for chronic kidney disease: An update. Kidney Int. Suppl. 2013, 3, 368–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drawz, P.; Rahman, M. Chronic kidney disease. Ann. Intern. Med. 2015, 162, ITC1–ITC16. [Google Scholar] [CrossRef] [Green Version]
- Cheung, A.K.; Chang, T.I.; Cushman, W.C.; Furth, S.L.; Hou, F.F.; Ix, J.H.; Knoll, G.A.; Muntner, P.; Pecoits-Filho, R.; Sarnak, M.J.; et al. KDIGO 2021 Clinical Practice Guideline for the Management of Blood Pressure in Chronic Kidney Disease. Kidney Int. 2021, 99, S1–S87. [Google Scholar] [CrossRef]
- Chen, T.K.; Knicely, D.H.; Grams, M.E. Chronic Kidney Disease Diagnosis and Management: A Review. JAMA 2019, 322, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef]
- Hwangbo, Y.; Weaver, V.M.; Tellez-Plaza, M.; Guallar, E.; Lee, B.K.; Navas-Acien, A. Blood cadmium and estimated glomerular filtration rate in Korean adults. Environ. Health Perspect. 2011, 119, 1800–1805. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Lv, Z.; Wen, Y.; Zou, X.; Zhou, G.; Cheng, J.; Zhong, D.; Zhang, Y.; Yu, S.; Liu, N.; et al. Associations of plasma multiple metals with risk of hyperuricemia: A cross-sectional study in a mid-aged and older population of China. Chemosphere 2022, 287 Pt 3, 132305. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, Y.; Xiao, Y.; Li, Y.; Yu, Y.; Mo, T.; Jiang, H.; Li, X.; Yang, H.; Xu, C.; et al. Associations of plasma metal concentrations with the decline in kidney function: A longitudinal study of Chinese adults. Ecotoxicol. Environ. Saf. 2020, 189, 110006. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Li, G.; He, J.; Zhao, H.; Zhang, H.; Lu, H.; Liu, J.; Huang, F. Association of exposure to multiple serum metals with the risk of chronic kidney disease in the elderly: A population-based case-control study. Environ. Sci. Pollut. Res. Int. 2023, 30, 17245–17256. [Google Scholar] [CrossRef] [PubMed]
- Alehagen, U.; Aaseth, J.; Alexander, J.; Brismar, K.; Larsson, A. Selenium and Coenzyme Q10 Supplementation Improves Renal Function in Elderly Deficient in Selenium: Observational Results and Results from a Subgroup Analysis of a Prospective Randomised Double-Blind Placebo-Controlled Trial. Nutrients 2020, 12, 3780. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yin, Z.; Lv, Y.; Luo, J.; Shi, W.; Fang, J.; Shi, X. Plasma element levels and risk of chronic kidney disease in elderly populations (≥90 Years old). Chemosphere 2020, 254, 126809. [Google Scholar] [CrossRef]
- Li, A.; Zhao, J.; Mei, Y.; Zhou, Q.; Zhao, M.; Xu, J.; Ge, X.; Xu, Q. Variability, Clearance, and Concentration of Multiple Metals and Risk of Kidney Function Abnormality: A New Integrative Metal Exposure Assessment Approach. Expo. Health 2022, 15, 161–184. [Google Scholar] [CrossRef]
- Paithankar, J.G.; Saini, S.; Dwivedi, S.; Sharma, A.; Chowdhuri, D.K. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere 2021, 262, 128350. [Google Scholar] [CrossRef]
- Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.; Son, Y.O.; Pratheeshkumar, P.; Shi, X. Oxidative stress and metal carcinogenesis. Free Radic. Biol. Med. 2012, 53, 742–757. [Google Scholar] [CrossRef]
- Baj, J.; Flieger, W.; Teresiński, G.; Buszewicz, G.; Sitarz, R.; Forma, A.; Karakuła, K.; Maciejewski, R. Magnesium, Calcium, Potassium, Sodium, Phosphorus, Selenium, Zinc, and Chromium Levels in Alcohol Use Disorder: A. Review. J. Clin. Med. 2020, 9, 1901. [Google Scholar] [CrossRef] [PubMed]
- Taccone-Gallucci, M.; Noce, A.; Bertucci, P.; Fabbri, C.; Manca-di-Villahermosa, S.; Della-Rovere, F.R.; De Francesco, M.; Lonzi, M.; Federici, G.; Scaccia, F. Chronic treatment with statins increases the availability of selenium in the antioxidant defence systems of hemodialysis patients. J. Trace Elem. Med. Biol. 2010, 24, 27–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, Y.; Zhou, H.; Lu, H.; Chen, X.; Zhou, L.; Zhang, J.; Wu, J.; Dong, C. Associations Between Peripheral Blood Microbiome and the Risk of Hypertension. Am. J. Hypertens. 2021, 34, 1064–1070. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, K.; Yu, L.G.; Yang, J.R.; Zhang, X.Y.; Zhou, H.; Shi, Y.J.; Liu, B.; Qin, L.Q. The association between milk consumption and the metabolic syndrome: A cross-sectional study of the residents of Suzhou, China and a meta-analysis. Br. J. Nutr. 2020, 123, 1013–1023. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, K.; Zhu, W.Z.; Peng, S.M.; Ren, J.J.; Lu, M.L.; Wang, H.P.; Xu, J.Y.; Zhou, H.; Yu, L.G.; Qin, L.Q. The association between meat consumption and the metabolic syndrome: A cross-sectional study and meta-analysis. Br. J. Nutr. 2022, 127, 1467–1481. [Google Scholar] [CrossRef]
- Zhang, L.L.; Xing, X.R.; Wu, G.P.; Wei, F.S. Determination of thirty trace elements in human plasma by microwave digestion-ICP-MS. Spectrosc. Spectr. Anal. 2009, 29, 1115–1118. [Google Scholar]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Tent, H.; Waanders, F.; Krikken, J.A.; Heerspink, H.J.; Stevens, L.A.; Laverman, G.D.; Navis, G. Performance of MDRD study and CKD-EPI equations for long-term follow-up of nondiabetic patients with chronic kidney disease. Nephrol. Dial. Transpl. 2012, 27 (Suppl. 3), iii89–iii95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Rijn, M.H.C.; Metzger, M.; Flamant, M.; Houillier, P.; Haymann, J.P.; van den Brand, J.; Froissart, M.; Stengel, B. Performance of creatinine-based equations for estimating glomerular filtration rate changes over time. Nephrol. Dial. Transpl. 2020, 35, 819–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Yi, X.; Guo, J.; Xu, S.; Xiao, Y.; Huang, X.; Duan, Y.; Luo, D.; Xiao, S.; Huang, Z.; et al. Association of plasma and urine metals levels with kidney function: A population-based cross-sectional study in China. Chemosphere 2019, 226, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Gasparini, A.; Evans, M.; Barany, P.; Xu, H.; Jernberg, T.; Ärnlöv, J.; Lund, L.H.; Carrero, J.J. Plasma potassium ranges associated with mortality across stages of chronic kidney disease: The Stockholm CREAtinine Measurements (SCREAM) project. Nephrol. Dial. Transpl. 2019, 34, 1534–1541. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.Y.; Gritter, M.; Vogt, L.; de Borst, M.H.; Rotmans, J.I.; Hoorn, E.J. Dietary potassium and the kidney: Lifesaving physiology. Clin. Kidney J. 2020, 13, 952–968. [Google Scholar] [CrossRef]
- Wilbur, S.; Abadin, H.; Fay, M.; Yu, D.; Tencza, B.; Ingerman, L.; Klotzbach, J.; James, S. Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles. In Toxicological Profile for Chromium; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2012. [Google Scholar]
- Tsai, T.L.; Kuo, C.C.; Pan, W.H.; Chung, Y.T.; Chen, C.Y.; Wu, T.N.; Wang, S.L. The decline in kidney function with chromium exposure is exacerbated with co-exposure to lead and cadmium. Kidney Int. 2017, 92, 710–720. [Google Scholar] [CrossRef]
- Filler, G.; Kobrzynski, M.; Sidhu, H.K.; Belostotsky, V.; Huang, S.S.; McIntyre, C.; Yang, L. A cross-sectional study measuring vanadium and chromium levels in paediatric patients with CKD. BMJ Open 2017, 7, e014821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Zhang, K.; Jiang, S.; Liu, D.; Zhou, H.; Zhong, R.; Zeng, Q.; Cheng, L.; Miao, X.; Tong, Y.; et al. Association of co-exposure to heavy metals with renal function in a hypertensive population. Environ. Int. 2018, 112, 198–206. [Google Scholar] [CrossRef]
- Rükgauer, M.; Klein, J.; Kruse-Jarres, J.D. Reference values for the trace elements copper, manganese, selenium, and zinc in the serum/plasma of children, adolescents, and adults. J. Trace Elem. Med. Biol. 1997, 11, 92–98. [Google Scholar] [CrossRef]
- Carmona-Fonseca, J. Selenium in serum and plasma: Epidemiology and reference values. Rev. Panam. Salud. Publica 2010, 28, 388–398. [Google Scholar]
- Xia, Y.; Ha, P.; Hill, K.; Butler, J.; Whanger, P. Distribution of selenium between fractions in erythrocytes, plasma, hair, and fingernails of Chinese women living in selenium-deficient, -adequate, and -excessive areas of China. J. Trace Elem. Exp. Med. 2000, 13, 333–342. [Google Scholar] [CrossRef]
- Martí del Moral, L.; Agil, A.; Navarro-Alarcón, M.; López-Ga de la Serrana, H.; Palomares-Bayo, M.; Oliveras-López, M.J. Altered serum selenium and uric acid levels and dyslipidemia in hemodialysis patients could be associated with enhanced cardiovascular risk. Biol. Trace Elem. Res. 2011, 144, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, C.; Cherubini, A.; Guralnik, J.; Semba, R.D.; Maggio, M.; Ling, S.M.; Lauretani, F.; Bandinelli, S.; Senin, U.; Ferrucci, L. The interplay between uric acid and antioxidants in relation to physical function in older persons. J. Am. Geriatr. Soc. 2007, 55, 1206–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, X.; Huang, D.; Xiao, S.; Lei, L.; Wu, K.; Yang, Y.; Liu, M.; Qiu, X.; Liu, S.; Zeng, X. Associations between co-exposure to multiple metals and renal function: A cross-sectional study in Guangxi, China. Environ. Sci. Pollut. Res. Int. 2023, 30, 2637–2648. [Google Scholar] [CrossRef]
- Pieczyńska, J.; Płaczkowska, S.; Sozański, R.; Orywal, K.; Mroczko, B.; Grajeta, H. Is maternal dietary selenium intake related to antioxidant status and the occurrence of pregnancy complications? J. Trace Elem. Med. Biol. 2019, 54, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Fernandez, M.; Grau-Perez, M.; Garcia-Barrera, T.; Ramirez-Acosta, S.; Gomez-Ariza, J.L.; Perez-Gomez, B.; Galan-Labaca, I.; Navas-Acien, A.; Redon, J.; Briongos-Figuero, L.S.; et al. Arsenic, cadmium, and selenium exposures and bone mineral density-related endpoints: The HORTEGA study. Free Radic. Biol. Med. 2021, 162, 392–400. [Google Scholar] [CrossRef]
- Nawrot, T.S.; Staessen, J.A.; Roels, H.A.; Hond, E.D.; Thijs, L.; Fagard, R.H.; Dominiczak, A.F.; Struijker-Boudier, H.A. Blood pressure and blood selenium: A cross-sectional and longitudinal population study. Eur. Heart J. 2007, 28, 628–633. [Google Scholar] [CrossRef] [Green Version]
- Diyabalanage, S.; Fonseka, S.; Dasanayake, D.; Chandrajith, R. Environmental exposures of trace elements assessed using keratinized matrices from patients with chronic kidney diseases of uncertain etiology (CKDu) in Sri Lanka. J. Trace Elem. Med. Biol. 2017, 39, 62–70. [Google Scholar] [CrossRef]
- Rakhra, G.; Masih, D.; Vats, A.; Verma, S.K.; Singh, V.K.; Rana, R.T.; Kirar, V.; Singh, S.N. Effect of physical activity and age on plasma copper, zinc, iron, and magnesium concentration in physically active healthy males. Nutrition 2017, 43–44, 75–82. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiao, Y.; Feng, W.; Liu, Y.; Yu, Y.; Zhou, L.; Qiu, G.; Wang, H.; Liu, B.; Liu, K.; et al. Plasma Metal Concentrations and Incident Coronary Heart Disease in Chinese Adults: The Dongfeng-Tongji Cohort. Environ. Health Perspect. 2017, 125, 107007. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Long, T.; Wang, R.; Feng, Y.; Hu, H.; Xu, Y.; Wei, Y.; Wang, F.; Guo, H.; Zhang, X.; et al. Plasma metals and cancer incidence in patients with type 2 diabetes. Sci. Total Environ. 2021, 758, 143616. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Feng, W.; Kuang, D.; Deng, Q.; Zhang, W.; Wang, S.; He, M.; Zhang, X.; Wu, T.; Guo, H. The effects of heavy metals and their interactions with polycyclic aromatic hydrocarbons on the oxidative stress among coke-oven workers. Environ. Res. 2015, 140, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.R.; Degheselle, O.; Smeets, K.; Van Kerkhove, E.; Cuypers, A. Cadmium-Induced Pathologies: Where Is the Oxidative Balance Lost (or Not)? Int. J. Mol. Sci. 2013, 14, 6116–6143. [Google Scholar] [CrossRef] [Green Version]
- Abadin, H.; Ashizawa, A.; Stevens, Y.W.; Llados, F.; Diamond, G.; Sage, G.; Citra, M.; Quinones, A.; Bosch, S.J.; Swarts, S.G. Agency for Toxic Substances and Disease Registry (ATSDR) Toxicological Profiles. In Toxicological Profile for Lead; Agency for Toxic Substances and Disease Registry (US): Atlanta, GA, USA, 2007. [Google Scholar]
- Eastmond, D.A.; Macgregor, J.T.; Slesinski, R.S. Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Crit. Rev. Toxicol. 2008, 38, 173–190. [Google Scholar] [CrossRef]
- Patlolla, A.K.; Barnes, C.; Yedjou, C.; Velma, V.R.; Tchounwou, P.B. Oxidative stress, DNA damage, and antioxidant enzyme activity induced by hexavalent chromium in Sprague-Dawley rats. Environ. Toxicol. 2009, 24, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Wang, X.; Zheng, X.; Liang, X.; Wang, Z.; Zhang, J.; Zhao, X.; Zhuang, S.; Pan, Q.; Sun, F.; et al. Iron deficiency exacerbates cisplatin- or rhabdomyolysis-induced acute kidney injury through promoting iron-catalyzed oxidative damage. Free Radic. Biol. Med. 2021, 173, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Soudani, N.; Sefi, M.; Ben Amara, I.; Boudawara, T.; Zeghal, N. Protective effects of Selenium (Se) on Chromium (VI) induced nephrotoxicity in adult rats. Ecotoxicol. Environ. Saf. 2010, 73, 671–678. [Google Scholar] [CrossRef] [PubMed]
Variables | Baseline | Fast Kidney Function Decline (Annual Decline in eGFR ≥ 5 mL/min/1.73 m2) | eGFR < 60 mL/min/1.73 m2 | ||||
---|---|---|---|---|---|---|---|
Yes | No | p Value | Yes | No | p Value | ||
Subjects, n (%) | 1368 | 408 (29.8) | 960 (70.2) | 189 (13.8) | 1179 (86.2) | ||
Age (years) | 57.6 ± 8.9 | 57.0 ± 8.8 | 57.8 ± 9.0 | 0.130 | 61.5 ± 8.4 | 56.9 ± 8.9 | <0.001 * |
Male sex, n (%) | 754 (55.1) | 212 (52.0) | 542 (56.5) | 0.126 | 82 (43.3) | 672 (57.0) | <0.001 * |
Marital status, n (%) | 0.250 | 0.549 | |||||
Married | 1308 (95.6) | 388 (96.5) | 920 (95.8) | 180 (95.2) | 1128 (95.7) | ||
Single | 54 (4.0) | 14 (3.5) | 40 (4.2) | 9 (4.8) | 51 (4.3) | ||
Smoking status, n (%) | 0.424 | 0.125 | |||||
Never smoker | 815 (59.6) | 249 (61.0) | 566 (59.0) | 125 (66.1) | 690 (58.5) | ||
Current smoker | 481 (35.2) | 140 (34.3) | 341 (35.5) | 49 (25.9) | 432 (36.6) | ||
Former smoker | 72 (5.2) | 19 (4.7) | 53 (5.5) | 15 (8.0) | 57 (4.9) | ||
Drinking status, n (%) | 0.772 | 0.003 * | |||||
Frequently | 212 (15.5) | 71 (17.4) | 141 (14.7) | 20 (10.6) | 192 (16.3) | ||
Occasional | 169 (12.4) | 43 (10.5) | 126 (13.1) | 15 (7.9) | 154 (13.1) | ||
Never | 987 (72.1) | 294 (72.1) | 693 (72.2) | 154 (81.5) | 833 (70.6) | ||
Waist circumference (cm) | 85.4 ± 8.6 | 85.6 ± 8.3 | 85.3 ± 8.8 | 0.593 | 85.8 ± 8.5 | 85.3 ± 8.7 | 0.469 |
BMI (kg/m2) | 23.8 ± 3.1 | 23.8 ± 2.9 | 23.8 ± 3.2 | 0.960 | 23.8 ± 3.3 | 23.9 ± 3.1 | 0.586 |
Systolic blood pressure (mm Hg) | 127.3 ± 16.1 | 125.8 ± 17.0 | 127.9 ± 15.7 | 0.026 * | 127.0 ± 16.7 | 127.3 ± 16.0 | 0.803 |
Diastolic blood pressure (mm Hg) | 79.0 ± 11.1 | 79.6 ± 10.7 | 78.7 ± 11.2 | 0.194 | 79.3 ± 10.6 | 78.9 ± 11.2 | 0.629 |
SCR (µmol/L) | 71.9 ± 27.3 | 70.6 ± 12.3 | 71.7 ± 20.5 | 0.213 | 83.6 ± 33.1 | 69.4 ± 13.8 | <0.001 * |
FPG (mmol/L) | 5.9 ± 1.4 | 5.9 ± 1.7 | 5.9 ± 1.3 | 0.551 | 5.8 ± 1.4 | 5.9 ± 1.4 | 0.448 |
TC (mmol/L) | 4.8 ± 0.9 | 4.9 ± 1.0 | 4.7 ± 0.9 | 0.001 * | 5.0 ± 1.0 | 4.8 ± 0.9 | 0.006 * |
TG (mmol/L) | 1.4 ± 1.1 | 1.4 ± 0.9 | 1.4 ± 1.1 | 0.340 | 1.5 ± 1.0 | 1.4 ± 1.1 | 0.350 |
HDL (mmol/L) | 1.2 ± 0.2 | 1.1 ± 0.3 | 1.2 ± 0.2 | <0.001 * | 1.1 ± 0.3 | 1.2 ± 0.2 | 0.093 |
LDL (mmol/L) | 3.1 ± 0.8 | 3.3 ± 0.8 | 3.0 ± 0.7 | <0.001 * | 3.3 ± 0.9 | 3.1 ± 0.7 | 0.001 * |
Baseline eGFR (mL/min/1.73 m2) | 91.6 ± 12.7 | 92.2 ± 10.5 | 91.4 ± 13.6 | 0.262 | 77.8 ± 13.5 | 93.8 ± 11.1 | <0.001 * |
Annual decline in eGFR (mL/min/1.73 m2) | 2.9 ± 3.3 | 7.0 ± 1.5 | 1.2 ± 2.2 | <0.001 * | 6.3 ± 2.6 | 2.4 ± 3.1 | <0.001 * |
Plasma Metals | Baseline | Fast Kidney Function Decline (Annual Decline in eGFR ≥ 5 mL/min/1.73 m2) | eGFR < 60 mL/min/1.73 m2 | ||||
---|---|---|---|---|---|---|---|
Yes | No | p Value | Yes | No | p Value | ||
Lead (µg/L) | 7.1 (3.0,15.4) | 6.7 (2.0, 13.7) | 7.2 (3.3, 15.9) | 0.973 | 7.2 (3.1, 14.2) | 7.1 (3.0, 15.4) | 0.877 |
Cadmium (µg/L) | 0.2 (0.1, 0.3) | 0.2 (0.1, 0.4) | 0.2 (0.1, 0.3) | 0.090 | 0.2 (0.1, 0.4) | 0.2 (0.1, 0.3) | 0.068 |
Chromium (µg/L) | 551.0 (391.5, 665.6) | 580.9 (451.2, 686.0) | 531.8 (366.8, 651.7) | <0.001 * | 591.1 (459.3, 712.5) | 541.2 (374.1, 660.5) | 0.002 * |
Copper (µg/L) | 1129.0 (970.3, 1323.7) | 1103.8 (935.4, 1280.0) | 1138.7 (987.1, 1345.0) | 0.001 * | 1138.2 (965.3, 1323.9) | 1127.1 (970.5, 1323.8) | 0.804 |
Zinc (µg/L) | 2389.0 (1880.6, 3207.1) | 2485.8 (1907.5, 3348.8) | 2332.7 (1866.6, 3133.3) | 0.056 | 2568.3 (1909.5, 3449.1) | 2360.1 (1870.3, 3174.0) | 0.090 |
Selenium (µg/L) | 22.0 (11.7, 117.34) | 15.5 (10.0, 86.6) | 53.1 (12.3, 125.3) | <0.001 * | 17.7 (11.2, 97.9) | 29.3 (11.7, 118.9) | 0.028 * |
Magnesium (mg/L) | 20.2 (18.0, 22.8) | 20.1 (17.8, 23.3) | 20.2 (18.0, 22.7) | 0.595 | 20.5 (18.1, 23.3) | 20.1 (17.9, 22.7) | 0.188 |
Iron (mg/L) | 0.7 (0.3, 2.3) | 0.4 (0.2, 1.5) | 1.1 (0.3, 2.5) | <0.001 * | 0.5 (0.3, 2.0) | 0.8 (0.3, 2.4) | 0.018 * |
Calcium(mg/L) | 98.8 (88.5, 111.2) | 96.9 (85.7, 110.4) | 99.5 (89.5, 111.4) | 0.002 * | 98.3 (85.6, 110.7) | 98.8 (88.9, 111.2) | 0.222 |
Sodium (g/L) | 3.0 (2.7, 3.4) | 3.1 (2.7, 3.6) | 3.0 (2.7, 3.3) | 0.001 * | 3.1 (2.7, 3.6) | 3.0 (2.7, 3.4) | 0.195 |
Potassium (g/L) | 0.8 (0.7, 1.0) | 0.9 (0.8, 1.1) | 0.8 (0.7, 1.0) | <0.001 * | 0.9 (0.7, 1.1) | 0.8 (0.7, 1.0) | 0.001 * |
Component | Quartiles of Principal Components | p-Trend | |||
---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | ||
PC1 | 0 (reference) | −0.20 (−0.70, 0.30) | −0.21 (−0.71, 0.29) | −0.11 (−0.61, 0.40) | 0.436 |
PC2 | 0 (reference) | −0.38 (−0.87, 0.12) | −0.70 (−1.20, −0.20) | −1.54 (−2.03, −1.04) | <0.001 * |
PC3 | 0 (reference) | 0.99 (0.50, 1.48) | 1.55 (1.06, 2.03) | 2.02 (1.53, 2.51) | <0.001 * |
PC4 | 0 (reference) | 0.64 (0.15, 1.13) | 1.08 (0.58, 1.57) | 1.60 (1.10, 2.09) | <0.001 * |
Component. | Q1 | Q2 | Q3 | Q4 | p-Trend | ||||
---|---|---|---|---|---|---|---|---|---|
OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | OR (95% CI) | p Value | ||
Fast Kidney Function Decline (Annual Decline in eGFR ≥ 5 mL/min/1.73 m2) | |||||||||
PC1 | 1 | 1 | 0.76 (0.55, 1.06) | 0.108 | 0.78 (0.56, 1.09) | 0.150 | 0.84 (0.60, 1.17) | 0.294 | 0.377 |
PC2 | 1 | 1 | 0.80 (0.58, 1.11) | 0.183 | 0.64 (0.46, 0.89) | 0.007 * | 0.41 (0.29, 0.58) | <0.001 * | <0.001 * |
PC3 | 1 | 1 | 1.59 (1.08, 2.32) | 0.018 * | 2.64 (1.84, 3.81) | <0.001 * | 3.56 (2.48, 5.11) | <0.001 * | <0.001 * |
PC4 | 1 | 1 | 1.14 (0.78, 1.65) | 0.506 | 2.33 (1.64, 3.32) | <0.001 * | 2.60 (1.82, 3.69) | <0.001 * | <0.001 * |
eGFR < 60 mL/min/1.73 m2 | |||||||||
PC1 | 1 | 1 | 0.94 (0.57, 1.54) | 0.802 | 0.80 (0.48, 1.33) | 0.382 | 0.75 (0.45, 1.25) | 0.272 | 0.975 |
PC2 | 1 | 1 | 0.60 (0.37, 0.98) | 0.041 * | 0.58 (0.35, 0.95) | 0.029 * | 0.42 (0.25, 0.71) | 0.001 * | 0.082 |
PC3 | 1 | 1 | 1.39 (0.79, 2.45) | 0.255 | 2.23 (1.28, 3.88) | 0.005 * | 2.81 (1.64, 4.84) | <0.001 * | 0.025 * |
PC4 | 1 | 1 | 1.50 (0.87, 2.60) | 0.146 | 1.72 (0.99, 2.98) | 0.055 | 3.00 (1.75, 5.13) | <0.001 * | 0.119 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Zhang, L.; Liu, Y.; Li, J.; Chen, G.; Zhou, H.; Yu, L.; Wan, Z.; Dong, C.; Qin, L.; et al. Combined Exposure to Multiple Metals and Kidney Function in a Midlife and Elderly Population in China: A Prospective Cohort Study. Toxics 2023, 11, 274. https://doi.org/10.3390/toxics11030274
Wang T, Zhang L, Liu Y, Li J, Chen G, Zhou H, Yu L, Wan Z, Dong C, Qin L, et al. Combined Exposure to Multiple Metals and Kidney Function in a Midlife and Elderly Population in China: A Prospective Cohort Study. Toxics. 2023; 11(3):274. https://doi.org/10.3390/toxics11030274
Chicago/Turabian StyleWang, Tianci, Liming Zhang, Yujie Liu, Jian Li, Guochong Chen, Hui Zhou, Lugang Yu, Zhongxiao Wan, Chen Dong, Liqiang Qin, and et al. 2023. "Combined Exposure to Multiple Metals and Kidney Function in a Midlife and Elderly Population in China: A Prospective Cohort Study" Toxics 11, no. 3: 274. https://doi.org/10.3390/toxics11030274
APA StyleWang, T., Zhang, L., Liu, Y., Li, J., Chen, G., Zhou, H., Yu, L., Wan, Z., Dong, C., Qin, L., & Chen, J. (2023). Combined Exposure to Multiple Metals and Kidney Function in a Midlife and Elderly Population in China: A Prospective Cohort Study. Toxics, 11(3), 274. https://doi.org/10.3390/toxics11030274