Detection of Heavy Metals, Their Distribution in Tilapia spp., and Health Risks Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Sample Collection, Preparation and Analysis
2.3. Health Risk Assessment
2.3.1. Chronic Daily Intake (EDI)
2.3.2. Target Hazard Quotient (THQ)
2.3.3. Cancer Risk (CR)
2.4. Data Analysis
3. Results
3.1. Concentration of HMs in Different Parts of the Fish
3.2. Health Risk Assessment
3.2.1. Non-Carcinogenic Health Risk (NCHR) Assessment
3.2.2. Carcinogenic Risk Assessment
3.3. Relationship of HMs in Various Parts of Tilapia spp.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerrero, R.D. Farmed Tilapia Production in the Philippines Is Declining: What Has Happened and What Can Be Done. Philipp. J. Sci. 2019, 148, 11–15. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Improving Productivity of Tilapia Farmers in the Philippines. Available online: https://www.fao.org/3/bt824e/bt824e.pdf (accessed on 11 January 2023).
- Asian Development Bank. Case Study 4: Overview of Freshwater Aquaculture of Tilapia in the Philippines. In An Evaluation of Small-Scale Freshwater Rural Aquaculture Development for Poverty Reduction; Asian Development Bank: Mandaluyong, Philippines, 2005; pp. 75–91. ISBN 971-561-550-3. [Google Scholar]
- Madrid, F.G.N.; Danting, M.J.C.; Juico, J.; Guerrero, R.D., III. The Philippine Tilapia Industry Roadmap (2022–2025); Bureau of Fisheries and Aquatic Resources, Department of Agriculture: Diliman, Quezon City, Philippines, 2022; p. 25. [Google Scholar]
- Bureau of Fisheries and Aquatic Resources. Philippine Fisheries Profile 2016; Bureau of Fisheries and Aquatic Resources, Department of Agriculture: Diliman, Quezon City, Philippines, 2016. [Google Scholar]
- Agutaya, C.A.C.; Zamora, J.T. Developmental Projects in Calapan City, Philippines: Localization Perspectives. Am. J. Educ. Res. 2018, 6, 133–136. [Google Scholar]
- Nkpaa, K.W.; Wegwu, M.O.; Essien, E.B. Heavy Metals Concentrations in Four Selected Seafood from Crude Oil Polluted Waters of Ogoniland, Rivers State, Nigeria. Arch. Appl. Sci. Res. 2013, 5, 97–104. [Google Scholar]
- Fallah, A.A.; Saei-Dehkordi, S.S.; Nematollahi, A.; Jafari, T. Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique. Microchem. J. 2011, 98, 275–279. [Google Scholar] [CrossRef]
- Gogus, U.; Smith, C. N-3 Omega fatty acids: A review of current knowledge. Int. J. Food Sci. Technol. 2010, 45, 417–436. [Google Scholar] [CrossRef]
- El-Kattan, Y.; Nahla, A. Levels of Some Heavy Metals in River Nile Water and Oreochromis Niloticus Fish at Menoufia Governorate. Egypt. J. Comp. Path. Clin. Path 2008, 21, 12. [Google Scholar]
- Darwish, A.M.; El-Mossalami, M.K.; El-Bassiony, R.A. Quality Assurance of Some Fatty Fishes. Assuit Vet. Med. J. 2003, 49, 79–96. [Google Scholar]
- Asgedom, A.G.; Desta, M.B.; Gebremedh, Y.W. Bioaccumulation of Heavy Metals in Fishes of Hashenge Lake, Tigray, Northern Highlands of Ethiopia. Am. J. Chem. 2012, 2, 326–334. [Google Scholar] [CrossRef]
- Zaidi, M.I. The Heavy Metal Concentration along Roadside Trees of Quetta and its Effects on Public Health. J. Appl. Sci. 2005, 5, 708–711. [Google Scholar] [CrossRef] [Green Version]
- Reilly, A.; Käferstein, F. Food safety and products from aquaculture. J. Appl. Microbiol. 1998, 85, 249S–257S. [Google Scholar] [CrossRef]
- Nolos, R.C.; Zamroni, A.; Evina, K.F.P. Drivers of Deforestation And Forest Degradation In Palawan, Philippines: An Analysis Using Social-Ecological Systems (SES) And Institutional Analysis And Development (IAD) Approaches. Geogr. Environ. Sustain. 2023, 15, 44–56. [Google Scholar] [CrossRef]
- Kindie, M.; Andargie, M.; Hilluf, W.; Amare, M. Assessment on level of selected heavy metals in Nile Tilapia and Barbus fish species and water samples from the Southern parts of Lake Tana, Ethiopia. Sci. Afr. 2020, 9, e00519. [Google Scholar] [CrossRef]
- Elnabris, K.J.; Muzyed, S.K.; El-Ashgar, N.M. Heavy metal concentrations in some commercially important fishes and their contribution to heavy metals exposure in Palestinian people of Gaza Strip (Palestine). J. Assoc. Arab. Univ. Basic Appl. Sci. 2013, 13, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Kumar, R.; Behari, J.R. Mercury and Lead Content in Fish Species from the River Gomti, Lucknow, India, as Biomarkers of Contamination. Bull. Environ. Contam. Toxicol. 2007, 78, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Mahboob, S.; Al-Ghanim, K.A.; Al-Balawi, H.F.; Al-Misned, F.; Ahmed, Z. Toxicological effects of heavy metals on histological alterations in various organs in Nile tilapia (Oreochromis niloticus) from freshwater reservoir. J. King Saud Univ. Sci. 2020, 32, 970–973. [Google Scholar] [CrossRef]
- Ali, D.; Almarzoug, M.H.; Al Ali, H.; Samdani, M.S.; Hussain, S.A.; Alarifi, S. Fish as bio indicators to determine the effects of pollution in river by using the micronucleus and alkaline single cell gel electrophoresis assay. J. King Saud Univ. 2020, 32, 2880–2885. [Google Scholar] [CrossRef]
- Agarin, C.; Mascareñas, D.; Nolos, R.; Chan, E.; Senoro, D. Transition Metals in Freshwater Crustaceans, Tilapia, and Inland Water: Hazardous to the Population of the Small Island Province. Toxics 2021, 9, 71. [Google Scholar] [CrossRef]
- Mercado, C.J.G.; Atienza, L.M.; Juanico, C.B.; Depositario, D.P.T.; Hurtada, W.A. Bioaccumulation and Non-Carcinogenic Health Risk Assessment of Heavy Metals in Selected Fish Species from South Bay of Laguna Lake. Acta Medica Philipp. 2021, 55, 767–774. [Google Scholar] [CrossRef]
- Cambia, F.; Benitez, K.C.; Perelonia, K.B.; Montojo, U. Levels of Heavy Metals in Six Aquaculture Commodities Collected from Various Landing Sites of Manila Bay: Relationships with Size and Seasonal Variation. Philipp. J. Fish. 2019, 26, 26–34. [Google Scholar] [CrossRef]
- Guevarra, R.D.; Paraso, M.G.; Lola, M.S.E. Biomarker Evaluation in Nile Tilapia (Oreochromis niloticus) to Assess the Health Status of Aquaculture Areas in the Seven Lakes of San Pablo. Philipp. J. Sci. 2020, 149, 833–840. [Google Scholar] [CrossRef]
- Alam, Z.F.; Concepcion, C.K.V.; Abdulrahman, J.D.; Sanchez, M.A.S. Biomonitoring of Water Bodies in Metro Manila, Philippines Using Heavy Metal Analysis and Erythrocyte Micronucleus Assay in Nile Tilapia (Oreochromis Niloticus). Nat. Environ. Pollut. Technol. 2019, 685–696. [Google Scholar]
- Abdulrahman, J.D.; Concepcion, C.K.V.; Sanchez, M.A.S. Environmental Biomonitoring of Water Bodies (Estero de Vitas and Estero de Paco) in Metro Manila, Philippines Using Heavy Metal Analysis and Erythrocyte Micronucleus Assay in Nile Tilapia (Oreochromis Niloticus). Bachelor’s Thesis, De La Salle University, Manila, Philippines, 2018. [Google Scholar]
- USEPA. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories Volume 1 Fish Sampling and Analysis, 3rd ed.; U.S. Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Senoro, D.B.; de Jesus, K.L.M.; Nolos, R.C.; Lamac, M.R.L.; Deseo, K.M.; Tabelin, C.B. In Situ Measurements of Domestic Water Quality and Health Risks by Elevated Concentration of Heavy Metals and Metalloids Using Monte Carlo and MLGI Methods. Toxics 2022, 10, 342. [Google Scholar] [CrossRef] [PubMed]
- Monjardin, C.E.F.; Senoro, D.B.; Magbanlac, J.J.M.; de Jesus, K.L.M.; Tabelin, C.B.; Natal, P.M. Geo-Accumulation Index of Manganese in Soils Due to Flooding in Boac and Mogpog Rivers, Marinduque, Philippines with Mining Disaster Exposure. Appl. Sci. 2022, 12, 3527. [Google Scholar] [CrossRef]
- Senoro, D.B.; Monjardin, C.E.F.; Fetalvero, E.G.; Benjamin, Z.E.C.; Gorospe, A.F.B.; de Jesus, K.L.M.; Ical, M.L.G.; Wong, J.P. Quantitative Assessment and Spatial Analysis of Metals and Metalloids in Soil Using the Geo-Accumulation Index in the Capital Town of Romblon Province, Philippines. Toxics 2022, 10, 633. [Google Scholar] [CrossRef]
- Senoro, D.B.; De Jesus, K.L.M.; Monjardin, C.E.F. Pollution and Risk Evaluation of Toxic Metals and Metalloid in Water Resources of San Jose, Occidental Mindoro, Philippines. Sustainability 2023, 15, 3667. [Google Scholar] [CrossRef]
- Melquiades, F.L.; Appoloni, C. Application of XRF and field portable XRF for environmental analysis. J. Radioanal. Nucl. Chem. 2004, 262, 533–541. [Google Scholar] [CrossRef]
- Zhou, S.; Yuan, Z.; Cheng, Q.; Zhang, Z.; Yang, J. Rapid in situ determination of heavy metal concentrations in polluted water via portable XRF: Using Cu and Pb as example. Environ. Pollut. 2018, 243, 1325–1333. [Google Scholar] [CrossRef]
- Wu, C.-M.; Tsai, H.-T.; Yang, K.-H.; Wen, J.-C. How Reliable Is X-Ray Fluorescence (XRF) Measurement for Different Metals in Soil Contamination? Environ. Forensics 2012, 13, 110–121. [Google Scholar] [CrossRef]
- OLYMPUS. Olympus Corporations of the Americas. Olympus Vanta XRF; Olympus Corporation: Webster, TX, USA.
- Philippines Statistics Authority. Consumption of Selected Agricultural Commodities in the Philippines; Philippines Statistic Authority: Quezon City, Philippines, 2017; Volume 2, p. 30. ISSN -2094-6236. [Google Scholar]
- Skalecki, P.; Florek, M.; Staszowska, A.; Kaliniak, A. Wartość Użytkowa i Jakość Filetów Ryb Karpiowatych (Cyprinidae) Utrzymywanych w Polikulturze. Żywność Nauk. Technol. Jakość 2015, 22. [Google Scholar]
- Nolos, R.C.; Agarin, C.J.M.; Domino, M.Y.R.; Bonifacio, P.B.; Chan, E.B.; Mascareñas, D.R.; Senoro, D.B. Health Risks Due to Metal Concentrations in Soil and Vegetables from the Six Municipalities of the Island Province in the Philippines. Int. J. Environ. Res. Public Health 2022, 19, 1587. [Google Scholar] [CrossRef]
- Paul, A.K.; Iqbal, S.; Atique, U.; Alam, L. Muscular Tissue Bioaccumulation and Health Risk Assessment of Heavy Metals in Two Edible Fish Species (Gudusia chapra and Eutropiichthys vacha) in Padma River, Bangladesh. Punjab Univ. J. Zool. 2020, 35, 81–89. [Google Scholar] [CrossRef]
- Guadie, A.; Mohammed, I.; Beshaw, T.; Tefera, M. Analysis and health risk assessments of some trace metals in Ethiopian rice (white and red) and imported rice. Heliyon 2022, 8, e09374. [Google Scholar] [CrossRef]
- Lu, Q.; Xu, X.; Liang, L.; Xu, Z.; Shang, L.; Guo, J.; Xiao, D.; Qiu, G. Barium concentration, phytoavailability, and risk assessment in soil-rice systems from an active barium mining region. Appl. Geochem. 2019, 106, 142–148. [Google Scholar] [CrossRef]
- Dayananda, N.R.; Liyanage, J.A. Quest to Assess Potentially Nephrotoxic Heavy Metal Contaminants in Edible Wild and Commercial Inland Fish Species and Associated Reservoir Sediments; a Study in a CKDu Prevailed Area, Sri Lanka. Expo. Heal. 2021, 13, 567–581. [Google Scholar] [CrossRef]
- Sarkar, R.D.; Zhang, Z.; Warke, M.; Datta, R. Health Risk from Toxic Metals in Wild Rice Grown in Copper Mining-Impacted Sediments. Appl. Sci. 2022, 12, 2937. [Google Scholar] [CrossRef]
- Tyagi, N.; Raghuvanshi, R.; Upadhyay, M.K.; Srivastava, A.K.; Suprasanna, P.; Srivastava, S. Elemental (As, Zn, Fe and Cu) analysis and health risk assessment of rice grains and rice based food products collected from markets from different cities of Gangetic basin, India. J. Food Compos. Anal. 2020, 93, 103612. [Google Scholar] [CrossRef]
- Luo, X.; Ren, B.; Hursthouse, A.S.; Jiang, F.; Deng, R.-J. Potentially toxic elements (PTEs) in crops, soil, and water near Xiangtan manganese mine, China: Potential risk to health in the foodchain. Environ. Geochem. Health 2020, 42, 1965–1976. [Google Scholar] [CrossRef]
- Duan, Y.; Li, Q.; Zhang, L.; Huang, Z.; Zhao, Z.; Zhao, H.; Du, J.; Zhou, J. Toxic metals in rice-fish co-culture systems and human health. Ecotoxicol. Environ. Saf. 2022, 241, 113797. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, J.; Fakhri, Y.; Shahsavani, A.; Bahmani, Z.; Urbina, M.A.; Chirumbolo, S.; Keramati, H.; Moradi, B.; Bay, A.; Bjørklund, G. A systematic review and meta-analysis of metal concentrations in canned tuna fish in Iran and human health risk assessment. Food Chem. Toxicol. 2018, 118, 753–765. [Google Scholar] [CrossRef]
- IRIS, U. Integrated Risk Information System. Environ. Prot. Agency Reg. I Washingt. DC 2011, 20460, 8–18. [Google Scholar]
- Li, P.; Hao, H.; Bai, Y.; Li, Y.; Mao, X.; Xu, J.; Liu, M.; Lv, Y.; Chen, W.; Ge, D. Convolutional neural networks-based health risk modelling of some heavy metals in a soil-rice system. Sci. Total. Environ. 2022, 838, 156466. [Google Scholar] [CrossRef] [PubMed]
- Mielcarek, K.; Nowakowski, P.; Puścion-Jakubik, A.; Gromkowska-Kępka, K.J.; Soroczyńska, J.; Markiewicz-Żukowska, R.; Naliwajko, S.K.; Grabia, M.; Bielecka, J.; Żmudzińska, A. Arsenic, Cadmium, Lead and Mercury Content and Health Risk Assessment of Consuming Freshwater Fish with Elements of Chemometric Analysis. Food Chem. 2022, 379, 132167. [Google Scholar] [CrossRef]
- Ali, M.M.; Ali, L.; Rakib, R.J.; Islam, S.; Bhuyan, S.; Senapathi, V.; Chung, S.Y.; Roy, P.D.; Sekar, S.; Islam, A.R.M.T.; et al. Seasonal behavior and accumulation of some toxic metals in commercial fishes from Kirtankhola tidal river of Bangladesh—A health risk taxation. Chemosphere 2022, 301, 134660. [Google Scholar] [CrossRef] [PubMed]
- Sevilla, J.B.; Lee, C.H.; Lee, B.Y. Assessment of Spatial Variations in Surface Water Quality of Kyeongan Stream, South Korea Using Multi-Variate Statistical Techniques. Sustain. Food Water Asian Perspect. 2010, 39–48. [Google Scholar] [CrossRef]
- Song, B.; Lei, M.; Cheng, T.; Zheng, Y.; Xie, Y.; Li, X.; Gao, D. Assessing the Health Risk of Heavy Metals in Vegetables to the General Population in Beijing, China. J. Environ. Sci. 2009, 21, 1702–1709. [Google Scholar] [CrossRef]
- Hossain, M.B.; Tanjin, F.; Rahman, M.S.; Yu, J.; Akhter, S.; Noman, A.; Sun, J. Metals Bioaccumulation in 15 Commonly Consumed Fishes from the Lower Meghna River and Adjacent Areas of Bangladesh and Associated Human Health Hazards. Toxics 2022, 10, 139. [Google Scholar] [CrossRef]
- Hosseini, M.; Nabavi, S.M.B.; Nabavi, S.N.; Pour, N.A. Heavy Metals (Cd, Co, Cu, Ni, Pb, Fe, and Hg) Content in Four Fish Commonly Consumed in Iran: Risk Assessment for the Consumers. Environ. Monit. Assess. 2015, 187, 237. [Google Scholar] [CrossRef]
- Oyelowo, O.T.; Awobajo, F.O.; Samuel, T.A.; Sogbesan, T.; Fayiga, A.; Mofolorunso, A. Condition Factor, Heavy Metals and Polychlorinated Biphenyls (PCBs) in the Muscle of Fishes in Lagos, Nigeria. Aceh J. Anim. Sci. 2020, 5, 38–46. [Google Scholar]
- Joseph, A.; Edet, U.; Etinosa-Okankan, O.; Ekanem, S. Health risk assessment of heavy metals and radionuclides in Cynoglossus senegalensis (Sole fish) from Qua Iboe River, South-South Nigeria. J. Food Compos. Anal. 2022, 114, 104854. [Google Scholar] [CrossRef]
- Almeida, J.; Novelli, E.; Silva, M.D.P.; Júnior, R.A. Environmental cadmium exposure and metabolic responses of the Nile tilapia, Oreochromis niloticus. Environ. Pollut. 2001, 114, 169–175. [Google Scholar] [CrossRef]
- ATSDR. Where Is Cadmium Found? Environmental Health and Medicine Education, Agency for Toxic Substances and Disease Registry. 2013. Available online: https://www.atsdr.cdc.gov/csem/cadmium/Where-Cadmium-Found.html (accessed on 10 December 2022).
- Ishak, A.R.; Zuhdi, M.S.M.; Aziz, M.Y. Determination of lead and cadmium in tilapia fish (Oreochromis niloticus) from selected areas in Kuala Lumpur. Egypt. J. Aquat. Res. 2020, 46, 221–225. [Google Scholar] [CrossRef]
- Oyeleke, P.O.; Okparaocha, F.J.; Abiodun, O.A. Human Health Risk Assessment of Heavy Metals (Lead, Cadmium and Copper) in Fresh Water Tilapia Fish (Oreochromis Niloticus) from Eleyele River, Ibadan, Southwestern Nigeria. Chem. Res. J. 2018, 3, 134–142. [Google Scholar]
- World Health Organization. Exposure to Cadmium: A Major Public Health Concern. World Health Organization, 2019. Available online: https://apps.who.int/iris/bitstream/handle/10665/329480/WHO-CED-PHE-EPE-19.4.3-eng.pdf (accessed on 10 December 2022).
- O'Mara, K.; Adams, M.; Burford, M.A.; Fry, B.; Cresswell, T. Uptake and accumulation of cadmium, manganese and zinc by fisheries species: Trophic differences in sensitivity to environmental metal accumulation. Sci. Total. Environ. 2019, 690, 867–877. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.F.; de Oliveira Lima, M. Mercury in Fish Marketed in the Amazon Triple Frontier and Health Risk Assessment. Chemosphere 2020, 248, 125989. [Google Scholar] [CrossRef]
- Papagiannis, I.; Kagalou, I.; Leonardos, J.; Petridis, D.; Kalfakakou, V. Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ. Int. 2004, 30, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Cheung, R.; Chan, K.; Wong, M. Metal concentrations in sediments and tilapia collected from inland waters of Hong Kong. Water Res. 1998, 32, 3331–3340. [Google Scholar] [CrossRef]
- Taweel, A.; Shuhaimi-Othman, M.; Ahmad, A.K. Heavy Metals Concentration in Different Organs of Tilapia Fish (Oreochromis Niloticus) from Selected Areas of Bangi, Selangor, Malaysia. Afr. J. Biotechnol. 2011, 10, 11562–11566. [Google Scholar]
- Canli, M.; Atli, G. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species. Environ. Pollut. 2003, 121, 129–136. [Google Scholar] [CrossRef]
- Ismaniza, I.; Idaliza, M.S. Analysis of Heavy Metals in Water and Fish (Tilapia Sp.) Samples from Tasik Mutiara, Puchong. Malays. J. Anal. Sci. 2012, 16, 346–352. [Google Scholar]
- Ju, Y.-R.; Chen, C.-W.; Chen, C.-F.; Chuang, X.-Y.; Dong, C.-D. Assessment of heavy metals in aquaculture fishes collected from southwest coast of Taiwan and human consumption risk. Int. Biodeterior. Biodegrad. 2017, 124, 314–325. [Google Scholar] [CrossRef]
- Abdel-Baki, A.S.; Dkhil, M.A.; Al-Quraishy, S. Bioaccumulation of Some Heavy Metals in Tilapia Fish Relevant to Their Concentration in Water and Sediment of Wadi Hanifah, Saudi Arabia. Afr. J. Biotechnol. 2011, 10, 2541–2547. [Google Scholar]
- Bahnasawy, M.; Khidr, A.A.; Dheina, N. Seasonal variations of heavy metals concentrations in mullet, Mugil cephalus and Liza ramada (Mugilidae) from Lake Manzala, Egypt. Egypt. J. Aquat. Biol. Fish. 2009, 13, 81–100. [Google Scholar] [CrossRef] [Green Version]
- Cocoros, G.; Cahn, P.H.; Siler, W. Mercury concentrations in fish, plankton and water from three Western Atlantic estuaries. J. Fish Biol. 1973, 5, 641–647. [Google Scholar] [CrossRef]
- National Cancer Institute. Cadmium. Available online: https://progressreport.cancer.gov/prevention/cadmium (accessed on 10 February 2023).
- Hossain, M.B.; Bhuiyan, N.Z.; Kasem, A.; Hossain, K.; Sultana, S.; Nur, A.-A.U.; Yu, J.; Albeshr, M.F.; Arai, T. Heavy Metals in Four Marine Fish and Shrimp Species from a Subtropical Coastal Area: Accumulation and Consumer Health Risk Assessment. Biology 2022, 11, 1780. [Google Scholar] [CrossRef]
- Fay, M.; Ingerman, L. Toxicological Profile for Nickel; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2005. [Google Scholar]
- Defarge, N.; De Vendômois, J.S.; Séralini, G.E. Toxicity of Formulants and Heavy Metals in Glyphosate-Based Herbicides and Other Pesticides. Toxicol. Rep. 2018, 5, 156–163. [Google Scholar] [CrossRef]
- Alman, B.; Fay, M.; Antezana, A.; Derrick, H.; Chiger, A.; Hall, S.; Lynch, M.; Diskin, K. Toxicological Profile for Copper; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2022. [Google Scholar]
- Williamns, M.; Todd, G.D.; Roney, N.; Crawford, J.; Coles, C.; McClure, P.R.; Garey, J.D.; Zaccaria, K.; Citra, M. Toxicological Profile for Manganese; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2012. [Google Scholar]
- Moffett, D.; Smith, C.; Stevens, Y.M.; Ingerman, L.; Swarts, S.; Chappel, L. Toxicological Profile for Barium and Barium Compounds; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 2007. [Google Scholar]
- Rahman, M.S.; Molla, A.H.; Saha, N.; Rahman, A. Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi River, Savar, Dhaka, Bangladesh. Food Chem. 2012, 134, 1847–1854. [Google Scholar] [CrossRef]
- Alipour, H.; Banagar, G. Health risk assessment of selected heavy metals in some edible fishes from Gorgan Bay, Iran. Iran. J. Fish. Sci. 2018, 17, 21–34. [Google Scholar] [CrossRef]
- Munyeshury, V.; Chaúque, E.F.C.; Gulamussen, N.J.; Mandlate, J.S.; Richards, H.; Adelodun, A.A. Potential health risks of trace metals in muscle tissue of tilapia and catfish from Mozambican markets. Arch. Agric. Environ. Sci. 2021, 6, 508–518. [Google Scholar] [CrossRef]
- Yilmaz, A.B. Comparison of Heavy Metal Levels of Grey Mullet (Mugil cephalus L.) and Sea Bream (Sparus aurata L.) Caught in Iskenderun Bay (Turkey). Turk. J. Vet. Anim. Sci. 2005, 29, 257–262. [Google Scholar]
- Al-Majed, N.B.; Prestonà, M.R. An Assessment of the Total and Methyl Mercury Content of Zooplankton and Fish Tissue Collected from Kuwait Territorial Waters. Mar. Pollut. Bull. 2000, 40, 298–307. [Google Scholar] [CrossRef]
- Raja, P.; Veerasingam, S.; Suresh, G.; Marichamy, G.; Venkatachalapathy, R. Heavy Metals Concentration in Four Commercially Valuable Marine Edible Fish Species from Parangipettai Coast, South East Coast of India. Int. J. Anim. Vet. Adv. 2009, 1, 10–14. [Google Scholar]
- Naeem, M.; Salam, A.; Tahir, S.S.; Rauf, N. The Effect of Fish Size and Condition on the Contents of Twelve Essential and Non Essential Elements in Aristichthys Nobilis. Pak. Vet. J. 2011, 31, 109–112. [Google Scholar]
Fish Part | Mean Dry Weight (g) |
---|---|
Bone | 74.73 |
Fin | 9.73 |
Head | 54.71 |
Meat | 40–92 |
Skin | 69.64 |
Tail | 6.27 |
Viscera | 5.00 |
Name of Metals | LOD (mg/kg) |
---|---|
As | 1 |
Ba | 15 |
Cd | 2 |
Cu | 1 |
Fe | 1 |
Hg | 1 |
Mn | 3 |
Ni | 3 |
Pb | 1 |
Zn | 1 |
Part | Ingestion Rate (kg Person−1 Day−1) |
---|---|
Bone | 1.53 × 10−3 |
Fin | 3.01 × 10−4 |
Head | 2.91 × 10−3 |
Meat | 3.88 × 10−3 |
Skin | 9.74 × 10−4 |
Tail | 3.01 × 10−4 |
Viscera | 9.59 × 10−3 |
Part | As | Ba | Cd | Cu | Fe | Pb | Mn | Hg | Ni | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Tail | ND | 3.27 ± 1.2 | 2.55 ± 2.0 | 3.73 ± 3.5 | 34.00 ± 29.1 | 0.30 ± 0.5 | 5.39 ± 9.5 | ND | ND | 64.56 ± 55.3 |
Skin | ND | 4.14 ± 0.8 | 3.00 ± 2.2 | 6.28 ± 5.4 | 54.04 ± 47.9 | 1.35 ± 1.0 | 8.22 ± 11.7 | ND | ND | 46.28 ± 32.3 |
Meat | ND | 2.23 ± 0.5 | 1.45 ± 0.9 | 4.61 ± 7.5 | 29.17 ± 30.1 | ND | 2.17 ± 4.82 | ND | ND | 30.38 ± 52.8 |
Fins | 0.09 ± 3 | 2.90 ± 0.7 | 3.82 ± 5.8 | 11.02 ± 38.2 | 58.67 ± 124.2 | 1.85 ± 5.4 | 6.43 ± 6.4 | ND | 6.36 ± 2.11 ND | 78.65 ± 57.7 |
Bone | ND | 1.91 ± 0.7 | 1.00 ± 1.3 | 4.22 ± 3.6 | 52.48 ± 41.9 | ND | 0.74 ± 0.14 | ND | ND | 22.73 ± 14.8 |
Viscera | ND | 2.25 ± 0.7 | 3.30 ± 1.9 | 41.95 ± 73.3 | 216.50 ± 566.9 | ND | 1.77 ± 5.1 | 0.60 ± 1.9 | ND | 112.53 ± 332 |
Head | 0.45 ± 5 | 1.80 ± 0.6 | 1.73 ± 1.9 | 3.13 ± 3.1 | 44.00 ± 59.6 | ND | 2.09 ± 3.1 | ND | ND | 27.92 ± 18.8 |
FAO/WHO Limits [55,56] | 1.4 | N/A | 0.5 | 30.0 | 100.0 | 0.5 | 1.00 | 0.50 | 30.0 | 100.0 |
HM | df | F | p Value |
---|---|---|---|
Ba | 6 | 11.47 | 6.81 × 10−9 |
Cd | 6 | 1.456 | 0.2062 |
Cu | 6 | 3.781 | 0.0026 |
Fe | 6 | 1.837 | 0.1043 |
Mn | 6 | 4.234 | 0.0011 |
Zn | 6 | 5.151 | 0.0002 |
Parts | As | Ba | Cd | Cu | Fe | Pb | Mn | Hg | Ni | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Tail | 0 | 0.0001 | 0.0110 | 0.0004 | 0.0002 | 0.0004 | 0.0002 | 0 | 0 | 0.0009 |
Skin | 0 | 0.0003 | 0.0417 | 0.0022 | 0.0011 | 0.0053 | 0.0008 | 0 | 0 | 0.0021 |
Meat | 0 | 0.0006 | 0.0805 | 0.0064 | 0.0023 | 0.0000 | 0.0009 | 0 | 0 | 0.0056 |
Fins | 0.0013 | 0.0001 | 0.0164 | 0.0012 | 0.0004 | 0.0023 | 0.0002 | 0 | 0.0014 | 0.0011 |
Bone | 0 | 0.0002 | 0.0219 | 0.0023 | 0.0016 | 0 | 0.0001 | 0 | 0 | 0.0017 |
Viscera | 0 | 0.0002 | 0.0452 | 0.0144 | 0.0042 | 0 | 0.0002 | 0.0822 | 0 | 0.0051 |
Head | 0.0631 | 0.0004 | 0.0719 | 0.0033 | 0.0026 | 0 | 0.0006 | 0 | 0 | 0.0039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza, L.C.; Nolos, R.C.; Villaflores, O.B.; Apostol, E.M.D.; Senoro, D.B. Detection of Heavy Metals, Their Distribution in Tilapia spp., and Health Risks Assessment. Toxics 2023, 11, 286. https://doi.org/10.3390/toxics11030286
Mendoza LC, Nolos RC, Villaflores OB, Apostol EMD, Senoro DB. Detection of Heavy Metals, Their Distribution in Tilapia spp., and Health Risks Assessment. Toxics. 2023; 11(3):286. https://doi.org/10.3390/toxics11030286
Chicago/Turabian StyleMendoza, Leonel C., Ronnel C. Nolos, Oliver B. Villaflores, Enya Marie D. Apostol, and Delia B. Senoro. 2023. "Detection of Heavy Metals, Their Distribution in Tilapia spp., and Health Risks Assessment" Toxics 11, no. 3: 286. https://doi.org/10.3390/toxics11030286
APA StyleMendoza, L. C., Nolos, R. C., Villaflores, O. B., Apostol, E. M. D., & Senoro, D. B. (2023). Detection of Heavy Metals, Their Distribution in Tilapia spp., and Health Risks Assessment. Toxics, 11(3), 286. https://doi.org/10.3390/toxics11030286